第二章平行线与相交线知识点归纳

合集下载

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结在几何学中,相交线和平行线是基础概念。

它们在理解和解决几何问题时起着重要的作用。

本文将对相交线和平行线的概念、性质以及应用进行总结。

一、相交线的概念及性质相交线是指在同一个平面内交于一点或多个点的两条或多条线段。

我们来看一下相交线的性质。

1. 相交线的定义:两条线段在平面内交于一点或多个点。

2. 相交线的种类:根据其相交方式,相交线可以分为垂直相交线和斜交线两种。

垂直相交线是指交于一点且互相垂直的两条线段;斜交线是指交于一点但不互相垂直的两条线段。

3. 相交线上的角:相交线会形成一些特殊的角,主要包括相邻角、对顶角、内错角和外错角。

相邻角是指在同一侧的相交线上,且共享一个端点的两个角;对顶角是指在相交线的对立面上,且互相垂直的两个角;内错角是指在同一侧的相交线上,且不相邻的两个角;外错角是指在同一侧的相交线上,且与内错角互补的两个角。

4. 直线的平分线:两条相交直线的交点处的角被称为直线的平分线。

平分线将原角分成两个相等的角。

二、平行线的概念及性质平行线是指在同一平面内,永不相交的两条直线。

接下来我们来了解一下平行线的性质。

1. 平行线的定义:在同一平面内,两条直线如果不相交,则它们是平行线。

2. 平行线的判定:常用方法有欧几里得假设、对角线法、平行线法则等。

3. 平行线的性质:平行线之间相互平行;平行线与同一条直线的交线上的对应角相等;平行线与同一平行线的交线上的对应角相等;平行线与平行线之间的距离相等。

4. 平行线的应用:平行线在实际问题中有着广泛的应用,比如在测量、建筑、地理等领域。

通过平行线的性质,我们可以解决许多与位置、角度、距离等有关的问题。

三、相交线与平行线的关系相交线和平行线之间有着紧密的联系,它们的性质可以相互应用。

1. 垂直相交线与平行线:如果两条平行线被一条垂直相交线所截,那么所截得的对应角互为互补角。

2. 斜交线与平行线:如果两条平行线被一条斜交线所截,那么所截得的对应角互为相等角或互为互补角。

相交线与平行线知识点整理

相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中的基本概念,是研究点、直线、平面之间的关系的重要内容。

下面是关于相交线和平行线的详细知识整理。

一、相交线的定义和性质:1.相交线的定义:当两条线或两条线段在空间中共有一个交点时,我们称这两条线或线段为相交的。

2.相交线的性质:(1)两条相交线必有且只有一个交点。

(2)相交线的交点在两条相交线上。

(3)相交线可以分割平面为两个部分。

(4)相交线可以交换位置,即线的交点不变。

(5)相交线的角度和弧度可以相互转化。

二、平行线的定义和性质:1.平行线的定义:在同一个平面上,两条直线如果没有交点,则称这两条直线为平行线。

2.平行线的性质:(1)平行线永不相交。

(2)平行线的夹角为0度。

(3)平行线在任何一点上的垂直线也是平行线。

(4)如果两条直线分别与一条直线相交,且对应的内角或同旁内角互补,则这两条直线是平行线。

(5)平行线与一个截线相交,对应角相等。

三、相交线与平行线之间的关系:1.两条相交线切割出的平行线性质:(1)两条相交线切割出的平行线长度相等。

(2)两条相交线切割出的平行线夹角相等。

(3)两条相交线切割出的平行线互相垂直。

2.平行线夹角关系:(1)两条平行线被一条截线切割,对应角相等。

(2)两条平行线被两条截线交叉切割,对应角互补。

四、平行线的判断方法:1.距离判定法:两条直线上一点到另一直线上的距离相等,则这两条直线平行。

2.角度判定法:如果两条直线上的任意一组对应角相等,则这两条直线平行。

3.线段比较法:两条平行线上两对相交线段的比值相等。

五、相交线和平行线的应用:1.在建筑设计中,平行线用于调整房屋结构的直角度量。

2.在交通规划中,相交线和平行线用于规划道路的交叉口和分隔带。

3.在地理学中,相交线和平行线用于绘制地图上的经纬线和等高线。

4.在数学教学中,相交线和平行线可以帮助学生理解几何概念,并解决相关问题。

总结:相交线和平行线是几何学中的基本概念,对于点、直线、平面的研究具有重要意义。

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII相交线与平行线考点及题型总结第一节相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。

