分式的运算经典例题,2019年全国各地中考数学关于分式的运算中考试题真题及答案解析
2019中考数学试题分类汇编——分式、分式方程及其运算

2019中考试题分类汇编——分式及其运算一、选择题6.(2019年北京)如果m +n =1,那么代数式(+)•(m 2﹣n 2)的值为( ) A .﹣3 B .﹣1 C .1 D .3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【解答】解:原式=•(m +n )(m ﹣n )=•(m +n )(m ﹣n )=3(m +n ),当m +n =1时,原式=3.故选:D .【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.2. (2019年江西)计算的结果为 (B )3. A.a B. -aC.21a -D.21a【考点】:分式的计算 【答案】B7. (2019年成都)分式方程1215=+--xx x 的解为( ) 8.A.1-=xB.1=xC.2=xD.2-=x 【解析】此题考查分式方程的求解.选A 7.(2019年天津)计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A.11.(2019重庆B )若数a 使关于x 的不等式组⎪⎩⎪⎨⎧->--≤-)x 1(5a 2x 6)7x (4123x有且仅有三个整数解,且使关于y 的分式方程3y1a1y y 21-=----的解为正数,则所有满足条件的整数a 的值之和是( ) A 、-3;B 、-2;C 、-1;D 、1.提示:由不等式组的条件得:-2.5≤a<3.由分式方程的条件得:a<2且a ≠1.综上所述,整数a 为-2,-1,0.答案A.7.(2019甘肃兰州)(4分)化简:﹣=( )A.a﹣1B.a+1C.D.【分析】先根据法则计算,再因式分解、约分即可得.【解答】解:原式===a﹣1,故选:A.8.(2019甘肃武威)(3分)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:﹣=﹣==.故从第②步开始出现错误.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.13.(2019河北)(2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【解答】解∵﹣=﹣=1﹣=又∵x 为正整数, ∴≤x <1故表示﹣的值的点落在②故选:B .【点评】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.2.(2019江苏常州)(2分)若代数式有意义,则实数x 的取值范围是( )A .x =﹣1B .x =3C .x ≠﹣1D .x ≠3【分析】分式有意义的条件是分母不为0. 【解答】解:∵代数式有意义,∴x ﹣3≠0, ∴x ≠3. 故选:D .6.(2019苏州)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x =-6.【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A27(2019年台湾)市面上贩售的防晒产品标有防晒指数SPF ,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF ≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF 应标示为多少? (2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.27.【答案】解:(1)根据题意得,,解得,SPF=10,答:该产品的SPF应标示为10;(2)文宣内容不合理.理由如下:当SPF=25时,其防护率为:;当SPF=50时,其防护率为:;98%-96%=2%,∴第二代防晒乳液比第一代防晒乳液的防护率提高了2%,不是提高了一倍.∴文宣内容不合理.【解析】(1)根据公式列出方程进行计算便可;(2)根据公式计算两个的防护率,再比较可知结果.本题是分式方程的应用,根据公式列出方程是解第一题的关键,第二题的关键是根据公式正确算出各自的防护率.4.(2019海南)(3分)分式方程=1的解是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据分式方程的求解方法解题,注意检验根的情况;【解答】解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.8.(2019四川遂宁)(4分)关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4【分析】分式方程去分母转化为整式方程,求出整式的方程的解得到x的值,根据分式方程解是正数,即可确定出k的范围.【解答】解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.3.(2019江苏扬州)(3分)分式可变形为()A.B.﹣C.D.﹣【分析】直接利用分式的基本性质分析得出答案.【解答】解:分式可变形为:﹣.故选:D.8.(2019黑龙江哈尔滨)(3分)方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x=;故选:C.6.(2019广州)(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.17.(2019黑龙江龙东地区)(3分)已知关于x的分式方程=1的解是非正数,则m 的取值范围是()A.m≤3B.m<3C.m>﹣3D.m≥﹣3【分析】根据解分式方程的方法可以求得m的取值范围,本题得以解决.【解答】解:=1,方程两边同乘以x﹣3,得2x﹣m=x﹣3,移项及合并同类项,得x=m﹣3,∵分式方程=1的解是非正数,x﹣3≠0,∴,解得,m≤3,故选:A.【点评】本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.9.(2019辽宁本溪)(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=【分析】设甲种型号机器人每台的价格是x万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”,列出关于x的分式方程.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.4.(2019浙江宁波)(4分)若分式有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.6.(2019浙江台州)(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键6.(2019山东济宁)(3分)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=45【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案.【解答】解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:﹣=45.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键.3.(2019山东聊城)(3分)如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选:B.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.(2019山东临沂)计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:A.5.(2019山东淄博)(4分)解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)【分析】分式方程去分母转化为整式方程,即可得到结果.【解答】解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9.(2019湖北荆州)(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1【分析】根据分式方程的解法即可求出答案.【解答】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.7.(2019湖北十堰)(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.2.(2019湖南衡阳)(3分)如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1B.x>﹣1C.全体实数D.x=﹣1【分析】根据分式有意义的条件即可求出答案.【解答】解:由题意可知:x+1≠0,x≠﹣1,故选:A.【点评】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.4.(2019广西百色)(3分)方程=1的解是()A.无解B.x=﹣1C.x=0D.x=1【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.4.(2019湖南益阳)(4分)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),把分式方程便可转化成一元一次方程.【解答】解:方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.5.(2019湖南株洲)(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.4.(2019广西贵港)(3分)若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.1【分析】化简分式==x﹣1=0即可求解;【解答】解:==x﹣1=0,∴x=1;故选:D.【点评】本题考查解分式方程;熟练掌握因式分解的方法,分式方程的解法是解题的关键.二、填空题9.(2019年北京)分式的值为0,则x 的值是 1 .【分析】根据分式的值为零的条件得到x ﹣1=0且x ≠0,易得x =1. 【解答】解:∵分式的值为0,∴x ﹣1=0且x ≠0, ∴x =1. 