液压与气动基本知识
2025江苏中职职教高考《机电一体化-液压与气动》讲义知识考点复习资料

江苏职教高考机电一体化类(液压与气动)课程知识框架第一章液压传动的基本概念重点第二章液压元件第三章液压基本回路及传动系统第四章气压传动重点第一章液压传动的基本概念本章重难点分析第一节液压传动原理及其系统组成第二节液压传动系统的流量和压力第三节压力、流量损失和功率计算考核要求1、了解液压传动的工作原理。
2、理解液压传动的组成及功用。
3、理解液体的基本特性(粘性、可压缩性)。
4、掌握流量和压力的基本概念。
5、理解静压传递原理和流量连续性原理的基本概念。
6、了解液压传动的压力损失和流量损失的机理。
7、掌握液压传动系统中液体压力、流量、速度和功率、效率之间的关系,并能进行相应计算。
第一节液压传动原理及其系统组成知识点1液压传动原理一、液压传动原理液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
液压传动是根据17世纪帕斯卡提出的液体静压力传动原理发展起来的一门技术,在工农业生产中得到了广泛的应用。
下图a所示为液压千斤顶的工作原理图。
液压千斤顶的工作原理图a)工作原理图1-手柄2-泵体3、11一活塞4、10-油腔5、7-单向阀6-油箱8-放油阀9-油管12-缸体用手向上提起杠杆手柄1,小活塞3被带动上行,如图b所示,泵体2内油腔4的容积增大,形成局部真空,在大气压的作用下,油箱6中的油液经单向阀5流入油腔4,同时单向阀7处于关闭状态。
b)泵的吸油过程用手向下压杠杆手柄1小活塞3被带动下行,如图c所示,泵体2内油腔4的容积减小,其中的油液被挤出因单向阀5处于关闭状态,油液通过单向阀7流人缸体12的油腔10内,使油腔10中油液的体积增大,在压力的作用下,推动大活塞11上升。
反复提、压杠杆手柄,就可以使重物不断上升,达到起重的目的。
c)泵的压油过程提、压杠杆的速度越快,重物上升的速度就越快;重物越重下压杠杆的力就越大。
停止提、压杠杆,重物保持在某一位置不动。
由此可见,液压传动是利用密封容积内受压液体的压力来传递动力(力或力矩),利用密封容积的变化来传递运动(使执行机构获得位移或速度),从而输出机械能的一种传动装置。
液压与气动工作原理及组成

液压与气动工作原理及组成液压的工作原理:液压工作原理是利用液体的压力来实现动力传递和控制的一种技术。
液压传动系统通常由液压泵、液压马达、液压缸、液压阀等组成。
液压工作原理的基本过程是:通过液压泵将液体(通常是油)送入液压马达,液压马达利用液体的冲击力转动传动装置(如齿轮、丝杠等)或直接驱动工作机构;将液体从液压马达中排出,并通过液压阀控制液体的流向和压力,从而实现动力传递和控制。
液压传动具有以下特点:1.力矩大:液体无法压缩,传动力矩大,适用于各种负载条件下的传动;2.精度高:液压传动具有传动平稳、精度高的特点,适用于机械运动精度要求较高的场合;3.可靠性好:液压传动系统结构简单、零件少、易维护,故障率低;4.传动距离远:液压传动能够通过长管道传递动力,适用于产地与工作地相距较远的场合;5.调速范围广:液压传动的速度调节范围大,满足各种机械传动需求。
液压的组成部分:1.液压泵:液压泵是液压系统的动力源,可以将机械能转化为液压能,提供液体流动;2.液压马达:液压马达可以将液体的压力能转化为机械能,用于驱动负载;3.液压缸:液压缸是液压系统中最常见的执行元件,将液压能转化为机械能,用于推动或拉动负载;4.液压阀:液压阀用于控制液体的流向和压力,实现液压系统的控制和调节;5.油箱:油箱用于储存液压油,保证液压系统正常工作;6.管路:管路用于将液体从泵送至执行元件,以及将液压缸中的液体回流至油箱。