(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。

1、经过直线外一点,作直线垂线,有且只有一条;2、点到直线上各点的距离中,垂线段最短。

(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138 、B 、都是10C 、42138 、或4210 、D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中两个重要的概念和性质。

下面是对相交线和平行线的知识点的总结。

一、相交线的性质:1.相交线的定义:在平面上,两条不重合的线段(或直线)在某一点相交,那么称这两条线段(或直线)为相交线。

2.相交线的分类:-相交线:两条线段在一点相交,但不共线。

-交叉线:两条线段在两个不同的点处相交。

-夹角线:两条直线之间形成的夹角称为夹角线。

3.相交线的性质:-相交线的交点是两条线段(或直线)共同的点,也是相交线上所有点的唯一共同点。

-相交线上的点在两条线段(或直线)上都有,而且在相交点上的两条线段(或直线)上都有。

-相交线的交点可以分为内点、外点和边上点。

4.相交线的判定:-直观法:两条线段(或直线)在平面上画出来,如果有交点,则存在相交线。

-代数法:通过方程组来求解两条线段(或直线)的交点,如果存在实数解,则存在相交线。

二、平行线的性质:1.平行线的定义:两条线段(或直线)在平面上没有交点,则称这两条线段(或直线)为平行线。

2.平行线的判定:-直观法:通过观察两条线段(或直线)之间是否平行来判断。

-几何法:利用两条平行线的性质,如平行线与平面关系、等角定理、相等短整数、全等三角形等来判定平行线。

-代数法:通过线段(或直线)的方程来计算斜率,如果两条线段(或直线)的斜率相等,则它们是平行的。

3.平行线的性质:-平行线的斜率相等。

-平行线的任意两条直线之间的夹角相等。

-平行线与平行线之间的距离相等。

-平行线与平行线之间可以通过平移相互转化。

4.平行线的性质的应用:-平行线的性质可以用于解决几何问题,如证明两个线段(或直线)平行、证明三角形相似等。

-平行线的性质还可以用于解决实际问题,如测量两条平行线之间的距离、设计平行线街道等。

总结:相交线和平行线是几何学中的重要概念和性质。

相交线的性质包括相交线的定义、分类和性质等,而平行线的性质包括平行线的定义、判定和性质等。

相交线和平行线的性质可以应用于解决几何问题和实际问题。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(4)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.∠1和∠3,∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角的性质:对顶角相等.(如图∠1=∠3,∠2=∠4)(7)邻补角的性质:邻补角互补,即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的。

二、垂线(1)、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,OD⊥AB,垂足为O(2)、垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以。

(3)、垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(4)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(如图,PA,PB,PC等线段中,PO最短)(4)、点到直线的距离(如图,PO的长)(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线1、在同一平面内,两条直线的位置关系有两种:平行和相交.(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.(3)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如图,过点P只有直线a 与直线 b平行(4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(5)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如图,如果a∥c,b∥c,那么a∥c2、同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.例如∠3和∠5,∠4和∠6.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角。

相交线与平行线的知识点

相交线与平行线的知识点

相交线与平行线的知识点一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即它们的和为180°。

例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂直。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线。