故答案为1.8.(2019年江苏省泰州)若分式121-x 有意义,则x 的取值范围是 . 【答案】x≠21. 【解析】试题分析:求分式中的x 取值范围,就是求分式有意义的条件,根据分式分母不为0的条件,要使121-x 在实数范围内有意义,必须2x -1≠0, ∴x≠21. (2019年江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,在某路口的斑马线路段A -B -C 横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x米/秒,根据题意列方程得: 66111.2x x += . 【答案】66111.2x x +=【考点】分式方程应用【解析】根据题意,表示出两段的速度和时间,利用总时间为11秒这个等量关系列方程.9.(2019年吉林)(3分)计算:•=.【分析】根据分式乘除法的法则计算即可.【解答】解:•=,故答案为:.16.(2019四川绵阳)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为______km/h.16.【答案】10【解析】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.13.(2019年甘肃)(3分)分式方程=的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x+6=5x+5,解得:x=,经检验x=是分式方程的解.故答案为:.12.(2019甘肃天水)(4分)分式方程﹣=0的解是x=2.【分析】先通分再去分母,再求解,最后进行检验即可【解答】解:原式通分得:=0去分母得:x﹣2(x﹣1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=212.(2019新疆)计算:﹣=a+b.【分析】同分母的分式相减,就是分母不变,把分子相减即可.【解答】解:原式==a+b,故答案是a+b.【点评】本题考查了分式的加减法,解题的关键是因式分解、约分.18.(2019年宁夏)(6分)解方程:+1=.【分析】方程两边同时乘以(x+2)(x﹣1),得x=4;【解答】解:+1=,方程两边同时乘以(x+2)(x﹣1),得2(x﹣1)+(x+2)(x﹣1)=x(x+2),∴x=4,将检验x=4是方程的解;∴方程的解为x=4;【点评】本题考查分式方程的解;掌握分式方程的求解方法,验根是关键.13.(2019四川南充)(3分)计算:+=x+1.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==x+1.故答案为:x+114.(2019四川凉山州)(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(2019四川内江)(5分)若+=2,则分式的值为﹣4.【分析】由+=2,可得m+n=2mn;化简=,即可求解;’【解答】解:+=2,可得m+n=2mn,===﹣4;故答案为﹣4;【点评】本题考查分式的值;能够通过已知条件得到m+n=2mn,整体代入的思想是解题的关键;14.(2019四川巴中)(4分)若关于x的分式方程+=2m有增根,则m的值为1.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为114.(2019黑龙江齐齐哈尔)(3分)关于x的分式方程﹣=3的解为非负数,则a的取值范围为a≤4且a≠3.【分析】根据解分式方程的方法和方程﹣=3的解为非负数,可以求得a的取值范围.【解答】解:﹣=3,方程两边同乘以x﹣1,得2x﹣a+1=3(x﹣1),去括号,得2x﹣a+1=3x﹣3,移项及合并同类项,得x=4﹣a,∵关于x的分式方程﹣=3的解为非负数,x﹣1≠0,∴,解得,a≤4且a≠3,故答案为:a≤4且a≠3.【点评】本题考查分式方程的解、解一元一次不等式,解答本题的关键是明确解分式方程的方法.12.(2019黑龙江绥化)(3分)若分式有意义,则x的取值范围是x≠4.【分析】分式有意义,分母不等于零.【解答】解:依题意得:x﹣4≠0.解得x≠4.故答案是:x≠4.【点评】考查了分式有意义的条件.分式有意义的条件是分母不等于零.15.(2019黑龙江绥化)(3分)当a=2018时,代数式(﹣)÷的值是2019.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣)÷==a+1,当a=2018时,原式=2018+1=2019,故答案为:2019.19.(2019黑龙江绥化)(3分)甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为80km/h.【分析】设甲车的速度为xkm/h,则乙车的速度为xkm/h,根据时间=路程÷速度结合乙车比甲车早30分钟到达B地,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲车的速度为xkm/h,则乙车的速度为xkm/h,依题意,得:﹣=,解得:x=80,经检验,x=80是原方程的解,且符合题意.故答案为:80.12.(2019广州)(3分)代数式有意义时,x应满足的条件是x>8.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.11.(2019贵阳)(4分)若分式的值为0,则x的值是2.【分析】直接利用分式为零的条件分析得出答案.【解答】解:∵分式的值为0,∴x2﹣2x=0,且x≠0,解得:x=2.故答案为:2.14.(2019贵州铜仁)(4分)分式方程=的解为y=﹣3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:去分母得:5y=3y﹣6,解得:y=﹣3,经检验y=﹣3是分式方程的解,则分式方程的解为y=﹣3.14.(2019贵州安顺)(4分)某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的 1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为﹣=20.【分析】设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据种植亩数=总产量÷平均亩产量结合改良后的种植面积比原计划少20亩,即可得出关于x的分式方程,此题得解.【解答】解:设原计划平均亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,依题意,得:﹣=20.故答案为:﹣=20.16.(2019江苏宿迁)(3分)关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点评】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.11.(2019山西)(3分)化简﹣的结果是.【分析】先把异分母转化成同分母,再把分子相减即可.【解答】解:原式=.故答案为:11.(2019浙江衢州)(4分)计算:+=.【分析】利用同分母分式的加法法则计算,即可得到结果.【解答】解:原式==.故答案为:.14.(2019山东滨州)(5分)方程+1=的解是x=1.【分析】公分母为(x﹣2),去分母转化为整式方程求解,结果要检验.【解答】解:去分母,得x﹣3+x﹣2=﹣3,移项、合并,得2x=2,解得x=1,检验:当x=1时,x﹣2≠0,所以,原方程的解为x=1,故答案为:x=1.14.(2019山东德州)(4分)方程﹣=1的解为x=﹣4.【分析】根据分式方程的解法,先将式子通分化简为=1,最后验证根的情况,进而求解;【解答】解:﹣=1,=1,=1,=1,x+1=﹣3,x=﹣4,经检验x=﹣4是原方程的根;故答案为x=﹣4;【点评】本题考查分式方程的解法;熟练掌握分式方程的解法,勿遗漏验根环节是解题的关键.14.(2019山东烟台)(3分)若关于x的分式方程﹣1=有增根,则m的值为3.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣2)=0,得到x=2,然后代入化为整式方程的方程算出m的值.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.(2019内蒙古包头)(3分)化简:1﹣÷=﹣.【分析】根据分式混合运算的法则计算即可.【解答】解:1﹣÷=1﹣•=1﹣=﹣,故答案为:﹣.13.(2019湖北武汉)(3分)计算﹣的结果是.【分析】异分母分式相加减,先通分变为同分母分式,然后再加减.【解答】解:原式====.故答案为:【点评】此题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.12.(2019湖北黄石)(3分)分式方程:﹣=1的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣1,故答案为:x=﹣112.(2019湖北孝感)(3分)方程=的解为x=1.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【点评】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)、三检验(检查求出的根是否是增根)”的步骤求出方程的解即可.注意:解分式方程时,最后一步的验根很关键.12.(2019湖北襄阳)(3分)定义:a*b=,则方程2*(x+3)=1*(2x)的解为x=1.【分析】根据新定义列分式方程可得结论.【解答】解:2*(x+3)=1*(2x),=,4x=x+3,x=1,经检验:x=1是原方程的解,故答案为:x=1.【点评】本题考查了解分式方程和新定义的理解,熟练掌握解分式方程的步骤是关键.16.(2019湖南衡阳)(3分)计算:+=1.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==1.故答案为:1.13.(2019湖南岳阳)(4分)分式方程的解为x=1.【分析】观察可得最简公分母为x(x+1).去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘x(x+1),得x+1=2x,解得x=1.将x=1代入x(x+1)=2≠0.所以x=1是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.13.