压控振荡器

合集下载

压控振荡器的定义控振荡器工作原理及应用

压控振荡器的定义控振荡器工作原理及应用

压控振荡器的定义控振荡器工作原理及应用压控振荡器(Voltage Controlled Oscillator,VCO)是一种电子振荡器,它的振荡频率可以通过外部施加的电压进行控制。

VCO在电子设备中广泛应用于频率合成器、频率调制器、时钟源等领域。

VCO的工作原理如下:VCO的核心组件是一个电压控制的振荡电路,通常包含一个可变电容器或电感和运放或其他放大器。

这个电路根据控制电压的变化而变化,进而产生不同频率的输出信号。

最常见的VCO实现方式是利用电容变化来改变振荡频率。

当一个电压施加在可变电容上时,电容的值会发生变化,从而导致振荡频率的变化。

这种方式可以通过改变电压控制电容器的工作点来实现。

另一种实现方式是利用电感。

当电流通过电感时,会产生磁场,磁场的变化又导致电感的电流变化。

通过改变控制电压,可以改变电感上的电流,从而改变振荡频率。

VCO的应用非常广泛,在通信领域中,VCO经常用于频率合成器。

频率合成器通过将一个基准频率乘以一个整数倍数来产生期望的输出频率。

VCO作为频率合成器的核心部件,可以根据控制电压的变化实现多样化的输出频率。

VCO也常用于频率调制器中。

在调制过程中,VCO的频率会根据调制信号的变化而相应地发生调制。

这样一来,VCO可以将调制信号的信息嵌入到振荡信号中。

此外,VCO还被广泛应用于时钟源。

时钟源是计算机系统、通信系统、音频系统等电子设备中不可或缺的组成部分。

VCO可以根据控制电压的变化来调整时钟源的频率,从而满足不同系统的要求。

总结起来,VCO是一种通过控制电压来调整振荡频率的电子振荡器。

它通过改变电容或电感的工作状态,实现对振荡频率的调节。

VCO在频率合成器、频率调制器、时钟源等方面都起到重要作用,是现代电子设备中不可或缺的关键组件之一。

压控振荡器

压控振荡器

压控振荡器一.基本原理信号的频率取决于输入信号电压的大小,因此称为“压控振荡器”。

其它影响压控振荡器输出信号的参数还VCO(Voltage ControlledOscillator)(压控振荡器)是指输出信号的频率随着输入信号幅度的变化而发生相应变化的设备,它的工作原理可以通过公式(5-1)来描述。

(5-1)其中,u(t)表示输入信号,y(t)表示输出信号。

由于输入信号的频率取决与输入信号的电压的变化,因此称为“压控振荡器”。

其他影响压控振荡器输出信号的参数还有信号的幅度Ac ,振荡频率fc,输入信号灵敏度kc,以及初始相位。

压控振荡器的特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。

图中,uc为零时的角频率ω0,0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。

使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。

在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。

人们通常把压控振荡器称为调频器,用以产生调频信号。

在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。

压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。

对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。

晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC 压控振荡器居二者之间。

在MATLAB中压控振荡器有两种:离散时间压控振荡器和连续时间压控振荡器,这两种压控振荡器的差别在于,前者对输入信号采用离散方式进行积分,而后者则采用连续积分。

本书主要讨论连续时间压控振荡器。

为了理解压控振荡器输出信号的频率与输入信号幅度之间的关系,对公式(5-1)进行变换,取输出信号的相角Δ为对输出信号的相角Δ求微分,得到输出信号的角频率ω和频率f分别为:ω=2πf c+2πk c u(t) (5-3)(5-4)从式(5-4)中可以清楚地看到,压控振荡器输出信号的频率f与输入信号幅度u(t)成正比。

