高一物理追及相遇问题

合集下载

高一物理相遇与追及问题

高一物理相遇与追及问题

高一物理相遇与追及问题
高一物理相遇与追及问题是一个比较复杂的问题,主要涉及两个物体的运动和时间关系。

在相遇问题中,两个物体从不同的位置出发,朝着相同的方向运动,最终在某一时刻相遇。

在追及问题中,一个物体在后面追赶前面的物体,当两个物体速度相等时,它们之间的距离达到最大值。

解决相遇与追及问题需要掌握以下几个关键点:
1.确定临界状态:在相遇与追及问题中,临界状态是两个物体速度相等或位移相等。

当速度相等时,两个物体之间的距离最大;当位移相等时,两个物体之间的距离最小。

2.画图分析:通过画图可以直观地分析两个物体的运动情况,例如用位移时间图像表示两个物体的运动轨迹。

3.相对运动:在相遇与追及问题中,通常需要将其中一个物体视为静止,从而简化问题。

例如,在追及问题中,通常将前面的物体视为静止,从而得出后面物体的速度和时间关系。

4.公式运用:在相遇与追及问题中,需要运用速度、位移、时间等物理量之间的关系式进行计算。

例如,在追及问题中,需要运用速度相等时的时间关系式进行计算。

总之,解决相遇与追及问题需要灵活运用物理知识,掌握临界状态的分析方法和画图技巧,从而得出正确的结论。

高一物理追击和相遇问题

高一物理追击和相遇问题

对汽车由公式
vt v0 0 (6) t s 2s a 3
vt v0 at
2 0
v v 2as
2 t
2 vt2 v0 0 (6) 2 s m 6m 2a 23
以自行车为 参照物,公式中的 各个量都应是相 对于自行车的物 理量.注意物理量 的正负号.
x自
那么,汽车经过多少时间能追上自行车?此时汽车的速度 是多大?汽车运动的位移又是多大?
v汽 aT 12m / s 2v自 1 2 v自T aT t 4s 1 2 2 a s汽 aT =24 m
2
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图 中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。 -1
问:xm=-6m中负号表示什么意思?
表示汽车相对于自行车是向后运动的,其相对于自行车 的位移为向后6m.
例2:A火车以v1=20m/s速度匀速行驶,司机发现前方 同轨道上相距100m处有另一列火车B正以v2=10m/s速 度匀速行驶,A车立即做加速度大小为a的匀减速直线 运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。 由A、B 速度关系: v1
1 2 由A、B位移关系: v1t at v2t ) 2 (20 10) 2 a m/s2 0.5m/s2 2 x0 2 100
则a 0.5m / s
速度小 的加速 追速度 大 的
当两者速度相等时有最大距离 若两者位移相等,则追上。

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。

解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。

一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。

解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。

定义变量设被追物体为A,追赶物体为B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。

解决相遇问题的关键是找出两个物体之间的位移和速度关系。

定义变量设相遇的两个物体分别为A、B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

如果A、B不能相遇,还可以求出它们之间的距离。

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。

因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。

一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。

若甲的速度小于乙的速度,则两者之间的距离。

若一段时间内两者速度相等,则两者之间的距离。

2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。

⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。

②若甲乙速度相等时,甲的位置在乙的前方,则追上。

③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。

3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。

两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。

二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。

⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。

【典型例题】例1.在十字路口,汽车以3米每二次方秒的加速度从停车线启动做匀加速运动,恰好有一辆自行车以6米每秒的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【针对训练】1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.4、某人在室内以窗户为背景摄影时,恰好把窗外从高处落下的一小石子摄在照片中。

高一物理必修一追及与相遇问题

高一物理必修一追及与相遇问题

汽车的速度是多大?汽车运动的位移又是多大?
[方法一] 公式法
当汽车的速度与自行
x汽
车的速度相等时,两车之
间的距离最大。设经时间t
x
两车之间的距离最大。则:
x自
v汽 at v自 t v自 / a 2s
xm
x自
x汽
v自t
1 2
at 2
6m
那么,汽车经过多少时间能追上自行车?此时
汽车的速度是多大?汽车运动的位移又是多大?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯, 当绿灯亮时汽车以3m/s2的加速度开始加速行 驶,恰在这时一辆自行车以6m/s的速度匀速 驶来,从后边超过汽车。试求:汽车从路口 开动后,在追上自行 车之前经过多长时间 两车相距最远?此时 距离是多少?
二、例题分析
【例1】一辆汽车在十字路口等候绿灯,
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候。
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻
判断v甲=v乙的时刻甲乙的 位置情况: ①若甲在乙前,则 追上,并相遇两次;②若甲乙 在同一处,则甲恰能追上乙; ③若甲在乙后面,则甲追不上 乙,此时是相距最近的时候 是分析讨论两物体在相同时间内能否到 达相同的空间位置的问题。
(1)追及
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的
时刻
(1)追及
甲一定能追上乙,v甲=v乙 的时刻为甲、乙有最大距离的 时刻