1. 平行线的定义。

- 在同一平面内,不相交的两条直线叫做平行线。

用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。

2. 平行公理及推论。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥b,b∥c,那么a∥c。

3. 平行线的判定。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。

4. 平行线的性质。

- 两直线平行,同位角相等。

若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。

新北师大版七年级数学下册第二章平行线与相交线知识点梳理汇总

新北师大版七年级数学下册第二章平行线与相交线知识点梳理汇总
本文档旨在对新北师大版七年级数学下册第二章平行线与相交
线的知识点进行梳理和汇总。

1. 定义与性质
- 平行线的定义:如果两条直线在同一个平面内,且它们不相交,那么我们称这两条直线为平行线。

- 平行线的性质:
- 平行线上的任意一对对应角相等。

- 平行线上的内错角、同旁内角、同旁外角相等。

2. 平行线的判定
- 相关定理:
- 如果两条直线被第三条直线截断,并且对应的内错角相等或
同旁内角互补,则这两条直线平行。

- 如果两条直线被第三条直线截断,并且对应的同旁外角相等,则这两条直线平行。

3. 直线与平面的相交关系
- 直线与平面的相交情况:
- 直线与平面相交于一点。

- 直线与平面相交于一条直线。

4. 平面与平面的相交关系
- 平面与平面的相交情况:
- 两平面交于一条直线。

- 两平面平行。

- 两平面重合。

5. 平行线与平面的相交关系
- 平行线与平面的相交情况:
- 平行线与平面相交于一点。

- 平行线与平面相交于一条直线。

以上是新北师大版七年级数学下册第二章平行线与相交线的知识点梳理和汇总。

通过研究这些知识,可以帮助同学们更好地理解和应用平行线与相交线的相关概念和定理。

参考资料:
- 新北师大版七年级数学下册教材。

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。

平行线的特点是它们的斜率相等,且不相交。

若两条直线平行,则可表示为l,m。

平行线的性质:1.平行线具有等于90°的斜角。

2.平行线与同一条直线垂直的直线也是平行线。

这一性质被称为垂直平行线定理。

3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。

4.平行线的反身性质:如果l,m,则m,l。

二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。

2.点斜式法:通过两点确定的直线斜率相等来判定。

3.斜率法:两直线斜率相等,则平行。

4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。

三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。

相交线两两相交于一点,称之为交点。

相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。

2.两条相交线总有一对互为垂直的直线。

3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。

四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。

2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。

3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。

4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。

五、应用举例1.在平行四边形中,对角线互相平分。

2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。

3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。

4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。

在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。

第二章 相交线与平行线

第二章相交线与平行线第1节两直线的位置关系∙知识点聚焦1.相交线与平行线(1)相交线:在同一平面内如果两条直线只有一个公共点时,我们称这两条直线相交.∙(2)平行线:在同一平面内,永不相交的两条直线叫做平行线.注:(1)在同一平面内,两条直线的位置关系有相交和平行两种.(2)两条直线相交,只有一个交点.2.对顶角与邻补角(1)对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的;两边互为反向延长线,这两个角叫作对顶角,对顶角相等.注:相等的角不一定是邻补角.(2)邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角,邻补角互补.注:互补的角不一定是邻补角.3.余角和补角(1)余角①定义:如果两个角的和是o90,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.②性质:同角或等角的余角相等.(2)补角180那么称这两个角“互为补角”,简称“互补”,①定义:如果两个角的和是o也可以说其中一个角是另一个角的补角.②性质:同角或等角的补角相等.4.垂线(1)定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足.(2)性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上的所有点的连线中,垂线段最短.简称垂线段最短.(3)点到直线的距离:直线外一点到这条到这条直线的垂线段的长度,叫作点到直线的距离.注:距离是指线段的长度,是一个数量;线段是图形,它们之间不能等同. (4)垂线的画法一靠:用三角尺一条直角边靠在已知直线上. 二移:移到三角尺使已知点落在它的另一条直角边上. 三画:沿着这条直角画线.注:①画一条线段或射线的垂线,就是画它们所在直线的垂线.