(2019湖南怀化)(4分)计算:﹣=1.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.17.(2019广西玉林)(3分)设0<<1,则m=,则m的取值范围是﹣1<m <1.【分析】把的分子、分母分别因式分解,约分后可得,再根据0<<1即可确定m的取值范围.【解答】解:m==,∵0<<1,∴﹣2<﹣<0,∴﹣1≤1﹣<1,即﹣1<m<1.故答案为:﹣1<m<1【点评】本题主要考查了分式的约分以及不等式的基本性质,熟练掌握分解因式的方法是解答本题的关键.15.(2019广西梧州)(3分)化简:﹣a=a﹣4.【分析】直接将分式的分子分解因式,进而约分得出答案.【解答】解:原式=﹣a=﹣a=2a﹣4﹣a=a﹣4.故答案为:a﹣4.【点评】此题主要考查了分式的加减运算,正确分解因式是解题关键.13.(2019广西贺州)(3分)要使分式有意义,则x的取值范围是x≠﹣1.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.13.(2019广西河池)(3分)分式方程的解为x=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.三、解答题21.(8 分)(2019•娄底)先化简÷(1﹣),再从不等式 2x ﹣3<7 的正整数解中选一个使原式有意义的数代入求值.考点:分式的化简求值;一元一次不等式的整数解.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形, 约分得到最简结果,求出不等式的解集,找出解集中的正整数解得到 x 的值,代入计算即可求出值.解答:解:原式=÷=• =,不等式 2x ﹣3<7,解得:x <5,其正整数解为 1,2,3,4,当 x=1 时,原式=.(2019江苏连云港)(本题满分6分)化简:22(1)42m m m ÷+--. 【分析】先做括号里面,再把除法转化成乘法,计算得结果.【解答】解:原式=÷=÷ =× =. 【点评】本题考查了分式的混合运算.解决本题的关键是掌握分式的运算顺序和分式加减乘除的运算法则.19.(2019福建) (本小题满分8分)先化简,再求值:(x -1)÷(x -x x 12-),其中x =2+1解:原式=1-x x , 1+22 (2019年江苏省泰州)(2)解方程:252--x x +3=233--x x . (2) 252--x x +3=233--x x 2x -5+3(x -2)= 3x -32x -5+3x -6= 3x -32x=8x=4经检验x=4是原方程的解.(2)(2019无锡)1421+=-x x (2)【解答】解:3=x ,经检验3=x 是方程的解19.(2019年厦门)(本题满分8分) 化简并求值:(2a 2-4a 2-1) ÷a 2+2a a 2,其中a =2.解:(2a 2-4a 2-1) ÷a 2+2a a 2=2a 2-4-a 2a 2·a 2a 2+2a……………………………2分 =(a +2)(a -2)a 2·a 2a (a +2) =a -2a . ……………………………6分当a =2时,原式=2-22……………………………7分 =1- 2. ……………………………8分16.(2019年成都)(本小题满分6分)先化简,再求值:62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x ,其中12+=x . 解:原式=12)1()3(231)3(2)1(3122-=-+⋅⎪⎭⎫ ⎝⎛+-=+-÷⎪⎭⎫ ⎝⎛+-x x x x x x x x x . 将12+=x 代入原式得222= 图318.(2019年四川广安)(6分)解分式方程:﹣1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:﹣1=, 方程两边乘(x ﹣2)2得:x (x ﹣2)﹣(x ﹣2)2=4,解得:x =4,检验:当x =4时,(x ﹣2)2≠0.所以原方程的解为x =4.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 19(2019重庆B )(2)3m 2m 29m 6m 21m 2++÷--+- 解:原式=)1m (23m )3m )(3m ()3m (21m ++∙-+-+- =1m 11m ++- =1m m 2+ (2019年重庆A )(2)(a +)÷(2)(a +)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.(2019浙江温州)(2)﹣.(2)原式===. (2)(2019四川绵阳)先化简,再求值:( - )÷,其中a = ,b =2- .(2)原式= × - ×=- -=-=- ,当a = ,b =2- 时,原式=- =- .【解析】(1)根据二次根式的性质、负整数指数幂、零指数幂的运算法则、特殊角的三角函数值计算; (2)根据分式的混合运算法则把原式化简,代入计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键.18.(2019广东)先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x2x +当x=2,原式=222+=2222+=1+2.19(2019甘肃天水)(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.(2)先根据分式的混合运算顺序和运算法则化简原式,解不等式组求出其整数解,再选取使分式有意义的x的值代入计算可得.(2)原式=•=﹣•=,解不等式组得﹣1≤x<3,则不等式组的整数解为﹣1、0、1、2,∵x≠±1,x≠0,∴x=2,则原式==﹣2.16.(2019河南)(8分)先化简,再求值:(﹣1)÷,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当x=时,原式==.。
2019年全国各地中考数学试题分类汇编(第一期) 专题7 分式与分式方程(含解析)

专题7 分式与分式方程一.选择题1. ( 2019甘肃省兰州市) (4分)化简:12112+-++a a a = ( ) A. a -1 . B. a +1 . C.11+-a a . D. 11+a . 【答案】A . 【考点】分式计算. 【考察能力】运算求解能力. 【难度】简单【解析】12112+-++a a a =1212+-+a a =1)1)(1(+-+a a a =a -1 . 故选A.2.(2019甘肃省陇南市)(3分)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:﹣=﹣==.故从第②步开始出现错误. 故选:B .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.3. (2019甘肃省天水市)(4分)分式方程-=0的解是______.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.4.(2019•浙江宁波•4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5. (2019•湖北十堰•3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15 B.﹣=15C.﹣=20 D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.6. (2019•湖南衡阳•3分)如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1 B.x>﹣1 C.全体实数D.x=﹣1【分析】根据分式有意义的条件即可求出答案.【解答】解:由题意可知:x+1≠0,x≠﹣1,故选:A.【点评】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7. (2019•甘肃武威•3分)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:﹣=﹣==.故从第②步开始出现错误.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8. (2019•山东省聊城市•3分)如果分式的值为0,那么x的值为()A.﹣1 B.1 C.﹣1或1 D.1或0【考点】分式的值为零【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意,得|x |﹣1=0且x +1≠0, 解得,x =1. 故选:B .【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9. (2019•山东省济宁市 •3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .﹣=45 B .﹣=45 C .﹣=45D .﹣=45【考点】由实际问题抽象出分式方程【分析】直接利用5G 网络比4G 网络快45秒得出等式进而得出答案.【解答】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是:﹣=45.故选:A .【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键. 10. (2019•江苏苏州•3分)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为() A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A11. (2019•江苏泰州•3分)若分式有意义,则x 的取值范围是 x ≠ .【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣1≠0,解得x≠.故答案为:x≠.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12. (2019•湖南株洲•3分)关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(2019▪黑龙江哈尔滨▪3分)方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x =; 故选:C .【点评】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.14.(2019,四川成都,3分)分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x【解析】此题考查分式方程的求解.选A15.(2019,山东淄博,4分)解分式方程=﹣2时,去分母变形正确的是( )A .﹣1+x =﹣1﹣2(x ﹣2)B .1﹣x =1﹣2(x ﹣2)C .﹣1+x =1+2(2﹣x )D .1﹣x =﹣1﹣2(x ﹣2)【分析】分式方程去分母转化为整式方程,即可得到结果. 【解答】解:去分母得:1﹣x =﹣1﹣2(x ﹣2), 故选:D .【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.二.填空题1.(2019•浙江衢州•4分)计算: =________。