高一物理追及相遇问题

高一物理追及相遇问题
A B
追及及相遇问题
• 3.若两者位移相等时追者的速度仍大于被 3.若两者位移相等时追者的速度仍大于被 追者的速度, 追者的速度,则被追者还有一次追上追者 的机会,这个过程当中速度相等 速度相等时两者间 的机会,这个过程当中速度相等时两者间 距离有一个最大 最大值 距离有一个最大值.
A B
追及及相遇问题
追及及相遇问题解题步骤
• 1.做出物理情境草图,由情境判断类型, 1.做出物理情境草图,由情境判断类型, 做出物理情境草图 确定解题思路. 确定解题思路. • 2.根据题中信息,建立相关的物理量关系, 2.根据题中信息 建立相关的物理量关系, 根据题中信息, 列方程进行求解. 列方程进行求解. • 3.解题过程中,思路要清晰,考虑问题要 3.解题过程中 思路要清晰, 解题过程中, 全面,避免解题的片面性. 全面,避免解题的片面性.
追及及相遇问题
• 1.当两者的速度相等时,若追者位移大小 1.当两者的速度相等时, 当两者的速度相等时 仍小于二者之间的距离时 则追不上, 二者之间的距离时, 仍小于二者之间的距离时,则追不上,此时 两者之间距离有最小值. 两者之间距离有最小值.
A B
• 2.若两者恰好追及且两者速度相等时,也 2.若两者恰好追及且两者速度相等时 若两者恰好追及且两者速度相等 是两者避免碰撞的临界条件
x0 x2
x1
基础练习
• 2.有两辆同样的列车各以72km/h的速度在同 2.有两辆同样的列车各以72km/h的速度在同 有两辆同样的列车各以72km/h 一条铁路是面对面向对方驶去, 一条铁路是面对面向对方驶去,已知这种列 车刹车时能产生的最大加速度为0.4m/s 车刹车时能产生的最大加速度为0.4m/s2,为 避免列车相撞, 避免列车相撞,双方至少要在两列车相距多 远时同时刹车? 远时同时刹车? • 解题思路:两列车各自刹车至停止所走过的 解题思路:两列车各自刹车至停止所走过 刹车至停止所走过的 位移之和即为题中所求. 位移之和即为题中所求.

高一物理 追及和相遇问题

高一物理 追及和相遇问题

【典型例题】(一).匀加速运动追匀速运动的情况:(开始时v1<v2):v1<v2时,两者距离变大;v1=v2时,两者距离最大;v1>v2时,两者距离变小,相遇时满足x1=x2+Δx,全程只相遇(即追上)一次。

【例1】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h 以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?(二).匀速运动追匀加速运动的情况:(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例2】一个步行者以6m/s的最大速率跑步去追赶被红绿灯阻停的公共汽车,当它距离公共汽车25m时,绿灯亮了,车子以1m/s2的加速度匀加速起动前进,则()A.人能追上汽车,追车过程中共跑了36mB.人不能追上汽车,人和车最近距离为7mC.人不能追上汽车,自追车开始后人和车间距越来越大D.人能追上汽车,追上车前人共跑了43m(三).匀减速运动追匀速运动的情况(同上)【例3】A、B两列火车,在同轨道上同向行驶,A车在前,其速度v A=10 m/s,B车在后,其速度v B=30 m/s.因大雾能见度低,B车在距A车700 m时才发现前方有A车,这时B车立即刹车,但B车要经过1 800 m才能停止.问A车若按原速度前进,两车是否会相撞?说明理由.(四).匀速运动追匀减速运动的情况:若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20 s末两车相遇,选项B错误;在5~15 s内,由图线的对称关
系知两图线在此时间段与时间轴所围面积相等,故两车位移
相等,选项C正确;v-t图线的交点表示该时刻速度相等,
选项D错误.
答案 C
精品教学课件PPT
10
变式训练2
在例2的已知条件下,(1)甲追上乙之前,甲、乙之间的 最大距离是多少?
(2)5~15 s内乙车的位移大小是多少? 解析 (1)v-t图象的面积之差表示位移之差,甲追上乙之
精品教学课件PPT
3
类型
匀减速追 匀速
匀速追 匀加速
匀减速追 匀加速
图象
说明
开始追及时,后面物体与前面
物体间的距离在减小,当两物
体速度相等时,即 t=t0 时刻: ①若 Δx=x0,则恰能追及,两 物体只能相遇一次,这也是避
免相撞的临界条件.
②若 Δx<x0,则不能追及,此 时两物体最小距离为 x0-Δx. ③若 Δx>x0,则相遇两次,设 t1 时刻 Δx1=x0,两物体第一 次相遇,则 t2 时刻两物体第二 次相遇.
v汽=v0+at v汽车=v自=4 m/s 汽车:由4 m/s=10 m/s-6 m/s2·t
解得:t=1 s
x汽-x0=x自
x0=x汽-x自 = 10 m/s+4 m/s·1 s-4 m/s·1 s
2 =7 m-4 m=3 m.
答案 3 m
精品教学课件PPT
8
例2 甲、乙两辆汽车在平直的公路上沿同一方向做直线
追上前,该物体是否已经停止运动.
(3)仔细审题,注意抓住题目中的关键字眼,充分
挖掘题目中的隐含条件.精品教学课件PPT
6
6.解决“追及”和“相遇”问题的方法
(1)数学方法:因为在匀变速运动的位移表达式中有时间
的二次方,我们可列出方程,利用二次函数求极值的方法求
解,有时也可借助v-t图象进行分析.
(2)物理方法:即通过对物理情景和物理过程的分析,找
D.在t=10 s时,两车在公路上相遇
精品教学课件PPT
9
分析 由v-t图象与时间轴所围面积的关系,可分析判断
不同时间段内两物体的位移关系.另外要明确v-t图线交点
的物理意义.
解析 根据v-t图线与时间轴所围面积表示位移可知:在
0~10 s内,两车的位移差逐渐增大,即两车在远离,选项A
错误;在10~20 s内,甲的位移增加得多,两车在靠近,到
精品教学课件PPT
4
4.解“追及”、“相遇”问题的思路 (1)根据对两物体运动过程的分析,画出物体的 运动示意图. (2)根据两物体的运动性质,分别列出两个物体 的位移方程.注意要将两物体运动时间的关系反映 在方程中
(3)由运动示意图找出两物体位移间的关联方 程.
(4)联立方程求解.
精品教学课件PPT
(2)时间关系:t1=t2=t
即追及过程经历时间相同,但t1、t2不一定是两物体运动
的时间.
精品教学课件PPT
1
2.临界条件 当两物体速度相等时可能出现恰能追及、恰好避免相撞、 相距最远、相距最近等情况,即该四种情况的临界条件为 v1=v2 3.分析v-t图象 说明:(1)Δx是开始追及以后,后面物体因速度大而比前 面物体多运动的位移; (2)x0是开始追及以前两物体之间的距离;
5
5.分析“追及”、“相遇”问题时应注意的问

