盲目搜索启发式搜索

合集下载

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习

第五章状态空间搜索策略搜索是人工智能的一个基本问题,是推理不可分割的一部分。

搜索是求解问题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。

搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。

搜索可分为盲目搜索和启发式搜索两种。

1.1 盲目搜索策略1.状态空间图的搜索策略为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。

一般情况下,不同的知识表示对应着不同的求解方法。

状态空间表示法是一种用“状态”和“算符”表示问题的方法。

状态空间可由一个三元组表示(S,F,Sg)。

利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。

如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。

算法5.1 状态空间图的一般搜索算法①建立一个只含有初始节点S0的搜索图G,把S放入OPEN表中。

②建立CLOSED表,且置为空表。

③判断OPEN表是否为空表,若为空,则问题无解,退出。

④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。

⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。

问题的解的这条路径得到。

即可从图G中沿着指针从n到S⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。

⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。

盲目搜索

盲目搜索

盲目搜索搜索的含义依问题的实际情况寻找可利用的知识,构造代价较少的推理路径从而解决问题的过程离散的问题通常没有统一的求解方法搜索策略的优劣涉及能否找到最好的解、计算时间、存储空间等搜索分为盲目搜索和启发式搜索盲目搜索:按预定的策略进行搜索,未用问题相关的或中间信息改进搜索。

效率不高,难求解复杂问题,但不失可用性启发式搜索:搜索中加入问题相关的信息加速问题求解,效率较高,但启发式函数不易构造盲目搜索也叫无信息搜索,只适合用于求解比较简单的问题。

我们没有指定问题的任何推理信息,例如要搜索这一部分而不是另一部分,就像到目前为止的只要发现一条到目标的路径即可。

这种过程被称为是盲目的。

盲目搜索过程只把算子应用到节点,它没有使用问题领域的任何特殊知识(除了关于什么动作是合法的知识外)。

最简单的盲目搜索过程就是广度优先搜索。

该过程把所有的算子应用到开始节点以产生一个显式的状态空间图,再把所有可能的算子应用到开始节点的所有直接后继,再到后继的后继,等等。

搜索过程一律从开始节点向外扩展。

由于每一步将所有可能的算子应用到一个节点,因此可把它们组成一个叫后继函数的函数。

当把后继函数应用到一个节点时,产生一个节点集,该节点集就是把所有能应用到那个节点的算子应用到该节点而产生的。

一个节点的后继函数的每一次应用称为节点的扩展相同代价搜索是广度优先搜索的一种变体,在该方法中,节点从开始节点顺着代价等高点向外扩展,而不是顺着相同深度等高线。

如果图中所有弧的代价相同,那么相同代价搜索就和广度优先搜索一致。

反过来,相同代价搜索可以看作是下一章要讲的启发式搜索的一个特殊情况。

广度优先和相同代价搜索方法的简要描述只给出了它们的主要思想,但是要解决其他复杂的情况则需要技术改进深度优先搜索一次对节点应用一个算子以产生该节点的一个后继。

每一个节点都留下一个标记,用来指示如果需要时所必需的附加算子。

对每一个节点,必须有一个决策来决定哪个算子先用,哪个次之等等。

盲目搜索与探索

盲目搜索与探索

24
3.1.3 深度优先搜索
2020/6/26
25
有界深度优先搜索
定义节点的深度如下: (1) 起始节点(即根节点)的深度为0。 (2) 任何其它节点的深度等于其父辈节点深度加上1。
• 对于许多问题,其状态空间搜索树的深度可能为无限深, 或者可能至少要比某个可接受的解答序列的已知深度上限 还要深。为了避免考虑太长的路径(防止搜索过程沿着无 益的路径扩展下去),往往给出一个节点扩展的最大深 度——深度界限。任何节点如果达到了深度界限,那么都 将把它们作为没有后继节点处理。值得说明的是,即使应 用了深度界限的规定,所求得的解答路径并不一定就是最 短的路径。
失败 成功
一、盲目搜索
盲目搜索又叫做无信息搜索,一般只适用于求解比较简 单的问题。主要包括宽度优先搜索、等深度优先搜索等。 特点:
1)搜索按规定的路线进行,不使用与问题有关的启发性 信息。
2)适用于其状态空间图是树状结构的一类问题。
13
1、 宽度优先搜索
定义:如果搜索是以接近起始节点的程度依次扩展节点的, 那么这种搜索就叫做宽度优先搜索(breadth-first search)。
2020/6/26
29
八数码难题的深度优先搜索树
2020/6/26
30
二、 启发式搜索
盲目搜索的不足:
效率低,耗费过多的计算空间与时间。 宽度优先搜索、深度优先搜索,或等代价搜索算法,是按事
先规定的路线进行搜索,或按已经付出的代价决定下一步 要搜索的节点,其主要差别是OPEN表中待扩展节点的顺 序问题。如果找到一种方法用于排列待扩展节点的顺序, 即选择最有希望的节点加以扩展,那么,搜索效率将会大 为提高。
基本思想:

第3章(搜索推理技术1-图盲目搜索)

第3章(搜索推理技术1-图盲目搜索)

①、起 始节点 ( 即根
节点)的深度为0。
②、任何其它节点的
深度等于其父辈
节点深度加上1。
深度优先搜索的基本
思路:
先扩展最深的节点 。
当出现没有后继节点
时,换到旁边的次深
节点
后生成的节点画在左边
含有深度界限的深度优先搜索算法:
① 把起始节点 S 放到未扩展节点的 OPEN 表中。 如果此节点为一目标节点,则得到解 ② 如果 OPEN 为一空表,则无解、失败退出
状态:长度为9的一维数组
(q1 , q2 , … , q9 )
其中,qi 取 0 , 1 , … , 8 个数,0 表示空格,且取值
互不相同
如果记空格的位置为P,这时空格的移动规则是: 1 4 7 2 5 8 3 6 9 数字表示位置 1 2 3 4 5 6 7 8 9 P-3
P-1
P
P+1
P+3
起始节点的父节点标志和操作符:
不作记录或记录为负
搜索过程(按照程序运行方式)
① 起始节点放到OPEN表
2 8 3 1 0 4
2 8 3 1 4 7 6 5 7 6 5
② OPEN不为空,继续
③ 将第一个节点 n 从 OPEN 表中移出,并放到 CLOSED表中 OPEN表
CLOSED表 1 0 0 2 8
13
14
1
4
2
8
8
3
3
0
1
2
4
1
5
4
7
7
0
6
6
5
1 8
7
2
3 4
14 15 15
16 16
3 2 4

2、启发式搜索

2、启发式搜索
启发式搜索
主要内容
• 搜索及其类型 • 盲目搜索
–宽度优先搜索 宽度优先搜索 –深度优先搜索 深度优先搜索
• 启发式搜索与博弈
搜索及其类型
1、什么是搜索
–人工智能所要解决的问题大部分不具备明确的解题步 人工智能所要解决的问题大部分不具备明确的解题步 而只能是利用已有的知识一步一步地摸索前进。 骤,而只能是利用已有的知识一步一步地摸索前进。 –根据问题的实际情况不断寻找可利用的知识,从而构 根据问题的实际情况不断寻找可利用的知识, 根据问题的实际情况不断寻找可利用的知识 造一条代价较少的推理路线, 造一条代价较少的推理路线,使问题得到圆满解决的 过程称之为搜索 。
– 课件演示
• 8数码问题的宽度优先搜索过程 数码问题的宽度优先搜索过程
宽度优先搜索示例
8数码问题的宽度优先搜索树 数码问题的宽度优先搜索树
盲目搜索
• OPEN表 OPEN表
– 用来存放将要扩展的节点。 用来存放将要扩展的节点。
• CLOSE表 CLOSE表
– 在进行子节点的扩展时,为了避免同一个节点被重复扩展,可以 在进行子节点的扩展时,为了避免同一个节点被重复扩展, 把扩展过一次的节点,记录到CLOSED表中, CLOSED表中 把扩展过一次的节点,记录到CL扩展时的候选对象。
–基本思想 基本思想
• 从初始节点So开始,逐层地对节点进行扩展并考察它是否为 从初始节点So开始, So开始 目标节点,在第n层的节点没有全部扩展并考察之前, 目标节点,在第n层的节点没有全部扩展并考察之前,不对第 n+1层的节点进行扩展 它是一种先生成的节点先扩展 层的节点进行扩展。 先生成的节点先扩展的搜索 n+1层的节点进行扩展。它是一种先生成的节点先扩展的搜索 方法。 方法。