2019年全国各地中考数学试题分类汇编专题7 分式与分式方程(含解析)

分式与分式方程一.选择题1. (2019•海南•3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【分析】根据分式方程的求解方法解题,注意检验根的情况;【解答】解:=1,两侧同时乘以(x+2),可得x+2=1,解得x=﹣1;经检验x=﹣1是原方程的根;故选:B.【点评】本题考查分式方程的解法;熟练掌握分式方程的方法是解题的关键.2. (2019•河北•2分)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.【解析】:分式的分母整体提取负号,则每一个都要变号【答案】:故选B.4. (2019•江西•3分)计算的结果为 (B ) A.aB. -aC.错误!嵌入对象无效。
D.错误!嵌入对象无效。
【考点】:分式的计算【解析】:分式的分母整体提取负号,则每一个都要变号 【答案】:故选B. 6.(2019•天津•3分)计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A.7.(2019•浙江湖州•3分)计算+,正确的结果是( )A .1B .C .aD .【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:原式==1.故选:A .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8. (2019•广东省广州市•3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .= B .= C .=D .=【分析】设甲每小时做x 个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9. (2019•甘肃省庆阳市•3分)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:﹣=﹣==.故从第②步开始出现错误.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.10.二.填空题1.(2019•贵阳•4分)若分式的值为0,则x的值是2.【分析】直接利用分式为零的条件分析得出答案.【解答】解:∵分式的值为0,∴x2﹣2x=0,且x≠0,解得:x=2.故答案为:2.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2. (2019•铜仁•4分)分式方程=的解为y=.【解答】解:去分母得:5y=3y﹣6,解得:y=﹣3,经检验y=﹣3是分式方程的解,则分式方程的解为y=﹣3.故答案为:﹣33. (2019•江苏宿迁•3分)关于x的分式方程+=1的解为正数,则a的取值范围是a<5且a≠3.【分析】直接解分式方程,进而利用分式方程的解是正数得出a的取值范围,进而结合分式方程有意义的条件分析得出答案.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点评】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.4. (2019•江西•3分)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,在某路口的斑马线路段A-B-C横穿双向行驶车道,其中错误!不能通过编辑域代码创建对象。
分式的运算(有答案)

分式的运算一、 分式的加减法1.同分母分式的加减法2.异分母分式的加减法二、 分式的乘除法 三、 分式的混合运算一、 分式的加减法1.同分母分式的加减法1. 【易】计算111x x x ---结果是( ) A .0 B .1 C .1- D .x【答案】C2. 【易】化简:2111x xx x -+=++_____________. 【答案】13. 【易】计算代数式ac bca b a b--- 【答案】C4. 【易】计算:211m mm m -=--_____________.【答案】m5. 【易】计算22a b a b a b-=--___________ 【答案】a b +6. 【易】化简代数式2111x x x+-- 【答案】1x +7. 【易】化简211x xx x+--的结果是( ) A .1x + B .1x - C .x -D .x【答案】D 8. 【中】计算2222222x y x xy y x xy y --+-+ 【答案】解:原式()()2222x y x y x y =---()222x y x y -=-x yx y+=-9. 【中】计算222222222a ab b a b b a a b ++---【答案】10. 【中】计算251222x x xx x x-+----- 【答案】2x +11. 【中】计算2224332222x y x y x yxy y x xy +-+-- 【答案】1xy12. 【中】计算2222222233n m m n m n mm n m n m n m n -+-++----- 【答案】22nm n -13. 【中】计算:⑴2222135333x x x x x x x x +--+-++++;⑵22222621616x x x x x +-++-- 【答案】⑴2=;⑵24x =+.a ba b-=+2.异分母分式加减法14. 【易】计算11x x y --的结果是( ) A .()y x x y -- B .2()x yx x y +- C .()2x y x x y --D .()yx x y -【答案】A15. 【易】2213a a a -- 【答案】263a a a -- 16. 【易】分式()1111a a a +++的计算结果是( ) A .11a + B .1a a + C .1aD .1a a+ 【答案】C 17. 【易】化简代数式()()a bb a b a a b ---【答案】a bab+ 18. 【中】学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式()()()22322624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明 B .小亮 C .小芳 D .没有正确的 【答案】C19. 【中】化简22124a a a -=--___________ 【答案】12a + 20. 【中】计算:218416x x ---. 【答案】14x =+ 21. 【中】计算:22111x x x ---. 【答案】11x =+ 22. 【中】化简:2212211x x x x -+=+++_____________. 【答案】123. 【中】计算11aa a +--的结果是( )A .11a -B .11a --C .211a a a ---D .1a -【答案】C24. 【中】化简211a a a ---的结果是( )A .B .-C .D .【答案】A25. 【中】化简1a ba b b a++-- 【答案】原式=1a ba b b a ++-- =1a ba b -+- =11+ =226. 【中】()21126329xx xx +++-- 【答案】29218x =--27. 【中】(2009年大兴二模)化简:311(1)(2)x x x x ----+,并指出x 的取值范围. 【答案】=12x +.x 的取值范围是2x ≠-且1x ≠的实数.28. 【中】化简:12212112a a a a +---+-+. 【答案】原式421254a a =-+29. 【难】化简:2481124811111x x x x x -----++++. 【答案】原式16161x =-30. 【难】计算:222111563243x x x x x x +-++++++.【答案】2143x x =++二、 分式的乘除法31. 【易】计算:11m nn m +⋅=+_________. 【答案】132. 【易】计算:mn m nm n m+⋅=+___________. 【答案】n33. 【易】计算2324ab axcd cd-÷等于( )A .223b x B .232b xC .223b x-D .222238a b x c d-【答案】C34. 【易】计算:()()23221323m n m n ----⋅(最后结果写成正整数幂形式)=_________【答案】713427m n35. 【易】22()an m m n ⋅--的值为( ) A .2a m n + B .a m n + C .a m n -+D .am n-- 【答案】C36. 【易】化简:2()n nm m m-÷-的结果是( )A .1m --B .1m -+C .mn m -+D .mn n --【答案】B37. 【易】化简:2211x x x x +-÷. 【答案】1x x -38. 【中】化简:222448.244a ab abab a a -+++ 【答案】24a -39. 【中】计算下列各题①252128y xy x ⋅;②222242m n m mnm mn m n --÷-- ③22111.(1)11x x x x -÷--+;④22222(32)25549x a a b a b x a x +-⋅+- 【答案】①2154y x;②22m n m +;③1;④5(23)a b x a --.40. 【中】①389()22x y y x ⋅-=_______________;②22333x xy x y x x--+÷=_______________; ③1()a b a b ÷+=+_____________;④2222222ab b a b a ab b a ab+-⋅=++-____________. 