气动的工作原理:气动工作原理是利用气体的压力来实现动力传递和控制的一种技术。
气动传动系统通常由气压源、气动执行器、气动阀等组成。
气动工作原理的基本过程是:通过气压源产生气体(通常是空气),将气体送入气动执行器或气动阀,通过气动阀控制气体的流向和压力,从而实现动力传递和控制。
气动传动具有以下特点:1.速度快:气动传动响应速度快,适用于快速动作的场合;2.操作简单:气动传动系统结构简单、操作方便,能够实现自动化控制;3.安全可靠:气动传动系统的能源是气体,无毒无害,使用安全可靠;4.调节性能好:气动传动具有压力调节范围广,实现多种不同传动需求。
液压与气动技术复习

《液压与气动技术》复习一、各章知识点:第一章 液压传动概述1、 千斤顶的工作原理 (看懂课本第1页 图1-1)2、 液压传动系统的组成:动力元件 执行元件 控制元件 辅助元件 工作介质(看懂P3 图1-2)第二章 液压传动基础1、液体粘度有三种表示方法 粘度, 粘度, 粘度。
(动力 运动 恩氏)2、 液体的流动状态有两种即: 和 。
(层流 和 紊流)3、压力有哪几种表示方法?(P16 绝对压力 相对压力 真空度)关系式 p164、当液压系统中液压缸的有效面积一定时,其内的工作压力的大小有什么参数决定?活塞运动的速度由什么参数决定?(外负载 流量qv )第三章 液压动力元件1、液压泵完成吸油和压油必须具备什么条件?(简答题)分析叶片泵的工作原理。
(P38 看懂图3-7)2、泵的实际流量影响参数为 n,q,p液压泵的容积效率是该泵 流量与 流量的比值. (实际 理论 )3、用变量泵和定量马达组成的容积调速回路,其输出转矩具有 特性。
(恒转矩)第四章 液压执行元件1、柱塞缸运动速度与缸筒内径关系( )。
差动缸应采用( )类型缸,其差动速度为( ),若使差动缸进退等速,应得( )几何关系,当活塞杆直径变小时,则活塞运动速度将( )及作用力将( )。
无关, 单杆、双作用, 24QV d π=, 2D d =, 增大, 减小 2、如果要使机床工作往复运动速度相同,应采用什么类型的液压缸?(双杆活塞液压缸)第五章 液压控制元件1、溢流阀主要作用( )、( )、( ),在变量泵系统中,主溢流阀的作用是( )。
溢流定压,安全,卸荷,安全阀2、采用出口节流调速系统,或负载减小,则节流阀前的压力就会(),正常工作时,其中溢流阀起()作用。
增大,定压3、三位换向阀中位机能中( M、H、K )型可使泵卸泵荷,( P )型可实现油缸差动连接。
电液动换向阀先导阀中位机能位( P、y )。
4、节流调速回路是由泵,阀等组成。
定量节流(或凋速)5、习题p106 5-6 和5-86、画出溢流阀、顺序阀和减压阀的图形符号第六章液压辅助元件略第七章液压回路略第八章典型液压传动系统的原理及故障分析1、P160页图8-1 看懂回路图以及液压系统的工作原理第九章略第十章液压伺服系统第十一章~第十四章气压传动1、气动系统基本组成为()、()、()、()。
液压与气动传动技术介绍

故障诊断与预测:利用大数据和人工智能技术,实现液压与气动传动系统的故障诊断与预测
网络化与信息化:将液压与气动传动系统与物联网技术相结合,实现远程监控和维护
集成化
液压与气动传动技术的发展趋势之一是集成化,即将多种功能集成到一个系统中,提高系统的性能和效率。
集成化可以降低系统的复杂性,提高系统的可靠性和稳定性。
两者的区别与联系
