最新压控LC电容三点式振荡器设计及仿真
lc电容反馈三点式振荡器实验报告

lc电容反馈三点式振荡器实验报告LC电容反馈三点式振荡器实验报告引言振荡器是一种能够产生固定频率的信号的电路,它在无线通信、射频电路和其他电子设备中起着非常重要的作用。
LC电容反馈三点式振荡器是一种常见的振荡器电路,本实验旨在通过实验验证其工作原理和性能。
实验目的1. 了解LC电容反馈三点式振荡器的工作原理2. 掌握LC电容反馈三点式振荡器的实验方法3. 观察和分析LC电容反馈三点式振荡器的输出波形特性实验原理LC电容反馈三点式振荡器是由一个LC谐振回路和一个放大器构成的。
当LC回路和放大器达到一定的条件时,就会产生自激振荡。
在振荡器的输出端,通过反馈网络将一部分输出信号送回到输入端,从而维持振荡的持续。
实验器材1. 信号发生器2. 示波器3. 电阻、电感、电容等元件4. 电路板和连接线实验步骤1. 按照实验原理搭建LC电容反馈三点式振荡器电路2. 连接信号发生器和示波器3. 调节信号发生器的频率和幅度,观察示波器的输出波形4. 测量并记录振荡器的频率、幅度和波形实验结果通过实验观察和测量,我们得到了LC电容反馈三点式振荡器的频率为f,幅度为A,波形为正弦波。
在不同的频率和幅度下,振荡器都能够稳定地输出正弦波信号,验证了其工作原理和性能。
实验结论本实验通过搭建LC电容反馈三点式振荡器电路,观察和测量其输出波形特性,验证了其工作原理和性能。
振荡器是一种非常重要的电路,对于理解和应用振荡器电路具有重要意义。
结语通过本次实验,我们对LC电容反馈三点式振荡器有了更深入的了解,掌握了其工作原理和实验方法。
振荡器作为一种常见的电子设备,对于我们的学习和工作都具有重要的意义。
希望通过不断的实验和学习,我们能够更好地掌握振荡器电路的原理和应用。
lc电容反馈式三点式振荡器 实验报告

LC电容反馈式三点式振荡器实验报告引言振荡器是一种能够在无外部信号源的情况下产生自身振荡的电路。
在无线电通信、音频设备以及其他电子设备中,振荡器起着至关重要的作用。
本实验旨在研究并实现LC电容反馈式三点式振荡器。
此类振荡器由一个放大器和一个反馈回路组成,通过将一部分输出信号重新输入到放大器的输入端来实现自我激励。
实验器材•电源•LC电容反馈式三点式振荡器电路板•示波器•电压表和电流表实验步骤1. 连接电路首先,根据电路图将电路板上的元件正确连接。
请确保所有连接正确,电源极性正确。
2. 设置电源将电源的电压调整到合适的范围,以保证电路正常工作。
请注意遵循实验指导书中的建议。
3. 观察电路行为使用示波器观察电路的输出信号。
将示波器的探头正确连接到电路板上的指定位置。
4. 调整电路参数通过调整电路板上的电阻和电容值,以及根据示波器观察到的信号,调整电路参数,使得振荡器能够工作在期望的频率范围内。
5. 记录实验结果记录振荡器的工作频率、幅度以及稳定性。
请注意记录每次参数调整前后的实验结果。
6. 总结实验结果根据实验数据和观察结果,总结振荡器的性能,包括工作频率范围、稳定性以及幅度。
结论通过本实验,我们成功研究并实现了LC电容反馈式三点式振荡器。
我们通过调整电路参数,使得振荡器能够稳定地工作在我们所期望的频率范围内。
实验结果表明,该振荡器具有良好的稳定性和较大的幅度。
振荡器的应用非常广泛,特别是在无线通信和音频设备中。
通过进一步研究和优化,我们可以进一步提高振荡器的性能,并将其应用于更多领域。
参考文献(如果有任何参考文献,请在此处列出。
)。
实验三 电容三点式LC振荡器

实验三电容三点式LC振荡器一、实验目的1、掌握电容三点式LC振荡电路的实验原理;2、了解静态工作点、耦合电容、反馈系数、品质因数Q值对振荡器振荡幅度和频率的影响;3、了解负载变化对振荡器振荡幅度的影响。
二、实验原理1、电路与工作原理图3-2 克拉泼振荡电路图3-3 西勒振荡电路(1)图3-2克拉泼振荡电路中,串联电容C1、C2和C构成总电容。
因为C1(300p)>>C(75p),C2(1000P)>>C(75p),故总电容约等于C,所以振荡频率主要由L和C决定。
(2)图3-3西勒振荡电路中,电容C1、C2和C3的串联值后与电容C相并。
因为C1(300p)>>C3(75p),C2(1000P)>>(75p),故总电容约等于C+C3,所以振荡频率主要由L、C和C3决定。
(3)反馈系数 F=F1:F2,反馈系数F不宜过大或过小,一般经验数据F≈0.1~0.5,本实验取0.32、实验电路如图3-4所示,1K01打到“串S”位置时,为改进型克拉泼振荡电路,打到“并P”位置时,为改进型西勒振荡电路。