6第六讲 第三章(盲目、启发搜索)

6第六讲  第三章(盲目、启发搜索)

二、有序搜索
用估价函数 f 来排列OPEN表上的节点。
应用某个算法选择OPEN表上具有最小f 值的节点作为
二、宽度优先搜索
例3.2 八数码问题 操作规定: 允许空格四周上、下、左、右的数码 块移入空格中,不许斜方向移动,不许返回先辈 结点。
1 2 3 8 5 7 4 6
1
4
1 3 8 2 5 7 4 6
2
1 2 3 8 4 5 7 6
3
1 2 3 8 5 7 4 6
5
1 2 3 8 5 7 4 6
深度优先搜索的特点
OPEN表为堆栈,操作是后进先出(LIFO) 深度优先又称纵向搜索。 一般不容易保证找到最优解(如下图所示) 防止搜索过程沿着无益的路径扩展下去,往往 给出一个节点扩展的最大深度——深度界限。
2、有界深度优先搜索
引入搜索深度限制值d,使深度优先搜索具有完备性 。 (1)深度界限的选择很重要 d若太小,则达不到解的深度,得不到解;若太大,既 浪费了计算机的存储空间与时间,降低了搜索效率。由于 解的路径长度事先难以预料,要恰当地给出d的值是比较 困难的。 (2)即使能求出解,它也不一定是最优解。 例3.3:设定搜索深度限制d=5的八数码问题。
4. 搜索过程框图
S0放入OPEN表 是 OPEN表空? 否 将OPEN表中第一个节点(n) 移至CLOSE表 否 n是目标节点? 扩展节点n,把n的后继节点放入 OPEN表末端,提供指向 节点n的指针 修改指针方针,重排OPEN表
失败

成功
一、图搜索策略(Graph Search) 5.图搜索方法分析:
3.2 启发式搜索
盲目搜索的不足:效率低,耗费空间与时间。 启发式搜索:利用问题本身特性信息(启发信息) 指导搜索过程。是有序搜索。 一、启发式搜索策略 启发式信息主要用途:

人工智能第三版课件第3章 搜索的基本策略

人工智能第三版课件第3章 搜索的基本策略

2.3.1 启发式信息的表示
(2) 启发式函数应能够估计出可能加速 达到目标的程度
这可以帮助确定当扩展一个节点时,那些 节点应从搜索树中删除。
启发式函数对搜索树(图)的每一节点的真正 优点估计得愈精确,解题过程就愈少走弯路。
2.3.1 启发式信息的表示
例 2.8 八 皇 后 问 题 (8-Queens problem)
弱法主要包括: .最佳优先法 .生成测试法 .爬山法 .广度优先法 .问题归约法 .约束满足法 .手段目的分析法。
1.生成测试法(Generateand-test)
生成测试法的基本步骤为: 1. 生成一个可能的解,此解是状态空 间一个点,或一条始于S0的路径。 2. 用生成的“解”与目标比较。 3. 达到目标则停止,否则转第一步。
确定一个启发式函数f(n), n 为被搜索 的节点,它把问题状态的描述映射成问题 解决的程度,通常这种程度用数值来表示, 就是启发式函数的值。这个值的大小用来 决定最佳搜索路径。
2.3.1 启发式信息的表示
(2)表示成规则
如AM的一条启发式规则为: 如 果 存 在 一 个 有 趣 的 二 元 函 数 f(x,y) , 那 么看看两变元相同时会发生什么?
2.3.1 启发式信息的表示
如何构造启发式函数? (1)启发式函数能够根据问题的当前状态, 确定用于继续求解问题的信息。
这样的启发式函数能够有效地帮助决定 那些后继节点应被产生。
2.3.1 启发式信息的表示
例2.7 八数码问题。
S0
283 16 4
Sg
75
123 84 7 65
问题空间为:
a11 a12 a13 a21 a22 a23 a31 a32 a33