液压传动:利用液体的压力能传递动力,如液压泵、液压马达等
气动传动:利用气体的压力能传递动力,如气缸、气动马达等
联系:两者都是利用压力能传递动力,可以互相补充,共同应用于各种机械设备中。
区别:液压传动压力大,传递功率大,适用于重型机械;气动传动压力小,传递功率小,适用于轻型机械
2
液压与气动传动技术的应用领域
动力元件将机械能转化为液压能,如液压泵。
执行元件将液压能转化为机械能,如液压缸或液压马达。
控制元件控制液压系统的压力、流量和方向,如液压阀。
辅助元件包括油箱、过滤器、蓄能器等,用于储存、过滤和稳定液压系统。
气动传动原理
气动传动是通过压缩空气作为动力源,驱动执行元件实现运动的一种传动方式。
01
02
03
集成化可以降低系统的成本,提高系统的性价比。
集成化可以减少系统的体积和重量,提高系统的便携性和灵活性。
谢谢
1
采用新型材料和工艺,提高液压与气动传动系统的效率,降低能耗。
2
采用智能控制技术,实现液压与气动传动系统的优化控制,降低能耗。
3
采用节能环保的设计理念,提高液压与气动传动系统的可靠性和耐久性,降低维护成本。
4
智能化
智能控制:利用人工智能技术实现液压与气动传动系统的智能控制
液压与气动技术知识点

液压与气动技术知识点一、基本知识PART A1.---C---是液压系统的储能元件,它能储存液体压力能,并在需要时释放出来供给液压系统。
A.油箱B.过滤器C.蓄能器D.压力计2.应用较广、性能较好,可以获得小流量的节流口形式为------A------A .针阀式或轴向三角槽式 B.偏心式或周向缝隙式 C.轴向三角槽式或周向缝隙式D.针阀式或偏心式3.调压和减压回路所采用的主要液压元件是-----B----A.换向阀和液控单向阀B.溢流阀和减压阀C.顺序阀和压力继电器D.单向阀和压力继电器4. ---C----管多用于两个相对运动部件之间的连接,还能吸收部分液压冲击。
A. 铜管B.钢管C.橡胶软管D.塑料管5.与节流阀相比较,调速阀的显著特点是( A )。
A.流量稳定性好;B.结构简单;成本C;调节范围大;D.最小压差的限制较小6.能输出恒功率的容积调速回路是-------B------A.变量泵—变量马达回路;B.定量泵—变量马达;C.变量泵—定量马达;D.目前还没有7.溢流阀的作用是配合油泵等溢出系统中多余的油液,使系统保持一定的---A----A.压力B.流量C.流向D.清洁度8.为保证压缩空气的质量,气缸和气马达前必须安装();气动仪表或气动逻辑元件前应安装()。
(B)(A)分水滤气器-油雾器-减压阀,分水滤气器-油雾器(B)分水滤气器-减压阀-油雾器, 分水滤气器-减压阀(C)减压阀-分水滤气器-油雾器,分水滤气器-油雾器(D)分水滤气器-减压阀,分水滤气器-油雾器-减压阀9.当环境温度较高时,宜选用粘度等级---B--的液压油A.较低B.较高C.都行D.都不行10.能将液压能转换为机械能的液压元件是----B-----A.液压泵B.液压缸C.单向阀D.溢流阀11.单作用叶片泵-------D-------A. 定子内表面近似腰圆形B.转子与定子中心的偏心距离可以改变,在重合时,可以获得稳定大流量C.可改变输油量,还可改变输油方向D.转子径向压力不平衡12.液压机床开动时,运动部件产生突然冲击的现象通常是------B-------A.正常现象,随后会自行消除;B.油液中混入了空气;C.液压缸的缓冲装置出故障D.系统其他部分有故障13.下列压力控制阀中,哪一种阀的出油口直接通向油箱-----C----A.顺序阀B.减压阀C.溢流阀D.压力继电器14.液体流经薄壁小孔的流量与孔口面积的()和小孔前后压力差的()成正比。