开关1S03控制回路电容的变化;调整1W01可改变振荡器三极管的电源电压;1Q02为射极跟随器;1TP02为振荡器直流电压测量点,1W02用来改变输出幅度。
三、实验内容1、测量“并P”西勒振荡电路幅频特性;2、测量“串S”克拉泼振荡电路幅频特性;3、测量波段覆盖系数。
四、实验步骤(一)模块上电将LC振荡器模块③接通电源,即可开始实验。
(二)测量振荡电路的幅频特性1、西勒振荡电路幅频特性的测量将1K01拨至“并P”侧,此时振荡电路为西勒电路。
示波器接1TP02,频率计接1P01。
调整1W02,使输出适中。
1S03分别控制1C06(10P)、1C07(50P)、1C08(100P)、1C09(150P)接入电路,开关往上拨为接通,往下拨为断开。
四个开关接通的不同组合,可以控制电容的变化。
实验二lc电容反馈式三点式振荡器

实验二 LC电容反馈式三点式振荡器一、实验目的1.熟悉电容三点式振荡器(考毕兹电路)、改进型电容三点式振荡器(克拉泼电路及西勒电路)的电路特点、结构及工作原理。
2.掌握振荡器静态工作点调整方法。
3.熟悉频率计、示波器等仪器的使用方法。
二、预习要求1.复习LC振荡器的工作原理。
2.分析图1电路的工作原理,及各元件的作用。
结合图2的等效电路,思考怎样跳线连接,才能构成三种不同的电容三点式振荡电路。
三、实验仪器设备1.双踪示波器2.频率计3.万用表4.TPE-GP5通用实验平台5.G1N实验模块四、实验原理及电路简介:1.实验原理:振荡器是一种在没有外来信号的作用下,能自动地将直流电源的能量转换为一定波形的交变振荡能量的装置。
根据振荡器的特性,可将振荡器分为反馈式振荡器和负阻式振荡器两大类,LC振荡器属于反馈式振荡器。
工作时它应满足两个条件:(1)相位条件:反馈信号必须与输入信号同相,以保证电路是正反馈电路,即电路的总相移Σφ=φk+φF=n×3600。
(2)振幅条件:反馈信号的振幅应大于或等于输入信号的振幅,即│ẢF│≥1,式中Ả为放大倍数,F为反馈系数。
当振荡器接通电源后,电路中存在着各种电的扰动(如热噪声、晶体管电流的突变等),它们就是振荡器起振的初始激励。
经过电路放大和正反馈的作用,它们的幅度会得到不断的加强。
同时,由于电路中LC谐振回路的选频作用,只有等于其谐振频率的电压分量满足振荡条件,最终形成了单一频率的振荡信号。
2.电路特点:图1为实验电路,V1001及周边元件构成了电容反馈振荡电路及石英晶体振荡电路。
V1002构成射极输出器。
S1001、S1002、S1003、J1001分别连接在不同位置时,就可分别构成考毕兹、克拉泼和西勒三种不同的LC振荡器以及石英晶体振荡器。
V1001V1002R 1001R1003R 1002R1008R 1007R 1006R1009C 1009C1006C 1001200P R 1005GNDGND S 1002300P 510P1000PS1004200P 100P 62P20P L 10016.2P62P100P1000P S100312J1001C1005Y 100110.7M H z C1007C1008P1001R p 1001SW1001R1010D1001GND +12VR p 1002C1010P1002GND图1 LC与晶体振荡器原理图12S1001C T 1001C1004C1003C10023. 思路提示:图2给出了几种振荡电路的交流等效电路图。
lc电容反馈式三点式振荡器 实验报告

lc电容反馈式三点式振荡器实验报告一、实验目的本实验旨在掌握LC电容反馈式三点式振荡器的基本原理和电路结构,学习其工作特性和参数影响规律,培养学生对于实际电路的调试能力和实验操作技能。
二、实验原理LC电容反馈式三点式振荡器是一种常用的振荡器电路,它由一个LC谐振回路和一个三极管组成。
当谐振回路中的电容和电感相互作用时,会形成一个正弦波信号,而三极管则起到放大信号的作用。
在LC谐振回路中,当电容C和电感L组合成一个谐振回路时,在一定条件下会产生自激振荡。
此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。
同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。
三、实验器材1. 万用表2. 示波器3. 信号发生器4. 三极管5. 电阻、电容、电感等元件四、实验步骤及数据记录1. 按照电路图连接电路,调整电阻和电容的值,使得输出波形为正弦波。