人工智能导论-第3章 搜索求解1 - 启发式搜索

人工智能导论-第3章 搜索求解1 - 启发式搜索
个标号为A的结点所对应状态相同,但是这三个
节点在搜索树中却是不同结点,因为它们分别代
表了从初始状态出发到达城市 A 的三条不同路径。
这三个结点表示的路径分别为:A → B → A、
A → D → A和A → E → A。因此需要注意的是,在
搜索树中,同一个标号一定表示相同的状态,其
含义为智能体当前所在的城市,但是一个标号可
达每个状态(城市)的最短路径。在处理通向相同状态的不同路径时,算法会更新当前的
前驱状态。
图3.7 修改后图搜索A*算法扩展A→E→G结点,红色实线表示
当前搜索树中的边,虚线表示不在搜索树中的边
搜索算法:A*算法性能分析
图搜索A*算法满足最优性(方法二):
要求启发函数满足一致性
引理3.1:启发函数满足一致性条件时,给定一个从搜索树中得到的结点序列,每个结


=

+
评价函数 起始结点到结点代价
(当前最小代价)
B
5
5
3
D
4
I
C
A
5
7
6
4
E
4
H
G
J
3
3
3
F
7
K
5
6
L
()

结点到目标结点代价
(后续估计最小代价)
状态
A
h(n)
13 10 6 12 7 8 5 3 6 3 0 6
B C D
E F G H I J K L
A*算法
搜索算法:A*算法
搜索算法:启发函数与评价函数
贪婪最佳优先搜索
所求解问题之外、与所求解
问题相关的特定信息或知识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
1
与图有关的术语
❖ 状态空间图——由节点(不一定是有限的 节点)及连接节点的分枝的集合构成。
❖ 有限节点图——节点数目有限的图称为 有限节点图。
❖ 有向图——一对节点用分枝线连接起来, 从一个节点指向另一个节点。这种图叫 做有向图。始节点叫父节点或双亲节点, 终节点叫子节点。
a
2
• 扩展——求解父节点的所有子节点,叫 做扩展。
失败 成功
12
一、盲目搜索
盲目搜索又叫做无信息搜索,一般只适用于求解比较简 单的问题。主要包括宽度优先搜索、等深度优先搜索等。 特点:
1)搜索按规定的路线进行,不使用与问题有关的启发性 信息。
2)适用于其状态空间图是树状结构的一类问题。
a
13
1、 宽度优先搜索
定义:如果搜索是以接近起始节点的程度依次扩展节点的, 那么这种搜索就叫做宽度优先搜索(breadth-first search)。
2、 深度优先搜索
基本思想:
从初始节点S开始,在其子节点中选择一个节点进行 考察,若不是目标节点,则再在该子节点中选择一个节 点进行考察,一直如此向下搜索。当到达某个子节点, 且该子节点既不是目标节点又不能继续扩展时,才选择 其兄弟节点进行考察。
2020/6/8
a
22
深度优先搜索示意图
2020/6/8
(7) 对那些未曾在G中出现过的(既未曾在OPEN表上或 CLOSED表上出现过的)M成员设置一个通向n的指针。 把 M 的 这 些 成 员 加 进 OPEN 表 。 对 已 经 在 OPEN 或 CLOSED表上的每一个M成员,确定是否需要更改通 到n的指针方向。对已在CLOSED表上的每个M成员, 确定是否需要更改图G中通向它的每个后裔节点的 指针方向。
一个解答,成功退出;否则转向第(2)步。
2020/6/8
a
16
宽度优先搜索算法框图
a
17
宽度优先搜索方法分析:
• 宽度优先搜索是图搜索一般过程的特殊情况,将图搜索一 般过程中的第8步具体化为本算法中的第6步,这实际是 将OPEN表作为“先进先出”的队列进行操作。
• 宽度优先搜索方法能够保证在搜索树中找到一条通向目标 节点的最短途径;这棵搜索树提供了所有存在的路径(如 果没有路径存在,那么对有限图来说,就说该法失败退出; 对于无限图来说,则永远不会终止)。
搜索原理
什么是搜索? 根据问题的实际情况不断寻找可利用的知识,从而构造 一条代价较少的推理路线,使问题得到圆满解决的过程。
• 盲目搜索 按预定的控制策略进行搜索,在搜索过程中获得的中间 信息不用来改进控制策略。效率低、主要用于简单问 题求解。
• 启发式搜索 在搜索中加入了与问题有关的启发性信息,用以指导搜 索朝着最有希望的方向前进,加速问题的求解过程并 找到最优解。
图搜索的定义——一种计算机在状态图 中寻找路径的方法。
a
4
2.CLOSED表的引入
CLOSED表 (记录扩展过的节点)
编号 节点号 父节点号
a
5
3. OPEN表的引入
OPEN表 (记录待扩展的节点)
节点号 父节点号
a
6
举例:八数码魔方例子中
a
7
OPEN表变化过程
a
18
例如:宽度优先搜索用于八数码难题。这个问题 就是要把初始棋局变为如下目标棋局的问题:
搜索树上的所有节点都标记它们所对应的状态描 述,每个节点旁边的数字表示节点扩展的顺序(按 顺时针方向移动空格)。图中最后一个节点是目标 节点。
a
19
八数码难题的宽度优先搜索树
26
a
20
对应动态演示图
a
21
a
23
3、深度优先搜索
在深度优先搜索中,首先扩展最新产生的(即最深的)节点 (深度相等的节点可以任意排列)。其结果是搜索沿着状态 空间某条单一的路径从起始节点向下进行下去;只有当搜索 到达一个没有后裔的状态时,它才考虑另一条替代的路径。 替代路径与前面已经试过的路径不同之处仅仅在于改变最后 n步,而且保持n尽可能小。
• 路径——在一系列节点n1,n2,,nm中, 从n1开始,ni总有分枝连接ni+1,称从n1 到nm之间的分枝集合是路径。路径中不 包含两个及以上相同的分枝,如果n1和 nm是同一个节点,则称这种路径为闭路。 不构成闭路的称为树。
• 在用状态空间图来表示问题时,对问题
的求解就是求出从初始节点到目标节点
(3)LOOP:若OPEN表是空表,则失败退出。 (4) 选择OPEN表上的第一个节点,把它从OPEN表移出
并放进CLOSED表中。称此节点为节点n。 (5) 若n为一目标节点,则有解并成功退出,此解是追
踪图G中沿着指针从n到S这条路径而得到的(指针将 在第7步中设置)。
a
10
图搜索的一般过程
(6) 扩展节点n,同时生成不是n的祖先的那些后继节点 的集合M。把M的这些成员作为n的后继节点添入图 G中。
(8) 按某一任意方式或按某个探试值,重排OPEN表。
(9) GO LOOP。
a
11
开始
把S放入OPEN表
是 OPEN表为空表?
否 把第一个节点(n)从OPEN表移至CLOSED表
n为目标节点吗?