【答案】①218x -;②1-;③()21a b +;④ba.41. 【中】2221()111a a a a a a a -+÷⋅--- 【答案】11aa+-42. 【中】计算23243a a bb b a⎛⎫-÷⋅⎪⎝⎭ 【解析】原式=224233a b bb a a ⨯⨯89= 【答案】8943. 【中】计算:()234a a a b b b ⎛⎫⎛⎫-⋅-÷- ⎪ ⎪⎝⎭⎝⎭【答案】6ab44. 【中】2342()()()b a ba b a -⋅-÷-【答案】23423452642648()b a b b a a a a a a a b b b=⋅-÷=-⋅⋅=-45. 【中】2223()()()x y x x y xy x y -÷+⋅- 【答案】2()()x x y y x y +-46. 【中】计算:22266(3)443x x x x x x x -+-÷+⋅-+- 【答案】22(3)1(3)(2)2(2)3(3)2x x x x x x x -+-=⋅=--+---47. 【中】()23224422281xy xy x x x xy y x -+--+÷-⋅-- 【答案】解:()23224422281xy xy x x x xy y x -+--+÷-⋅-- ()()()()2221122221x y x x y y y x ---=⋅⋅+--- ()()1221x x xy -=⋅+3224x x y -=+48. 【难】化简:44xy xy x y x y x y x y ⎛⎫⎛⎫-+⋅+- ⎪ ⎪-+⎝⎭⎝⎭【答案】原式()()2244x y xyx y xyx yx y-++-=⋅-+2342()()()b a b a b a -⋅-÷-22266(3)443x x x x x x x-+-÷+⋅-+-()()22x y x y x yx y+-=⋅-+22x y =-三、 分式的混合运算49. 【易】计算的结果是( ) A . B . C .D .【答案】B50. 【易】计算()a b a bb a a +-÷的结果为_________________.【答案】a bb-51. 【易】化简22(1)b a a b a b -÷+- 【答案】解:22(1)b a a b a b -÷+- ()()a b a b a b b a b a +-+-=⋅+ a b =-52. 【易】化简263393m m m m +÷+--的结果是_________________ 【答案】153. 【易】计算:22(1)b a a b a b +÷-- 【答案】a b +54. 【易】化简:231122x x x --÷++() 【答案】231122x x x --÷++() 2322(1)(1)x x x x x +-+=⋅++-11x =+55. 【易】22()a b ab b a a b a a ⎛⎫--÷-≠ ⎪⎝⎭【答案】原式222a b a ab b a a ---=÷ =22222a b a b a ba b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭1a b -1a b +a b -a b +1a b-56. 【易】化简:2224222a a a a a a ⎛⎫⋅- ⎪+--⎝⎭【答案】a57. 【易】计算:()241222a a a a -÷-⨯+- 【答案】()241222a a a a -÷-⨯+- ()()2211222a a a a a +-=⋅⨯+-- 12a =-58. 【易】计算或化简:()21111x x xx x +⎛⎫-÷ ⎪-⎝⎭- 【答案】解: 11x=-+59. 【易】计算221()a ba b a b b a-÷-+-【答案】解:原式=()()()a a b b aa b a b b ---⨯+- ()()b b aa b a b b -=⨯+- 1a b=-+60. 【中】化简:22221369x y x y x y x xy y +--÷=--+_______ 【解析】2yx y-61. 【中】计算:()222211121a a a a a a +-÷+---+. 【答案】1-62. 【中】计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭ 【答案】原式63. 【中】化简:2211()1211a a a a a a ++÷--+-.【答案】11a -64. 【中】221121x x x x x x x+⎛⎫-÷ ⎪--+⎝⎭【答案】()211x --65. 【中】化简:2222111x x x x x x -+⎛⎫-÷ ⎪+-⎝⎭【答案】x66. 【中】化简:221211241x x x x x x --+÷++-- 【答案】167. 【中】化简:22222369x y x y yx y x xy y x y--÷-++++ 【答案】128(2)(2)(2)2a a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦2(2)8(2)(2)2a a a a a a a +-=⨯+--2(2)(2)(2)2a a a a a a -=⨯+--12a =+68. 【中】化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 【答案】D69. 【中】⑴222b a a b a b a b-⎛⎫++÷ ⎪-⎝⎭ ⑵222244224y x y x y x y y x +++-- 【答案】⑴a b ab+;⑵22x x y +70. 【中】化简:222211214421a a a a a a a +-⋅÷+=-+++-_________________ 【答案】11a -71. 【中】化简:2()b a b a b a b a+-+⋅+ 【答案】解:2()b a b a b a b a+-+⋅+ 222a b b a b a b a -++=⋅+ a =72. 【中】44()()ab ab a b a b a b a b-++--+ 【答案】22a b -73. 【中】化简:11n m n m m m n m m n ⎛⎫⎛⎫+-÷+- ⎪ ⎪-+⎝⎭⎝⎭. 【答案】原式()()()()()()22m m n n m n m m m n n m n m m m n m m n -+--+++-=÷-+ ()()222m m n n m m n mn n +-=⋅-+ 2222mn n m mn n --=--74. 【中】化简:111111a a a a ⎛⎫+÷+ ⎪+-+⎝⎭. 【答案】解:原式=()()111111a a a a a a -+++⨯+-+ 2111a a a -=+-- 11a a +=-。
2019届中考数学专题复习卷:分式(含解析)

分式一、选择题1.函数中自变量x的取值范围是()A.x≥-1B.x≤-1C. x≠-1D. x=-12.计算,结果正确的是()A.1B.C.D.3.分式可变形为()A. B.C.D.4.若分式的值为零,则x的值为()A. 0 B . 1 C.-1 D.5.化简等于()A. B.C. ﹣D. ﹣6.小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A. 毫米B. 毫米 C. 厘米 D. 厘米7.化简的结果为()A. B.a﹣1 C. aD. 18.(-4)-2的平方根是()A. ±4B.±2 C.D.9.化简分式,结果正确的是()A. B.C.D. 4a10.若分式的值为0,则x的值是()A. 0B. -lC. 5D. 111.下列各式正确的是( )A. =B. =C. =D. +=12.已知,,则式子的值是()A. 48B.C. 16D. 12二、填空题13.若分式有意义,则实数的取值范围是________.14.的最简公分母是________15.在式子中,分式有个________16.函数,自变量的取值范围是________.17.一个铁原子的质量是,将这个数据用科学记数法表示为________ .18.化简:÷(﹣1)•a=________19.=________20.化简=________.21.化简(π﹣3.14)0+|1﹣2 |﹣+()﹣1的结果是________.22.化简的结果是________.三、解答题23.化简:24.先化简,再求值:• ,其中a= .25.阅读思考:数学课上老师出了一道分式化简求值题目.题目:÷(x+1)· -,其中x=-.“勤奋”小组的杨明同学展示了他的解法:解:原式=-..................第一步=-................ ..第二步=..........................第三步=..................................第四步当x=-时,原式=.......................第五步请你认真阅读上述解题过程,并回答问题:你认为该同学的解法正确吗?如有错误,请指出错误在第几步,并写出完整、正确的解答过程.答案解析一、选择题1.【答案】C【解析】:依题可得:x+1≠0,∴x≠-1.故答案为:C.【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.2.【答案】A【解析】:= 故答案为:A.【分析】题中为同分母的分式相减,则分母不变,分子相减,再将分式化简.3.【答案】D【解析】分式的分子分母都乘以﹣1,得.故答案为:D.【分析】根据分式的变号法则,分子、分母、分式本身,同时改变其中任意两处的符号,分式的值不变,即可得出答案。
2019中考真题汇编卷 八年级下册 第二章 分式与分式方程