2. 测量并记录输出波形的频率、幅度和相位。
3. 调整电阻和电容的值,观察输出波形的变化,并记录数据。
4. 将三极管更换为其他型号,观察输出波形的变化,并记录数据。
五、实验结果分析通过实验可以看出,在LC谐振回路中,当电容和电感组成一个谐振回路时,在一定条件下会产生自激振荡。
此时,谐振回路中会有一定的能量存储,并且不断地从这些能量中提取出一部分来放大形成输出信号。
同时,在输出端口上还需要加入一个滤波网络来过滤掉高频噪声和杂波。
在实验过程中,我们调整了电阻和电容的值,使得输出波形为正弦波,并测量了其频率、幅度和相位。
随着参数的变化,我们也观察到了输出波形的变化,并记录了相关数据。
此外,我们还更换了三极管型号,发现不同型号的三极管对于输出信号也有影响。
六、实验结论通过本次实验,我们深入了解了LC电容反馈式三点式振荡器的基本原理和电路结构,学习了其工作特性和参数影响规律。
同时,我们也培养了对于实际电路的调试能力和实验操作技能。
电容三点式振荡电路详解及Multisim实例仿真

L C6
8
C5
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
谐振回路的总电容即克拉波电路中的总电容与 C6 的并联,再次将三极管寄生极间 电容的接入系数降低。 总之就是不断地降低晶体管极间电容对谐振频率的影响, 此时电 路的谐振频率如下所示:
3
C4 480pF
R4 100Ω 0
克拉波振荡 我们可以更 荡电路的稳定 定性很好, 但其 其频率可调范 范围比较小, 更进一步改进 进克拉 波振 振荡电路,如 如下图所示:
7
All rights reserved, NO Spreading without Authorization
+ + Q1 C2
+ L RC
uo
RE
C1 +
从图上可以看出,基极输入(假设有输入)经过三极管放大后的输出电压 uo,再经过 电容 C2 与 C1 分压后施加在三极管的 BE 结之间形成正反馈,因此其反馈系数如下式:
F
Байду номын сангаас
C1 C1 C2
反馈系数一般取值 0.1~0.5,太小不容易起振,太大则容易使电路放大倍数与回路有载 Q 值下降,这样容易使振荡波形产生失真,输出频率稳定度也会相应地降低。 我们用下图所示电路参数进行仿真:
+ + C1 Q1 + L
从上图可以看出,电容三点式 LC 正弦波振荡电路的重要特性是:与三极管发射极相连 的两个电抗元件为相同性质的电抗元件,而与三极管集电极(或基极)相连接的电抗元件是 相反性质的。如果合理设置电路参数使其满足起振条件,则电路将开始振荡,如果忽略分布 电容、三极管参数等因素,此电路的振荡频率 f0 如下式:
电容三点式lc振荡器实验报告

电容三点式lc振荡器实验报告电容三点式LC振荡器实验报告引言:本实验旨在通过搭建电容三点式LC振荡器,研究其原理和特性。
振荡器是电子电路中常见的一种重要元件,具有广泛的应用,如在无线电通信、射频电路和频率合成器等领域中。
通过实验,我们可以深入了解振荡器的工作原理和参数调节对振荡频率的影响。
实验器材:1. 电源:提供所需的直流电源。
2. 电容:用于构建振荡器电路。
3. 电感:与电容串联构成谐振回路。
4. 变阻器:用于调节振荡器的工作频率。
5. 示波器:用于观察振荡器输出波形。
实验步骤:1. 按照给定的电路图,搭建电容三点式LC振荡器电路。
2. 将电源连接到电路中,调节变阻器使得振荡器开始工作。
3. 使用示波器观察振荡器的输出波形,并记录相关数据。
4. 调节变阻器,观察振荡器输出波形的变化,记录相关数据。
实验结果与分析:在实验中,我们通过调节变阻器,观察到了振荡器的输出波形的变化。
当变阻器的阻值较小时,振荡器的输出波形呈现正弦波,并且频率较低。
随着变阻器阻值的增大,振荡器的输出波形逐渐变为方波,并且频率逐渐增加。
这是因为在振荡器电路中,电容和电感构成了一个谐振回路。
当谐振回路的电容和电感参数满足一定的条件时,会产生自激振荡。
在振荡器工作时,电容和电感会不断地储存和释放能量,形成振荡。
变阻器的作用是调节振荡器的工作频率。
当变阻器阻值较小时,电流通过谐振回路的速度较慢,导致振荡频率较低。
而当变阻器阻值较大时,电流通过谐振回路的速度较快,导致振荡频率较高。
通过实验观察到的输出波形变化,可以看出振荡器的频率与变阻器的阻值之间存在一定的关系。
这为我们在实际应用中调节振荡器的频率提供了一定的参考。
实验总结:通过本次实验,我们成功搭建了电容三点式LC振荡器,并观察到了振荡器输出波形的变化。