把n的后继节点放入OPEN表的 末端,提供返回节点n的指针
修改指针方向
重排OPEN表
图搜索一a 般过程的框图
基本思想:从初始节点S开始,逐层地对节点进行扩展并考 察它是否为目标节点,在第n层的节点没有全部扩展并考 察之前,不对第n+1层的节点进行扩展。OPEN表中的节 点总是按进入的先后顺序排列,先进入的节点排在前面, 后进入的排在后面。
a
14
宽 度 优 先 搜 索 示 意 图
a
15
宽度优先搜索算法: (1) 把起始节点放到OPEN表中(如果该起始节点为一
目标节点,则求得一个解答)。 (2) 如果OPEN是个空表,则没有解,失败退出;否
则继续。 (3) 把第一个节点(节点n)从OPEN表移出,并把它放
入CLOSED扩展节点表中。 (4) 扩展节点n。如果没有后继节点,则转向上述第
(2)步。 (5) 把n的所有后继节点放到OPEN表的末端,并提供
从这些后继节点回到n的指针。 (6) 如果n的任一个后继节点是个目标节点,则找到
节点号 父节点号
S0

A
S0
B
S0
C
S0
D
S0
E
A
F
A
a
8
CLOSED表变化过程
编号
0 1 2
节点号
S0 A B
父节点号
空 S0 S0
a
9
图搜索的一般过程
(1) 建立一个只含有起始节点S的搜索图G,把S放到一 个叫做OPEN表的未扩展节点表中。
(2)建立一个叫做CLOSED的已扩展节点表,其初始为 空表。
相关文档
最新文档