液压与气动技术300页PPT超全图文详解

液体静力学基础
静压力及其特性
静压力是液体在静止状态下受到的重力、外力和惯性力等作用而 产生的压力,具有方向性、大小与受力面积成正比等特性。
帕斯卡原理
在密闭容器内,施加于静止液体上的压强将以等值同时传到各点, 这就是帕斯卡原理。它是液压传动的基本原理之一。
液体静力学的应用
利用液体静力学原理可以设计液压缸、液压马达等执行元件,以及 液压系统中的压力控制阀等。
• 沿程压力损失:液体在管道内流动时,由于液体的内摩擦力和管道内壁的粗糙 度等因素的影响,使得液体的压力沿管道长度方向逐渐降低的现象称为沿程压 力损失。它是液压系统能量损失的主要部分之一。
• 局部压力损失:当液体流经管道的弯头、接头、突变截面等局部障碍时,由于 液流的惯性和粘性力的作用,使得液体的流动状态发生急剧变化并产生旋涡等 现象,从而造成液体的能量损失称为局部压力损失。它也是液压系缸
直线往复运动执行元件,具有结构简单、动作可靠、易于维 护等特点。
气马达
旋转运动执行元件,具有高转速、大扭矩、低噪音等优点。
气动控制元件功能及分类
01
方向控制阀
控制气流方向,实现执行元件 的换向或停止。
02
压力控制阀
调节和控制系统的压力,保持 压力稳定或限制最高压力。
03
新材料、新工艺在液压气动中应用前景
01
02
03
高性能复合材料
利用高性能复合材料制造 液压与气动元件,提高元 件的强度和耐磨性。
增材制造技术
应用增材制造技术,实现 液压与气动元件的快速定 制和生产。
表面处理技术
采用先进的表面处理技术 ,提高液压与气动元件的 耐腐蚀性和疲劳寿命。
THANKS
航空航天
液压与气动技术3篇

液压与气动技术
第一篇:液压技术的基本原理与应用
液压技术是指利用液体的流动产生压力、传递能量以及
完成各种工艺过程的技术。
作为一种高效可靠的动力传输方式,液压技术在工业生产中得到了广泛应用。
液压系统主要由液压马达、液压泵、液压阀等组成。
其
工作原理基于流体静力学和流体动力学的基本原理,通过控制压力和流量来调节和控制液压系统的各项参数。
液压技术具有以下特点:
1. 高效性:液压系统压力高达1000 bar以上,传递功
率高,输出功率大。
2. 灵活性:液压系统可进行精细调节,流量和压力可实
现无级调节,并可选用多种类型的液压元件,满足不同的工作要求。
3. 操作简便:液压系统自动化程度高,只需调节液压阀
或操作控制杆,即可实现液压系统的各项参数的控制。
液压技术应用广泛,下面介绍几个常见的应用领域:
1. 工程机械:挖掘机、装载机、铲车等。
2. 机床:数控机床、金属加工机床。
3. 飞机、船舶、汽车:制动系统、操纵系统。
在使用液压技术过程中,需注意以下几点:
1. 液压系统运行前应先进行系统检测和调试,以及排除
故障。
2. 液压油应定期更换,以保证系统正常运行。
3. 液压元件的使用应符合规定,以免出现故障。
因此,在实际应用过程中,保持液压系统的正常运行状态需要科学的维修和保养。
这样才能保证液压系统的高效可靠工作,提高生产效率和产品质量。
液压与气动定义等

1、液压与气动传动:是研究以有压流体(压力油或压缩空气)为能源介质,来实现各种机械的传动和自动控制的科。
2、液压传动的定义: 以液体为介质,依靠流动着液体的压力能来传递动力的传动称为液压传动。
3、液压传动的两个工作特性是:压力决定于负载;速度决定于流量。
4、液压与气压传动系统的五大组成部分及其作用①能源装置:把机械能转换为流体的压力能的装置,最常见液压泵或空气压缩机。