实验结果验证了振荡器的工作原理和参数调节对振荡频率的影响。
振荡器作为一种重要的电子元件,在无线电通信和射频电路等领域中具有广泛的应用。
电容三点式振荡电路详解及multisim仿真实例

电容三点式振荡电路详解及multisim仿真实例电容三点式振荡电路是一种常见的电路,可以用于产生高频信号或者时钟信号。
本文将详细介绍电容三点式振荡电路的原理、设计方法以及multisim仿真实例。
首先,我们来看一下电容三点式振荡电路的原理。
电容三点式振荡电路由三个元器件组成,包括一个电容器、一个电感器和一个晶体管。
当电容器和电感器组成的LC振荡回路与晶体管共同工作时,就可以产生振荡信号。
具体来说,当电容器充电时,晶体管被激活,导致电容器放电并使振荡回路开始振荡。
随后,电容器重新充电并继续振荡,从而形成连续的高频信号。
接下来,我们来介绍一下电容三点式振荡电路的设计方法。
首先,需要选择电容器和电感器的具体数值,以及晶体管的型号。
在选择电容器和电感器时,需要根据所需的振荡频率来确定。
一般来说,振荡频率越高,所需的电容器和电感器数值就越小。
而在选择晶体管时,需要考虑其放大系数和工作电压等参数。
通过合理选择这些元器件,就可以设计出满足要求的电容三点式振荡电路。
最后,我们来看一下如何通过multisim软件进行电容三点式振荡电路的仿真实验。
首先,需要打开multisim软件,并创建一个新电路。
然后,将所选的电容器、电感器和晶体管拖入电路中并连接起来。
接下来,需要设置电容器和电感器的数值,以及晶体管的型号。
最后,可以进行仿真实验,观察电路的输出信号是否符合要求。
综上所述,电容三点式振荡电路是一种常用的电路,可以用于产生高频信号或时钟信号。
本文介绍了电容三点式振荡电路的原理、设计方法和multisim仿真实例,希望能对读者有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二压控 LC 电容三点式振荡器设计及仿真1
2
一、实验目的
3
1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。
4
2、了解和掌握压控振荡器电路原理。
5
3、理解电路元件参数对性能指标的影响。
6
4、熟悉电路分析软件的使用。
7
二、实验准备
8
1、学习LC 电容三点式西勒振荡器电路组成和工作原理。
9
2、学习压控振荡器的工作原理。
10
3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。
11
三、设计要求及主要指标
12
1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。
13
2、实现电压控制振荡器频率变化。
14
3、分析静态工作点,振荡回路各参数影响,变容二极管参数。
15
4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。
16
5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可
17
满足频率范围要求),直流电压源12V,变容二极管选用MV209。
18
四、设计步骤
19
1、整体电路的设计框图
20
整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,
21
22
设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的频
23
24
率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。
25
2、LC 振荡器设计
26
27
首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频28
率f T=1000MHz。
LC 振荡器的连接方式有很多,但其原理基本一致,本实验中29
采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基30
础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频31
率而不对振荡回路的分压比产生影响的特点。
电路图如下所示:
32 图2-2 LC 电容三点式西勒振荡器
33 图中变容二极管MV209 与电感L1 并联,构成了西勒振荡电路形式。
