工程流体力学
工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
《工程流体力学》PPT课件

本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。
4工程流体力学 第四章流体动力学基础

Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS
p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:
(完整版)工程流体力学

➢ Offshore structures, coastal structures, harbors, ports, …
➢ Ships, submarines, remote-operated vehicles,
Engineering Applications
Bernoulli
(1667-1748)
Euler
(1707-1783)
Navier
(1785-1836)
Stokes
(1819-1903)
Reynolds
(1842-1912)
Prandtl
(1875-1953)
Taylor
(1886-1975)
流体力学在生活中
• 无处不在
– 天气和气候 – 运输工具: 汽车, 火车, 船和飞机. – 环境 – 生物工程和医学 – 运动和休闲 – 人体内的流体 – ………………………………
• 秦朝在公元前256—公元前210年修建了我国历史上 的三大水利工程(都江堰、郑国渠、灵渠)——明 渠水流、堰流。
• 古代的计时工具“铜壶滴漏”——孔口出流。
• 清朝雍正年间,何梦瑶在《算迪》一书中提出流量 等于过水断面面积乘以断面平均流速的计算方法。
• 隋朝(公元587—610年)完成的南北大运河。
Water sports
运动和休闲
Cycling
Offshore racing
Auto racing
Surfing
What fluids are needed to run your
car?
➢ Gasoline (fuel) ➢ Air (air/fuel mixture,
工程流体力学

详细描述
随着智能化技术的发展,智能流体控制与调节系统的研 究逐渐成为工程流体力学的前沿领域。通过引入人工智 能、大数据等技术,实现对流体系统的实时监测、预测 和控制,提高流体系统的稳定性和可靠性,为工程实际 提供更好的技术支持。
THANKS FOR WA点一
实验设备
风洞、水槽、压力容器等,用于模拟流体流动和测试流体 动力性能。
要点二
测量技术
压力传感器、流量计、速度计等,用于测量流体的压力、 流量和速度等参数。
数值模拟方法与软件
数值模拟方法
有限元法、有限差分法、边界元法等,通过数值计算 来模拟流体流动。
数值模拟软件
ANSYS Fluent、CFX、SolidWorks Flow Simulation等,用于进行流体动力学分析和模拟。
流体流动的动量方程
一维动量方程
描述流体在一维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
二维动量方程
描述流体在二维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
三维动量方程
描述流体在三维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
流体流动的湍流模型
雷诺平均模型
通过引入雷诺应力来描述湍流中流体的动量交换, 用于模拟湍流流动。
工程流体力学实验与模拟的应用
航空航天
飞机和航天器的空气动力学性能测试和优化 设计。
汽车工程
汽车车身和发动机的流体动力学性能测试和 优化设计。
能源工程
风力发电机叶片和核反应堆冷却系统的流体 动力学性能测试和优化设计。
环境工程
污水处理和排放系统的流体动力学性能测试 和优化设计。
06 工程流体力学前沿研究与 展望
第二章-工程流体力学

v0 2
2
g z0
p0
端点O,v0 = 0,称为驻点(或滞止点),p0称为驻点压强.由于zA = z0, 可得
p0 p Biblioteka 1 2 pv2毕托测速管
1 2
v
2
称为动压强,p0称为总压强
1 2
v p0 p
2
AB的位置差可忽略
1 2
v
2
p
vB 2
2
pB
因vB=v,由上式 pB = p.在U形管内列静力学关系式
V
dV vv n dS
S
fd V
V
S
p n dS
对固定控制体的流体动量方程为
CV
vd v( v n)dA
CS
F
v为绝对速度。定常流动时
CS
v (v n)dA F
上式表明:作用在固定控制体上的合外力= 从控制面上净流出的动量流量
F
对同一点的力矩,即
dt
d r vdV
dH dt
dt
d
r vdV
V
rF
V
r fdV
V
S
r p n dS
根据雷诺输运方程式(2.3.5)可得控制体的动量矩积分方程
r v t
dV
V
S
r v v n dS
r fd V
p1 z1 g p2 z2 g ' h
z1
工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程流体力学
一、选择题
1. 关于流体的粘性,以下说法不正确的是( )。
A 形成流体粘性的原因是分子间的引力和流体分子的热运动
B 压强增加,粘性增大
C 液体的粘性随温度的增加而增加
D 气体的粘性随温度的增加而增加
2. 流线和迹线重合的是那种流动?( )
A. 定常流动
B. 非定常流动
C. 不可压缩流动
D. 无粘性流动
3. 连续方程表示控制体的( )。
A. 能量守恒
B. 动量守恒
C. 流量守恒
D. 质量守恒
4. 水在一条管道中流动,如果两截面的管径比为321=d d ,则速度比为=21v ( )。
A. 3
B. 1
C. 9
D. 1
5. 文丘里流量计用于测量( )。
A. 点速度
B. 压强
C. 密度
D. 流量
6.局部损失系数ς的量纲为( )。
A. m
B. s m
C. s m 2
D. 无量纲
7. 管道截面积突然扩大的局部损失=j h ( )。
A. g v v 22221-
B. g
v v 22221+ C. ()g v v 222
1+ D. ()g
v v 2221- 8. 如果空气气流速度为s m 100,温度为10℃,则=Ma ( )。
A. 1.5776
B. 0.2966
C. 0.3509
D. 0.1876
9. 当收缩喷管的质量流量达到极大值时,出口处的Ma ( )。
A. 1〉
B. 1=
C. 1〈
D. ∞=
10. 边界层的流动分离( )。