压控振荡器

压控振荡器

压控振荡器压控振荡器(Voltage Controlled Oscillator,简称VCO)是一种电路,可以根据输入电压的变化而生成相应频率的信号。

VCO广泛应用于通信系统、雷达、无线电发射器等领域,是现代电子设备中不可或缺的组成部分。

方案一:基于电感-电容(LC)谐振电路的压控振荡器设计1.电路原理在LC谐振电路中,电感和电容的组合能够形成一个谐振回路。

当LC 电路中的电感和电容数值合适时,谐振电路会产生一个稳定的频率。

我们可以通过改变电容的值来改变谐振频率,从而实现压控振荡。

可将VCO分为两大模块,即振荡器电路和调谐电路。

振荡器电路:包括LC电路、放大器和反馈网络。

LC电路是谐振结构的核心,放大器用于提供振荡电路的增益,反馈网络将部分振荡输出信号输入到放大器的输入端。

2.电路实现首先,需要确定振荡器的工作频率范围和中心频率。

选择合适的电感和电容数值,使得振荡器在预期频率范围内正常工作。

接下来,设计放大器的增益和反馈网络的增益,以保证正反馈的存在,使振荡器能够自持振荡。

3.压控调谐(VCT)技术压控振荡器要能够实现频率的可调,需要采用压控调谐(Voltage Control Tuning,简称VCT)技术。

常见的VCT技术包括改变电容值、改变电感值和改变电源电压。

在本方案中,我们采用改变电容值的方法来实现压控调谐。

4.控制电路为了实现对电容值的控制,需要设计一个控制电路。

控制电路可以根据输入的电压信号来改变电容值,从而实现对振荡器频率的调节。

控制电路通常由一个比较器和一个电压-电容转换电路组成。

比较器将输入信号与参考电压进行比较,输出响应的电平控制电容值的改变。

5.特性和性能压控振荡器的性能指标包括频率稳定度、调谐范围、调谐灵敏度、输出功率等。

频率稳定度是指振荡器频率的稳定性,调谐范围是指振荡器的工作频率范围,调谐灵敏度是指输入电压变化与频率变化的关系,输出功率是指输出信号的幅值。

总结方案一是基于LC谐振电路的压控振荡器设计。

压控LC振荡器

压控LC振荡器

目录1 引言 (2)1.1 振荡器简介 (2)1.2 系统设计的目的 (2)1.3 系统设计的意义 (2)2 系统设计要求和设计方案 (3)2.1设计任务及基本要求 (3)2.1.1 任务 (4)2.1.2 基本要求 (4)2.2 总体设计思路 (4)2.3 基本模块的论证与选择 (4)2.3.1 电压控制LC振荡器模块 (5)2.3.1.1互感耦合振荡器 (5)2.3.1.2 电感反馈三端式振荡电路 (5)2.3.1.3 电容反馈三端式振荡电路 (5)2.3.1.4 集成电路振荡器 (6)2.3.2 LC控制信号的实现 (8)2.3.3 稳幅电路的选择 (9)2.3.4频率控制方式的设计与选择 (9)2.3.5功率放大器 (10)2.3.6 系统组成构图 (10)3 单元电路的设计 (11)3.1压控振荡器和稳幅电路的设计 (11)3.2锁相环式频率合成器的设计 (12)3.3 峰值检测电路 (16)3.3 系统软件的设计 (18)4 测试方法及结果分析 (20)4.1 测试仪器 (20)4.2 测试方法 (20)4.3 结果分析 (20)5 总结 (21)6 参考文献 (21)电压控制LC振荡器1 引言1.1 振荡器简介振荡器简单地说就是一个频率源,一般用在锁相环中。

详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。

一般分为正反馈和负阻型两种。

所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。

能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。

压控振荡器(VCO)的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。

对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。

晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。

压控振荡器的指标

压控振荡器的指标

压控振荡器(VCO)的主要指标包括:
1. 频率:振荡器的输出信号的重复率,以赫兹(Hz)为单位,即每秒所包含的周期数。

频率稳定性是振荡器的基本性能指标之一,参考额定输出频率通常以百万分率(parts per million,ppm)或十亿分率(parts per billion,ppb)计。

2. 调谐范围:调节输出频率的变化范围,即振荡器的最大调谐频率和最小调谐频率的差值。

压控振荡器要有足够大的调谐范围才能满足输出频率达到所需要的值。

3. 调谐增益:即压控振荡器的灵敏度,是指单位的输入电压与输出频率的变化,一般用Kv表示,单位是Hz/V。

在实际应用上讲,压控器的灵敏度越高,噪声响应在控制线路上越强,结果干扰输出频率就越大,就会使压控振荡器的噪声性能降低。

所以需要寻找VCO的增益和噪声性能的平衡。

除此之外,压控振荡器的中心频率指的是频率调节范围的中间值,即振荡器频率的最大值和最小值的中间值,中心频率的大小取决于振荡器的结构和元器件参数,而且还随着工艺和温度相应改变。

以上内容仅供参考,如需了解更多信息,建议咨询专业人士。

压控振荡器原理和应用说明

压控振荡器原理和应用说明

压控振荡器(VCO)一应用范围用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。

二基本工作原理利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。

压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。

图1为变容二极管的V-C特性曲线。

(V)T图1变容二极管的V-C特性曲线三压控振荡器的基本参数1 工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或“GHz”。

2 输出功率:在工作频段内输出功率标称值,用Po表示。

通常单位为“dBmw”。

3 输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常单位为“dBmw”。

4 调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/ △VT表示,在线性区,灵敏度最高,在非线性区灵敏度降低。

5 谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。

6 推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。

7 相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定的fm 有离F0 1KHz 、10KHz 和100KHz 几种,根据产品特性作相应规定。

压控振荡器(VCO)

压控振荡器(VCO)

压控振荡器(VCO)一应用范围用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。

二基本工作原理利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。

压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。

图1为变容二极管的V-C特性曲线。

(V)T图1变容二极管的V-C特性曲线三压控振荡器的基本参数1 工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或“GHz”。