②过一点作线段的垂线,垂足可以线段上,也可以在线段的延长线上.典型例题 例1.如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?分析:⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角.12对邻补角.ABC DEF例2.如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.分析:⑴∵OE 、OF 平分∠BOC 、∠AOC ∴,21BOC EOC ∠=∠,21AOC FOC ∠=∠∴)(212121AOC BOC AOC BOC FOC EOC EOF ∠+∠=∠+∠=∠+∠=∠又∵︒=∠+∠180AOC BOC ∴︒=︒⨯=∠9018021EOF⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.例3.(1)已知,如图,直线AB 、CD 交于点O ,且o BOC AOD 120=∠+∠,求AOC ∠的度数.(2)如图,AB 、CD 、EF 交于点O ,o AOE 25=∠,o DOF 45=∠,求AOD ∠的对顶角的度数.(3)如图,AB 、CD 交于点O ,OE 平分AOD ∠,o BOD BOC 30-∠=∠,求CO E ∠的度数.分析:(1)由对顶角相等可得o BOC AOD 60=∠=∠,从而可得o o o A O C 12060180=-=∠.CEF(2)由对顶角相等可知o DOF EOC 45=∠=∠,从而可得o o o o A O D 1102545180=--=∠.(3)o BOD COB 180=∠+∠,o BOD BOC 30-∠=∠,则o C O B 75=∠,o BOD 105=∠,o COB AOD 75=∠=∠,OE 平分AOD ∠,则o AOE 5.37=∠, o BOD AOC 105=∠=∠,则o o o AOE COA COE 5.1425.37105=+=∠+∠=∠.例 4.已知,如图所示直线AB 、CD 、EF 交于点O ,BOD APF ∠=∠2,AOC COE ∠=∠23,求COE ∠的度数.分析:方程思想,将图中的角用未知数表示,找到等量关系,设方程,一般设较小的为x .例5.如图,OE 与CD 相交与点O ,且21,90∠=∠︒=∠=∠COE DOE .(1)BOE AOE ∠∠与有什么关系?为什么? (2)BOC AOD ∠∠与有什么关系?为什么? 分析:(1)BOE AOE ∠∠与相等.因为21,902,901∠=∠︒=∠+∠︒=∠+∠且BOE AOE ,所以BOE AOE ∠=∠.(2)BOC AOD ∠∠与相等,21,1802,1801∠=∠︒=∠+∠︒=∠+∠且BOC AOD ,所以BOC AOD ∠=∠.例6.(1)如图,已知o ACB 90=∠,AB CD ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长;线段DB 的长为点 到直线 的距离.AE CB OD12(2)如图,在直角三角形ABC 中,o C 90=∠,c AB =,b AC =,a BC =,则AB BC AC BC AB AB AC -++-+-= .分析:(1)垂线的性质.(2)垂线段最短+两点间线段最短.例7.探索规律(1)2条直线相交于一点,有多少对不同的对顶角? (2)3条直线相交于一点,有多少对不同的对顶角? (3)4条直线相交于一点,有多少对不同的对顶角?(4)n 条直线相交于一点,有多少对不同的对顶角?分析:两条直线相交时可出现两对不同的对顶角,故找对顶角的对数其实质就是找有多少对不同的直线相交.课堂练习1.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面没有公共点的两条射线平行2.下面四个图形中,∠1与∠2是对顶角的图形有( )A.0B.1C.2D.33.如图所示,∠1的邻补角是( )A .BOC ∠B .BOE ∠和AOF ∠C .AOF ∠D .BOE ∠和AOC ∠4.下列各图中,∠1与∠2互为余角的是( )A. B .C .D .5.如图,直线1l 与2l 相交于点O ,1l OM ⊥,若o 44=∠α,则=∠β等于( )A .o 56B .o 46C .o 45D .o 446.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( )个.A .0B .1C .2D .37.如图,已知直线AB 与CD 交于点O ,ON 平分DOB ∠,若o BOC 110=∠,则AON ∠的度数为___度.8.如图所示,o ACB 90=∠,AB CD ⊥,BC DE ⊥,①钝角与锐角互补; ②α∠的余角是α∠-090; ③β∠的补角是β∠-o 180;④若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余.10.已知:如图,三条直线AB ,CD EF 相交于O ,且EF CD ⊥,11.已知,所示,o ACB 90=∠,cm BC 5=,cm AC 12=,12.通过画图,寻找对顶角和邻补角(不含平角):(1)若2条直线相交于同一点,则有 对对顶角, 对邻补角. (2)若3条直线相交于同一点,则有 对对顶角, 对邻补角. (3)若4条直线相交于同一点,则有 对对顶角, 对邻补角.(4)通过(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于同一点,则可形成 对对顶角, 对邻补角.13.如图,AB ,CD ,EF 相交于点O ,如果o AOC 65=∠,o DOF 50=∠.(1)求BOE ∠的度数;(2)计算AOF ∠的度数,发现射线OA 有什么特殊性吗?14.如图,AOB 是一条直线,o EOC BOD AOD 90=∠==∠.1:3:=∠∠AOE BOD , (1)求COD ∠的度数. (2)图中有哪几对角互为余角? (3)图中有哪几对角互为补角?15.将一张长方形纸片按图中的方式折叠,BC ,BD 为折痕,求CBD ∠的大小.16.已知:如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数.17.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.18.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .CDBAEO19.已知:直线AB 与直线CD 相交于点O ,o BOD 45=∠.