2019中考真题卷—分式与分式方程一.选择题1.(2019•莱芜区)为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A型“共享单车”,因为单车需求量增加,计划继续投放B型单车,B型单车的投放数量与A型单车的投放数量相同,投资总费用减少20%,购买B型单车的单价比购买A型单车的单价少50元,则A型单车每辆车的价格是多少元?设A型单车每辆车的价格为x元,根据题意,列方程正确的是()A.=B.=C.=D.=2.(2019•河北)如图,若x为正整数,则表示﹣的值的点落在()A.段①B.段②C.段③D.段④3.(2019•攀枝花)一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()千米/时.A.(a+b)B.C.D.4.(2019•遂宁)关于x的方程﹣1=的解为正数,则k的取值范围是()A.k>﹣4B.k<4C.k>﹣4且k≠4D.k<4且k≠﹣4 5.(2019•济宁)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.﹣=45B.﹣=45C.﹣=45D.﹣=456.(2019•重庆)若数a使关于x的不等式组有且仅有三个整数解,且使关于y的分式方程﹣=﹣3的解为正数,则所有满足条件的整数a的值之和是()A.﹣3B.﹣2C.﹣1D.1二.填空题7.(2019•内江)若+=2,则分式的值为.8.(2019•烟台)若关于x的分式方程﹣1=有增根,则m的值为.9.(2019•江西)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC =6米,在绿灯亮时,小明共用11秒通过AC,其中通过BC的速度是通过AB速度的1.2倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.10.(2019•宿迁)关于x的分式方程+=1的解为正数,则a的取值范围是.11.(2019•绵阳)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为km/h.12.(2019•巴中)若关于x的分式方程+=2m有增根,则m的值为.13.(2019•德州)方程﹣=1的解为.三.解答题14.(2019•营口)先化简,再求值:(+a﹣3)÷,其中a为不等式组15.(2019•湘潭)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:x3+y3=(x+y)(x2﹣xy+y2)立方差公式:x3﹣y3=(x﹣y)(x2+xy+y2)根据材料和已学知识,先化简,再求值:﹣,其中x=3.16.(2019•娄底)先化简,再求值:÷(﹣).其中a=﹣1,b=+1.17.(2019•阜新)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?的整数解.18.(2019•丹东)甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.19.(2019•铁岭)某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?20.(2019•眉山)在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?参考答案与试题解析一.选择题1.【解答】解:设A型单车每辆车的价格为x元,则B型单车每辆车的价格为(x﹣50)元,根据题意,得=故选:A.2.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤<1故表示﹣的值的点落在②故选:B.3.【解答】设上山的路程为x千米,则上山的时间小时,下山的时间为小时,则上、下山的平均速度=千米/时.故选:D.4.【解答】解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.5.【解答】解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:﹣=45.故选:A.6.【解答】解:由关于x的不等式组得∵有且仅有三个整数解,∴<x≤3,x=1,2,或3.∴,∴﹣≤a<3;由关于y的分式方程﹣=﹣3得1﹣2y+a=﹣3(y﹣1),∴y=2﹣a,∵解为正数,且y=1为增根,∴a<2,且a≠1,∴﹣≤a<2,且a≠1,∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3.故选:A.二、填空题7.【解答】解:+=2,可得m+n=2mn,===﹣4;故答案为﹣4;8.【解答】.解:方程两边都乘(x﹣2),得3x﹣x+2=m+3∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=3.故答案为3.9.【解答】解:设小明通过AB时的速度是x米/秒,可得:,故答案为:,10.【解答】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.11.【解答】解:设江水的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.12.【解答】解:方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为113.【解答】解:﹣=1,=1,=1,=1,x+1=﹣3,x=﹣4,经检验x=﹣4是原方程的根;故答案为x=﹣4;三.解答题14.【解答】解:原式=•==,解不等式得<a<3,∴不等式组的整数解为a=2,当a=2时,原式==.15.【解答】解:﹣===,当x=3时,原式==2.16.【解答】解:÷(﹣)===ab,当a=﹣1,b=+1时,原式=(﹣1)×(+1)=1.17.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,可得:,解得:x=0.3,经检验x=0.3是原方程的解,∴汽车行驶中每千米用电费用是0.3元,甲、乙两地的距离是30÷0.3=100千米;(2)汽车行驶中每千米用油费用为0.3+0.5=0.8元,设汽车用电行驶ykm,可得:0.3y+0.8(100﹣y)≤50,解得:y≥60,所以至少需要用电行驶60千米.18.【解答】解:(1)设甲步行的速度为x米/分,则乙骑自行车的速度为4x米/分,公交车的速度是8x米/分钟,根据题意得+2.5=+,解得x=80.经检验,x=80是原分式方程的解.所以2.5×8×80=1600(m)答:乙到达科技馆时,甲离科技馆还有1600m.19.【解答】解:(1)设甲种玩具的进货单价为x元,则乙种玩具的进价为(x﹣1)元,根据题意得:=×,解得:x=6,经检验,x=6是原方程的解,∴x﹣1=5.答:甲种玩具的进货单价6元,则乙种玩具的进价为5元.(2)设购进甲种玩具y件,则购进乙种玩具(2y+60)件,根据题意得:6y+5(2y+60)≤2100,解得:y≤112,∵y为整数,∴y最大值=112答:该超市用不超过2100元最多可以采购甲玩具112件.20.【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.。
2019年全国各地中考数学真题汇编:分式(包括答案)

2019年中考数学真题汇编:分式一、选择题1. (2019山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2019天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2019甘肃凉州)若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。
A. x≠0B. x<1C. x>1D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。
【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。
12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。
2019-2020年中考数学:专题04-分式及其运算试题含答案解析

2019-2020年中考数学:专题04-分式及其运算试题含答案解析☞解读考点【2015年题组】1.(2015常州)要使分式23-x 有意义,则x 的取值范围是( ) A .2x > B .2x < C .2x ≠- D .2x ≠ 【答案】D . 【解析】试题分析:要使分式23-x 有意义,须有20x -≠,即2x ≠,故选D . 考点:分式有意义的条件.2.(2015济南)化简2933m m m ---的结果是( ) A .3m + B .3m - C .33m m -+ D .33m m +- 【答案】A .考点:分式的加减法.3.(2015百色)化简222624x x x x x --+-的结果为( ) A .214x - B .212x x + C .12x - D .62x x --【答案】C . 【解析】 试题分析:原式=262(2)(2)x x x x --++-=2(2)(6)(2)(2)x x x x ---+-=2(2)(2)x x x ++-=12x -.故选C . 考点:分式的加减法.4.(2015甘南州)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A .13 B .23 C .16 D .34【答案】B . 【解析】试题分析:分母含有字母的式子是分式,整式a +1,a +2,2中,抽到a +1,a +2做分母时组成的都是分式,共有3×2=6种情况,其中a +1,a +2为分母的情况有4种,所以能组成分式的概率=46=23.故选B . 考点:1.概率公式;2.分式的定义;3.综合题. 5.(2015龙岩)已知点P (a ,b )是反比例函数1y x =图象上异于点(﹣1,﹣1)的一个动点,则1111a b+++=( )A .2B .1C .32D .12【答案】B .考点:1.反比例函数图象上点的坐标特征;2.分式的化简求值;3.条件求值.6.(2015山西省)化简22222a ab b ba b a b++---的结果是( ) A .a ab - B .b a b - C .a a b + D .ba b+ 【答案】A . 【解析】试题分析:原式=2()()()a b b a b a b a b +-+--=a b b a b a b +---=a b b a b +--=aa b-,故选A . 考点:分式的加减法.7.(2015泰安)化简:341()(1)32a a a a -+---的结果等于( ) A .2a - B .2a + C .23a a -- D .32a a --【答案】B . 【解析】试题分析:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +.故选B . 考点:分式的混合运算.8.(2015莱芜)甲乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,则下列结论中正确的是( ) A .