②执行装置:它是将流体的压力能转换成机械能的装置,一般情况下,它可以是做直线运动的液(气)压缸,也可以是做回转运动的液(气)压马达。
③控制调节装置:它是控制液(气)压系统中流体的流量、压力和流动方向的装置。
如溢流阀、节流阀、换向阀等。
这些元件的不同组合组成了能完成不同功能的液(气)压系统。
④辅助装置:这是指除上述三项以外的其他装置,如油箱、过滤器、空气过滤器、油雾器、蓄能器等。
对保证系统可靠、稳定、持久的工作有重大作用。
⑤传动介质:传递能量的流体,即液压油或压缩空气。
5、可压缩性:流体受压力作用其体积会减小的性质称为压缩性。
用体积压缩系数 来表示单位压力下体积的相对变化量,压缩系数的倒数称为体积弹性模量,用符号K来表示:1)温度增加,K 值减小;2)压力增大,K 值增大;3)如混有气泡时,K 值大大减小。
6、油的粘度随温度的升高而降低(影响较大),随压力的增加而增加(变化不大)在机床液压传动中,液压油有三方面的作用:1.传递动力的介质2.运动件间的润滑剂3.散热7、选择液压油:机床液压系统中,冬季选用10#机械油,夏季采用20#机械油。
8、液体静压力有两个重要性质:(1)液体静压力的方向总是作用面的内法线方向。
(2)在静止液体中任意一点的静压力在各个方向上均相等。
9、理想液体、定常流动和一维二维流动定义:(1)理想液体:是指一种假想的没有粘性,不可压缩的液体;(2)定常流动:是指液体运动参数仅是空间坐标的函数,不随时间变化,即液体流动时,液体中任何一点的压力、速度和密度都不随时间而变化;(3)一维二维流动:(一维:流动参量是一个坐标的函数的流动)当液体整个的作线形流动时,称为一维流动;当作平面或空间流动时,称为二维或三维流动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 安全可靠,不需要防火防爆问题,能在高温,辐射, 潮湿,灰尘等环境中工作;
• 气压传动反应迅速; • 气压元件结构简单,易加工,使用寿命长,维护方
便,管路不容易堵塞,介质不存在变质更换等问题;
气压传动的缺点
• 空气可压缩性大,因此气动系统动作稳定性差, 负载变化时对工作速度的影响大;
• 气动系统压力低(一般低于1.5Mpa),不易做 大输出力(20-30KN);
控制元件 控制气体的压力、流 量及流动方向的元件, 如压力阀、流量阀、 方向阀等。
辅助元件 使压缩空气净化、 润滑、消声以及用 于元器件的连接等, 如过滤器、油雾器、 消声器等。
气压传动的优点
• 用空气做介质,取之不尽,来源方便,用后直接排 放,不污染环境,不需要回气管路因此管路不复杂;
• 空气粘度小,管路流动能量损耗小,适合集中供气 远距离输送;
液体称为工作介质, 一般为矿物油,它 的作用和机械传动 中的皮带、链条和 齿轮等传动元件相
类似。
• 磨床工作台
液压介质通过管道经节流 阀和换向阀进入液压缸左 腔,推动活塞带动工作台 右移,液压缸右腔排出的 液压介质经换向阀流回油
箱。
换向阀换向 之后液压介 质进入液压 缸右腔,使 活塞左移, 推动工作台 反向移动。
• 不足:
• 1、液压传动是以液压油为工作介质,在相对运动 的表面间很难避免漏油等因素,同时油液又是可以 压缩的,因此使得液压传动不能保证严格的传动比。
• 2、液压传动对油温的变化比较敏感,温度变化时, 液体黏度变化,引起运动特性的变化,使得工作的 稳定性受到影响,所以它不宜在温度变化很大的环 境条件下工作。
• 排气噪音大。