R1\R2 34 为静态偏置电阻,C1\C2 为反馈分压电容,C3 即为克拉泼振荡电路中与C1\C2 35 串
36 联的小电容,L1\C1\C2\C3 共同构成谐振回路。
C4\C5 为隔直电容,其中放37 大管基极通过C4 交流接地,同时保证其基极的偏置电压;而C5 主要防止加载38 于变容二
39 极管的直流电压影响前级电路。
电感L2 为扼流圈,用来防止振荡回路的振荡40 电
41 压会对变容二极管所加的反向偏压产生影响,采取上面这类隔离措施使得反42 向偏
43 置电压与振荡回路分离。
44
V1
接下来应该确定电路中振荡元器件的取值。
根据振幅起振条件可知,振45 荡器开环增益()1osc T ω>,而开环增益与电容 C1/C2组成的反馈网路的反馈系数
46 fv k 、负载大小以及放大管静态工作点有关。
其中1
12
fv C k C C =
+,反馈系数太小会
47 使()osc T ω变小,影响起振;反馈系数太大则会影响回路Q 值,而且取值过大也48 同样会降低()osc T ω,也会停振,所以应选择比较合理的反馈系数fv k ,一般取值49 范围为1/10~1/4,在振荡电路能正常起振的情况下,反馈系数较大,起振时间50 较短。
而静态工作点较高,可提高()osc T ω,容易起振,但不宜过大,否则造成51 回路有
52 载品质因数过低,影响振荡频率稳定度。
一般ICQ 取值1~5mA 。
负载阻值不能53 过
54 小,否则同样造成()osc T ω过低不能起振,图2-2 中振荡电路未接负载,可视55 为 56 无穷大。
57 根据工程估算法则,振荡器的振荡频率是由谐振回路频率所决定的谐振58 回路中心频率:
59
osc f =
=
60
其中,Cj 是变容二极管的等效电容值,
'
123
1111C C C C =++ 61 根据设计要求:
62 min 50osc f MHz =
=
63
max 70osc f MHz =
=
64
通过计算,取1260L nH =,则pF C 33max ≈∑,pF C m 13in ≈∑,由于电压控制部
65 分主要元件是选用MV209 变容二极管,其反向电压与电容C —VR 如下图所示:
66
67 68 69 70 71 72 73 74 75
76
图2-3 MV209 特性图
77
78 可以看出电容与电压变化不是呈线性变化,而是非线性变化的,只有在79 取值3到10V 之间其电容值与电压值最近似线性,即Cj 的取值为 10~30pF 。
因此,
80 'C 的取值约为9pF ,由C1\C2\C3 串联而得。
考虑到克拉泼电路中要求C3 取值不
81 能
82 过小,否则会降低()osc T ω,无法起振,并考虑放大管结电容的影响,最后确83 定
84
各个电容值(此处需要反复调整以取得较佳取值),pF C 251=,pF C 2202=,
85 pF C 113=如下图所示:
86
87 3、缓冲器设计
88
在电容三点式振荡电路分析中有osc ω=
,可以看到负载对振89 荡器的稳定度会造成影响,甚至影响电路能否正常起振。
尽管采用改进后的西90 勒电路能减少这种影响,但为了进一步提高振荡器的振荡稳定性,以及驱动负91 载能力,
92 需要设计缓冲器来实现与低阻抗的负载相连。
缓冲器采用共集电极电路,也93 即高输入阻抗\低输出阻抗的射随器来实现。
94 4、整体电路图
95 图中C6,R5 是为了防止射随器对谐振回路产生影响而串接在两级之间,96 但会造成射随器输入电压的衰减;为了使电路容易起振,一般在电路中增加一
97
98
个起始激励脉冲V3。
C1
99
100
图2-5 整体电路图
101
102
5、仿真分析
103
图2-6/图2-7 分别表示控制电压为10V 和3V 时的仿真波形
104
105
图2-6(a) 控制电压为10V 时候负载上的振荡波形
106
107
图2-6(b) 控制电压为10V 时候负载上的振荡波形频谱
108
109
110
图2-7(a) 控制电压为3V 时候负载上的振荡波形
111
图2-7(b) 控制电压为3V 时候负载上的振荡波形频谱112
113
表2-1 压控电压与频率关系
控制电
压(V) 3 4 5 6 7 8 9 10
振荡频
率
MHz 50.00 54.50 58.50 61.50 64.50 67.00 69.00 71.00
114
图2-8 控制电压与振荡频率关系图
115
116
由表2-1 和图2-8 可以看到,在8 个不同电压点实现了振荡频率的不同117
调节,调节关系基本呈线性,调节范围基本满足设计要求。