甲乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关 【答案】B .考点:1.列代数式(分式);2.行程问题. 9.(2015内江)已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|= . 【答案】1. 【解析】试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b +=,两式相减可得2211a b a b -=-,()()b a a b a b ab-+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b-=02015=1.故答案为:1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 10.(2015黄冈)计算)1(22b a aba b +-÷-的结果是________. 【答案】1a b-. 【解析】 试题分析:原式=()()b a b a a b a b a b +-÷+-+=()()b a b a b a b b +⋅+-=1a b -.故答案为:1a b-.考点:分式的混合运算.11.(2015安徽省)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则111a b+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 【答案】①③④.考点:1.分式的混合运算;2.解一元一次方程. 12.(2015梅州)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m . 【答案】12;12-;1021. 【解析】 试题分析:1(21)(21)n n -+=2121a bn n +-+=(21)(21)(21)(21)a n b n n n ++-+-=(22)(21)(21)a b n a b n n ++-+-,可得(22)1a b n a b ++-=,即:01a b a b +=⎧⎨-=⎩,解得:a =12,b =12-; m =111111(1...)23351921-+-++-=11(1)221-=1021,故答案为:12;12-;1021.考点:1.分式的加减法;2.综合题. 13.(2015河北省)若02≠=b a ,则aba b a --222的值为 .【答案】32. 【解析】试题分析:∵2a b =,∴原式=2222442b b b b --=32,故答案为:32. 考点:分式的化简求值.14.(2015绥化)若代数式25626x x x -+-的值等于0,则x =_________.【答案】2. 【解析】试题分析:由分式的值为零的条件得2560x x -+=,2x ﹣6≠0,由2560x x -+=,得x =2或x =3,由2x ﹣6≠0,得x ≠3,∴x =2,故答案为:2. 考点:分式的值为零的条件.15.(2015崇左)化简:2221(1)2a a a a +--÷. 【答案】12-a .考点:分式的混合运算.16.(2015桂林)先化简,再求值:2269392x x x x -+-÷-,其中3x =.【答案】23x +. 【解析】试题分析:分解因式后,利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(3)2(3)(3)3x x x x -⨯+--=23x +,当3x =时,原式.考点:分式的化简求值. 17.(2015南京)计算:22221()aa b a ab a b-÷--+.【答案】21a . 【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.试题解析:原式=21[]()()()a b a b a b a a b a +-⨯+--=2[]()()()()a a b a ba ab a b a a b a b a++-⨯+-+-=2()()()a a b a b a a b a b a -++⨯+-=21a.考点:分式的混合运算.18.(2015苏州)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =.【答案】11x +.考点:分式的化简求值.19.(2015盐城)先化简,再求值:)()(131112+÷-+a aa ,其中a =4. 【答案】31aa -,4. 【解析】试题分析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2113(1)(1)(1)a a a a a -++⋅+-=23(1)(1)(1)a a a a a +⋅+-=31aa -;当a =4时,原式=3441⨯-=4. 考点:分式的化简求值. 20.(2015成都)化简:211()242a a a a a -+÷+-+.【答案】12a a --. 【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭. 考点:分式的加减法.21.(2015资阳)先化简,再求值:2112()111x x x x +-÷-+-,其中x 满足260x -=. 【答案】22x +,25.考点:1.分式的混合运算;2.分式的化简求值. 22.(2015达州)化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数. 【答案】13a -,1. 【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值. 试题解析:原式=21(2)(2)(3)2a a a a a a a +⋅++---=11(2)(3)2a a a +---=13(2)(3)a a a +---=2(2)(3)a a a ---=13a -,∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1. 考点:1.分式的化简求值;2.三角形三边关系.23.(2015广元)先化简:222222()1211x x x x xx x x x+--÷--++,然后解答下列问题:(1)当3x=时,求原代数式的值;(2)原代数式的值能等于1-吗?为什么?【答案】(1)2;(2)不能.考点:分式的化简求值.24.(2015凉山州)先化简:222122(1)1211x x x xx x x x++-+÷+--+-,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.【答案】241xx-+;当x=2时,原式=0,当x=-2时,原式=8.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.试题解析:原式=211(1)2(1)1(1)(1)(1)x x x xx x x x x++---⋅+-++-=22(1)21(1)1x xx x x x-⋅--++=2(1)211xx x--++=241xx-+,∵满足22x-≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=22421⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+.考点:分式的化简求值.25.(2015广州)已知A =222111x x xx x ++---.(1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.【答案】(1)11x -;(2)1.考点:1.分式的化简求值;2.一元一次不等式组的整数解.26.(2015白银)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式21x +,22x --,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A ,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式AB. (1)请用画树状图或列表的方法,写出代数式AB所有可能的结果; (2)求代数式AB恰好是分式的概率. 【答案】(1)答案见试题解析;(2)23.【解析】试题分析:(1)画出树状图,由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,利用概率公式求解即可求得答案.试题解析:(1)画树状图:(2)代数式A B 所有可能的结果共有6种,其中代数式A B是分式的有4种,所以P (是分式)=46=23.考点:1.列表法与树状图法;2.分式的定义.【2014年题组】1.(2014年无锡中考) 分式22x-可变形为( ) A . 22x + B .22x -+ C . 2x 2- D .2x 2--【答案】D .考点:分式的基本性质. 2.(2014年杭州中考)若241()w 1a 42a+⋅=--,则w =( ) A .a 2(a 2)+≠- B . a 2(a 2)-+≠ C . a 2(a 2)-≠ D . a 2(a 2)--≠-【答案】D . 【解析】 试题分析:∵()()()()()2414a 22a 1a 42a a 2a 2a 2a 2a 2a 2a 2+-+=-==---+--++-+, ∴w =a 2(a 2)--≠-.故选D . 考点:分式的化简.3.(2014年温州中考)要使分式x 1x 2+-有意义,则x 的取值应满足( ) A . x 2≠ B . x 1≠- C . x 2= D . x 1=-【答案】A . 【解析】试题分析:根据分式分母不为0的条件,要使x 1x 2+-在实数范围内有意义,必须x 20x 2-≠⇒≠.故选A . 考点:分式有意义的条件.4.(2014年牡丹江中考)若x :y =1:3,2y =3z ,则的值是( )A .﹣5B . ﹣C .D . 5【答案】A . 【解析】试题分析:∵x :y =1:3,∴设x =k ,y =3k ,∵2y =3z ,∴z =2k ,∴532322-=-+=-+kk kk y z y x .故选A . 考点:比例的性质. 5.(2014年凉山中考)分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的值为零的条件. 6.(2014年常德中考)计算:2111aa a -=-- 【答案】211a -. 【解析】 试题分析:原式=1(1)(1)(1)(1)a aa a a a +-+-+-=1(1)(1)a a +-=211a -.