液压传动的基本知识
• 原理
• 液压传动是用液体作为工作介质来传递能量和进行控制的传动方式。
利用液压泵将 原动机的机械 能转换为液体 的压力能,通 过液体压力能 的变化来传递
能量。
经过各种控制阀和管路的传递,借 助于液压执行元件(液压缸或马达) 把液体压力能转换为机械能,从而 驱动工作机构,实现直线往复运动。
• 1、压力P 单位面积的液体表面上所受的作用力 pa
•
即
• F——作用在液体表面的外力 N;
• A——液体表面的承压面积 m2。
• 2、流量与平均速度
• 流量qv 单位时间内,流过某一截面处流体的体积 m3/s
•即
• 平均速度v 液体单位时间内平均移动的距离 m/s •即
• 3、功率
• 功率P 液压元件单位时间所做的功
气压传动与液压传动
气动与液压
工作执行机构(元 件)可直接获得直 线运动,不必经过 复杂的变向、变速 机构,且能传递较 大的功率
气压传动与液压传 动是以气体或液体 作介质来传递运动
和动力
• 气压传动、液压传动的应用很广,在许多场合可替代 机械传动
• 气压传动的基本知识
• 工作原理 以气动薄木剪切机为例
系统提供压力 油。
将液压能转换为机械能而对外 做功,液压缸可驱动工作机构实 现往复直线运动(或摆动),液压马 达可完成回转运动。
控制和调节液压系统中液体 的压力、流量和方向等,以 保证执行元件能按照人们预 期的要求进行工作。
即液压油,实现运动和动力传递 对液压元件中相互运动的零件起 润滑作用。
• 液压传动的基本参数
上章回顾
• 机械传动
• 利用机械方式(构件的回转运动)来传递动力和运动
• 类型:
• 1、摩擦传动 靠构件间的摩擦力传递动力,如带传动。
• 适合轴间距较大的传动场合,过载打滑,能起到缓冲和保护传动装置的作用。 但这种传动一般不能用于大功率的场合,也不能保证准确的传动比。
• 2、啮合传动 靠主动件与从动件的直接啮合或借助中间件啮合传递动力或
传递动力的系 统是将压缩气 体经由管道和 控制阀输送给 气动执行元件, 把压缩气体的 压力能转换为 机械能而作功。
气压传动是以压缩气体 为工作介质,靠气体的 压力传递动力的流体传
动
气动系统组成
执行元件 将压力能转换成 机械能的装置, 如气缸、气马达 等。
气源装置 获得压缩空气 的装置,如空 气压缩机、储 气罐等。
液压系统的压力可通过 溢流阀调节。
电动机带动液压泵从油箱吸 油,液压泵把电动机的机械
能转换为液体的压力能。
改变节流阀 的开口可使系统正常 工作并便于监 测控制;包括 油箱、滤油器、 管路及接头、 冷却器、压力 表等。
将机械能转换
为液体的压力 动能(表现为压 力、流量),其 作用是为液压
运动,包括链传动、齿轮传动、蜗杆传动等。
• 啮合传动能够用于大功率的场合,传动比准确,但一般要求较高的制造精度 和安装精度。
• 应用
• 机械传动在机械工程中应用非常广泛
• 工作失效、安装与维护
• 齿轮传动 失效形式:齿面点蚀、胶合、磨损和轮齿折断
•
齿轮装配 齿轮传动的润滑
气动机 械抓手
气动公交车门
•
即 P=Fv=pqv
液压传动的特点
1、可在大范围内实现无级调速。借助阀或变量泵、变量马达,可
以实现无级调速,调速范围可达到1:2000,并可在液压装置运 行的过程中进行调速。 2、液压传动装置的重量轻、结构紧凑、惯性小。 3、液压元件已实现了标准化、系列化和通用化,便于设计、制造 和推广使用。 4、液压传动容易实现自动化。借助于各种控制阀,特别是采用液 压控制和电气控制结合使用时,能很容易地实现复杂的自动工作 循环,而且可以实现遥控。