2 输出功率:在工作频段内输出功率标称值,用Po表示。

通常单位为“dBmw”。

3 输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常单位为“dBmw”。

4 调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/ △VT表示,在线性区,灵敏度最高,在非线性区灵敏度降低。

5 谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。

6 推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。

7 相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定的fm有离F0 1KHz、10KHz和100KHz几种,根据产品特性作相应规定。

最新实验一压控振荡器VCO的设计PPT课件

最新实验一压控振荡器VCO的设计PPT课件

输出Spectrum的图形,可以看到m3和m4之间 的频谱分量,加入“marker”m5就可以知道振 荡器大概振荡的频率,如下图:
结果分析
从波形可以看到,振荡器已经很稳定地 振荡起来了,并且有一定的振荡时间, 从抽出两点m3,m4的数据可以看出,该 振荡波形是相当稳定的,幅度差可以不 必考虑,频谱纯度也较高,对m3和m4这 段时域进行fs变换,可以看到振荡器振荡 频率的频谱,从m5标记的数值可以看出, 该振荡器的振荡频率为1.850GHz,与设 计的指标1.8GHz有差距,需要进行调整。
工程文件创建完毕后主窗口变为下图
创建新的工程文件(续)
同时原理图设计窗口打开来自VCO的设计设计振荡器这种有源器件,第一步要做的就是 管子的选取,设计前必须根据自己的指标确定 管子的参数 ,选好三极管和变容二极管;第二 步是根据三极管的最佳噪音特性确定直流偏置 电路的偏置电阻;第三步是确定变容二极管的 VC特性,先由指标(设计的振荡器频率)确定 可变电容的值,然后根据VC曲线确定二极管两 端直流电压;第四步是进行谐波仿真,分析相 位噪音,生成压控曲线,观察设计的振荡器的 压控线性度。
如上面的做法一个,建 立如右图所示的电路图, 其中“Term”、“SPARAMETE”、 “PARAMETER SWEEP” 都可以在“Simulation- S_Param”里面找到。变 容管的型号是“MV1404” 可以在器件库里面找到, 方法可以参考上面查找 晶体管的方法。
按VAR键并双击它,修改里面的项目,定义一 个名为:“Vbias”的变量,设置Vbias=5V作为 Vbias的初始值。
设置HB仿真器
利用ADS里面的 HB simulation可以仿真振荡器的 相位噪音,如下图设置好HB仿真器,选择计算非 线性噪音和调频噪音。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延迟时间,实现对频率的控制 优点:无调谐回路,易于集成 缺点:频谱纯度不够好
射频通信电路
7.4.2 变容二极管压控振荡器
变容二极管——势垒电容随外加电压而变化 工作时的基本要点
① 二极管反向偏置,
外加电压变化时二极管应始终保持不导通
~
② 结电容
C j 与外加电压的变化规律
C j0
n
Cj
VD 1 VB
结果: 将晶体呈电感的范围从
fq ~ f p
fS ~ f p
则振荡器的可调频率范围 也相应展制带宽——允许控制电压变化的最大速率 (5)工作电压——振荡器工作电压和控制电压
(6)噪声——主要是相位噪声小
构成VCO的一般方法 ① LC振荡器——改变回路电抗元件值,实现频率控制 需用压控电抗元件 优点:带有选频回路,频谱较纯,相位噪声较小
② 多谐振荡器——用改变电容充放电电流大小或各级的
(VD 0)
射频通信电路
变容二极管压控振荡器典型电路举例
交流通路图
电路分析:
PNP管,电源+5V 偏置电阻: 4.7k ,16k ,3.3k 旁路电容: 0.01 F , 0.001 F
变容二极管控制电压 VC ( 正电压)
电路特征: ① 晶体管共基组态 ② 两只二极管串联 ③ 振荡频率由四个 电抗元件共同决定
射频通信电路
石英晶体压控振荡器 交流通路图
电路原理: ① 并联型晶体振荡器——晶体呈感性
② 晶体的负载电容为: C1 // C2 // C j
③ 控制电压 v c 改变 C j ,从而改变晶体振荡器的频率
射频通信电路
晶体压控振荡器的压控特点——可调频率变化范围很小 原因:晶体呈感性的区域( f q ~ f p )很小 展宽频率范围方法——串联电感
射频通信电路
7.4 压控振荡器
射频通信电路
7.4.1 概述 振荡频率随外加控制电压变化而变化——压控振荡器(VCO)
主要性能指标:
(1)频率范围 fmax ~ fmin
压控特性曲线
(2)线性度——对理想线性控制特性的偏移 理想频率受控特性
f f0 A0Vc
(3)压控灵敏度——A0(VCO增益) 单位:(rad / s)
相关文档
最新文档