考点:分式的加减法. 7.(2014年河池中考)计算:m 1m 1m 1-=-- . 【答案】1.【解析】试题分析:根据分式加减法运算法则直接计算:m 1m 11m 1m 1m 1--==---. 考点:分式加减法.8.(2014年镇江中考)化简:1x 1x x 23x 6-⎛⎫+÷⎪--⎝⎭. 【答案】3x 3-.考点:分式的混合运算.9.(2014年苏州中考)先化简,再求值:22x 11x 1x 1⎛⎫÷+ ⎪--⎝⎭,其中x 1=.【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简. 然后代x 的值,进行二次根式化简. 试题解析:原式=x x 11x x x x 11()(x 1)(x 1)x 1x 1(x 1)(x 1)x 1(x 1)(x 1)x x 1--÷+=÷=⋅=-+---+--++.当x 1=时,原式====.考点:1.分式的化简求值;2. 二次根式化简.10.(2014年抚顺中考)先化简,再求值:(1-11x +)÷221x x x ++,其中x =)0+(12)-1•tan 60°.【答案】. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值.试题解析:原式=2211(1)(1)111x x x x x x x x x+-++==+++,∵x =)0+(12)-1•tan 60°∴当.考点:1.分式的化简求值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. ☞考点归纳归纳 1:分式的有关概念 基础知识归纳:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意问题归纳:1.分式有意义的条件是分母不为0,无意义的条件是分母为0.2.分式值为0要满足两个条件,分子为0,分母不为0. 【例1】使分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x =1 C .x ≤1 D .x ≥1 【答案】A .【解析】根据题意得:x -1≠0,解得:x ≠1.故选A . 考点:分式的有关概念. 【例2】分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的有关概念. 归纳 2:分式的性质 基础知识归纳:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意问题归纳:1.分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;2.将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;3.巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值. 【例3】化简2244xy yx x --+的结果是( )A .2x x + B .2x x - C .2y x + D .2y x - 【答案】D .考点:分式的性质.【例4】已知x +y =xy ,求代数式11x y+-(1-x )(1-y )的值. 【答案】0. 【解析】∵x +y =xy ,∴11x y +-(1-x )(1-y )=x y xy +-(1-x -y +xy )=x y xy+-1+x +y -xy =1-1+0=0. 考点:分式的性质.归纳 3:分式的加减运算 基础知识归纳:加减法法则:① 同分母的分式相加减:分母不变,分子相加减 ② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.1.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母. 【例5】计算:1aa 11a+--的结果是 . 【答案】1-.【解析】1a 1a 1a 1a 11a a 1a 1a 1-+=-==------. 考点:分式的加减法. 【例6】化简21639x x ++-的结果是 【答案】13x -.考点:分式的加减法.归纳 4:分式的乘除运算 基础知识归纳:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x 1x x.x 1x 2x 1--⋅+-+ 【答案】x . 【解析】原式()()()()2x 1x 1x x 1x x 1x 1+--=⋅=+-.考点:分式的乘除法.归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式. 注意问题归纳:注意运算顺序,计算准确. 【例8】化简:222x 2x 6x 3x 1x 1x 2x 1++-÷+--+【答案】2x 1+.考点:分式的混合运算.☞1年模拟1.(2015+x 应满足( ) A .12≤x ≤3 B .x ≤3且x ≠12 C .12<x <3 D .12<x ≤3 【答案】D . 【解析】试题分析:由题意得,32100x x --≥⎧⎨⎩①>②,解不等式①得,x ≤3,解不等式②的,x >12,所以,12<x ≤3.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件. 2.(2015届山东省威海市乳山市中考一模)计算(-12)-1=( ) A .-12 B .12C .-2D .2 【答案】C . 【解析】试题解析:11()22--=.故选C . 考点:负整数指数幂.3.(2015届山东省潍坊市昌乐县中考一模)分式211x x -+的值为0,则( )A .x =-1B .x =1C .x =±1D .x =0 【答案】B .考点:分式的值为零的条件.4.(2015届广东省深圳市龙华新区中考二模)化简111xx x+--的结果是( ) A .-1 B .1 C .1+x D .1-x 【答案】A . 【解析】 试题分析:原式=11111111x x x x x x x ---==-=-----.故选A . 考点:分式的加减法.5.(2015届江苏省南京市建邺区中考一模)计算a 3•(1a)2的结果是( ) A .a B .a 5C .a 6D .a 8【答案】A . 【解析】试题分析:原式=a 3•21a =a ,故选A . 考点:分式的乘除法.6.(2015届河北省中考模拟二)已知a 2+,b 2,则(22a bab b ab a ---)÷22a b ab +的值为( )A .1B .14C .2D .10【答案】B .考点:分式的化简求值.7.(2015届北京市平谷区中考二模)分式2aa -有意义的条件是 . 【答案】a ≠2. 【解析】试题分析:根据分式有意义的条件可知分母a -2≠0,所以a ≠2.考点:分式有意义的条件.8.(2015x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届广东省佛山市初中毕业班综合测试)若分式||11xx--的值为零,则x的值为.【答案】x=-1.【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.故答案为:x=-1.考点:分式的值为零的条件.10.(2015届江苏省南京市建邺区中考一模)在函数y=11x-中,自变量x的取值范围是.【答案】x≠1.【解析】试题分析:根据题意得1-x≠0,解得x≠1.故答案为:x≠1.考点:1.函数自变量的取值范围;2.分式有意义的条件.11.(2015届北京市门头沟区中考二模)已知1m,求222442111m m mm m m-+-+÷+--的值.【答案】.考点:分式的化简求值.12.(2015届四川省成都市外国语学校中考直升模拟)计算题(1)先化简,再求值:22222()2a ab a b a b a ab b b+---÷++,其中a =sin 45°,b =cos 30°; (2)若关于x 的方程311x a x x--=-无解,求a 的值. 【答案】(1)5;(2) a =1. 【解析】试题分析:(1)原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算,约分得到最简结果,把a 与b 的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解求出x 的值,代入计算即可求出a 的值. 试题解析:(1)原式=2()()a a b a b ++-(a -b )•()()b a b a b +-=a b a ba b a b a b--=+++,当a =si n45°=2,b =cos30°=2时,原式(55==--=; (2)去分母得:x 2-ax -3x +3=x 2-x ,解得:x =32a +,由分式方程无解,得到x (x -1)=0,即x =0或x =1,若x =0,a 无解;若x =1,解得:a =1.考点:1.分式的化简求值;2.分式方程的解;3.特殊角的三角函数值. 13.(2015届安徽省安庆市中考二模)先化简,再求值:(﹣)÷,其中x =.【答案】3+x x,1﹣3.考点:分式的化简求值.14.(2015届山东省威海市乳山市中考一模)化简代数式22112x x x x x--÷+,并判断当x 满足不等式组⎧⎨⎩x +2<12(x -1)>6时该代数式的符号. 【答案】负号.【解析】试题分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为12x x ++;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x +1<0,x +2>0,从而求解.试题解析:原式=(1)(1)(2)1x x x x x x +-⨯+-=12x x ++; 不等式组⎧⎨⎩x +2<1①2(x -1)>6②,解不等式①,得x <-1.解不等式②,得x >-2,∴不等式组⎧⎨⎩x +2<12(x -1)>6的解集是-2<x <-1,∴当-2<x <-1时,x +1<0,x +2>0,∴12x x ++<0,即该代数式的符号为负号. 考点:1.分式的化简求值;2.解一元一次不等式组.15.(2015届山东省日照市中考模拟)先化简,再求值:2211()()x y x y x y x y x y+----+,其中2x =+2y =【答案】-4.考点:分式的化简求值.16.(2015届湖北省黄石市6月中考模拟)先化简再求值22213211143a a aa a a a+-+-⨯+-++,已知a2+2a﹣7=0.【答案】2221a a++,14.考点:分式的化简求值.。