(1)分析“追及”、“相遇”问题时,一定要抓住
一个条件、两个关系.一个条件是两物体的速度满足的
临界条件,如两物体距离最大、最小,恰好追上或恰好
追不上等.两个关系是时间关系和位移关系.一定要养
成画草图分析问题的好习惯.
(2)若被追赶的物体做匀减速运动,一定要注意在
车速度为4m/s,且正以2m/s2的加速度做匀加速
运动;经过一段时间后,B车加速度突然变为 零。A车一直以20m/s的速度做匀速运动。经过 12s后两车相遇。问B车加速行驶的时间是多少?
【解析】设A车的速度为vA,B车加速行驶时
间为t,两车在t0时相遇。则有
前,甲、乙之间的最大距离 Δx=12×10×5 m=25 m.
(2)在5~15 s内,甲、乙两车位移相同,即 x乙=x甲=v甲t=5×10 m=50 m. 答案 (1)25 m (2)50 m
精品教学课件PPT
11
例3. (08海南) t=O 时,甲乙两汽车从相距70
km的两地开始相向行驶,它们的v一t 图象如
(3)v1是前面物体的速度,v2是后面物体的速度.
精品教学课件PPT
2
类型
匀加速 追匀速
匀速追 匀减速
匀加速追 匀减速
图象
说明
①t=t0 以前,后面物体与前面 物体间距离增大.
②t=t0 时,两物体相距最远为 x0+Δx. ③t=t0 以后,后面物体与前面 物体间距离减小.
④能追及且只能相遇一次.
追及相遇问题
“追及”、“相遇”是运动学中研究同一直线上 两个物体的运动时常常涉及的两类问题,两者的基 本特征相同,处理方法也大同小异.
1.同时同位
两物体相遇一定是同一时刻处在同一位置.
(1)位移关系:x2=x0+x1
x0表示开始运动时两物体间的距离,x1表示前面被追物
体的位移,x2表示后面追赶物体的位移.
到临界状态和临界条件,然后列出方程求解.
例1 汽车正以10 m/s的速度在平直的公路上前进,突然
发现正前方有一辆自行车以4 m/s的速度做同方向的匀速直线
运动,汽车立即关闭油门做加速度大小为6 m/s2的匀减速运
动,汽车恰好不碰上自行车,求关闭油门时汽车离自行车多
远.
精品教学课件PPT
7
解析 当汽车恰好不碰上自行车,有:
运动,t=0时刻同时经过公路旁的同一个路标.在描述两车 运动的v-t图中(如图9-3所示),直线a、b分别描述了甲、 乙两车在0~20 s的运动情况.关于两车之间的位置关系,下列 说法正确的是( )
图9-3
A.在0~10 s内,两车逐渐靠近
B.在10~20 s内,两车逐渐远离
C.在5~15 s内,两车的位移相等
图所示.忽略汽车掉头所需时间.下列对汽车 运动状况的描述正确的是 A.在第1小时末,乙车改变运动方向 B. 在第2 时末,甲乙两车相距10 km C.在前4小时内,乙车运动加速度的大小总比 甲车的大 D.在第4小时末, 甲乙两车相遇
(BC)
精品教学课件PPT
12
例4.(08四川)(16分)A、B两辆汽车在笔直的 公路上同向行驶。当B车在A车前84m 处时,B
相关文档
最新文档