(1)如图1,若AB EO ⊥,求DOE ∠的度数; (2)如图2,若FO 平分AOC ∠,求DOF ∠的度数.20.如图所示,已知直线AB 、CD 交于点0,x =1,1-=y 是方程34-=+y ax 的解,也是方程a ay bx 21+=-的解,且a b AOD AOC ::=∠∠,AB EO ⊥. (1)求EOC ∠的度数.(2)若射线OM 从OC 出发,绕点O 以s o /1的速度顺时针转动,射线ON 从OD 出发,绕点O 以s o /2的速度逆时针第一次转动到射线OE 停止,当ON 停止时,OM 也随之停止.在转动过程中,设运动时间为t ,当t 为何值时,ON OM ⊥. (3)在(2)的条件下,当ON 运动到EOC ∠内部时,下列结论:①BON EOM ∠-∠2不变;②BON EOM ∠+∠2不变,其中只有一个是正确的,请选择并证明.第2节 探索直线平行的条件∙知识点聚焦1.同位角具有1∠和5∠这样位置关系的角称为同位角, 图中的同位角还有2∠和6∠,3∠和7∠,4∠和8∠ 2.内错角具有3∠和5∠这样位置关系的角称为内错角, 图中的内错角还有4∠和6∠ 3.同旁内角具有4∠和5∠这样位置关系的角称为同旁内角,图中的同旁内角还有3∠和6∠ 注:(1)同位角、内错角、同旁内角是成对出现的,两直线被第三条直线所截形成的8个角中有4对同位角,2对内错角,2对同旁内角.(2)同位角、内错角、同旁内角各自的位置关系:同位角是“同旁同侧”,内错角是“内部异侧”,同旁内角“内部同侧” 4.两条直线平行条件(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等.两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称:内错角相等.两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称:同旁内角互补.两直线平行. (4)平行于同一条直线的两条直线平行.(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 5.平行线的性质:过直线外一点有且只有一条直线与这条直线平行41 2 3 5 876DCBEAF例1:如图所示:⑴图中∠1与∠2是哪两条直线被哪一条直线所截形成的?⑵图中∠1与哪个角是同位角?它们是哪两条直线被哪一条直线所截形成的? ⑶∠3与∠C 是什么位置关系的角?它们是哪两条直线被哪一条直线所截形成的?分析:⑴∠1与∠2是直线AB 、DE 被直线EF 所截形成的;⑵∠1与∠B 是同位角,它们是直线EF 、BC 被直线AB 所截形成的; ⑶∠3与∠C 是同旁内角,它们是直线AC 、DE 被直线BC 所截形成的.例2: 如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:分析:(1)∠1和∠2:是AB 、EF 被直线CD 所截而得到的,一组同位角(2)∠1和∠3:是AB 、CD 被直线CD 所截而得到的,一对内错角(3)∠1和∠6:是AB 、CD 被直线CD 所截而得到的,一对同旁内角(4)∠2和∠6:是EF 、CD 被直线AB 所截而得到的,一对同位角 (5)∠2和∠4:是EF 、AB 被直线CD 所截而得到的,一对同旁内角 (6)∠3和∠5:是EF 、CD 被直线AB 所截而得到的,一对内错角 (7)∠3和∠4:是AB 、CD 被直线EF 所截而得到的,一对同旁内角 例3:如图,根据下列条件,可推得哪两条直线平行?并说明理由. ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°; ⑶∠ACD =∠BAC ;3CFEBAD1 423 65ABCDO分析: ⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.例4: 如图,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.分析:如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°课堂练习01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( ) A .∠AMF B .∠BMF C .∠ENC D .∠ENDl 1l 2l 3 l 4l 5l 6图⑴l 1l 2 l 3l 4l 5l 6图⑵A E BCF DABC D FEMNα第1题图 第2题图ABDC第4题图03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( ) ①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD , ∠1=∠2,那么直线AB 与CD 的位置关系如何?ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A C D EB A BC DEF 1 213.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知)∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 .使AD ∥BC .15.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点.1 23 AB C DE F第13题图 AB C D E F第14题图GFEDCB A第3节 平行线的性质∙知识点聚焦1. 平行线的性质(1)两条平行线被第三条直线所截,同位角相等.简称为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等.简称为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.简称为:两直线平行,同旁内角互补.2.平行线的判定与性质的区别与联系 (1)直线平行的条件同位角相等;内错角相等;同旁内角互补;两直线平行; (2)平行线的性质两直线平行;同位角相等;内错角相等;同旁内角互补;例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么? (2) 从︒=∠1101可以知道3∠是多少度吗?为什么? (3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 分析:(1)︒=∠1102( 两直线平行,内错角相等.)(2)︒=∠1103 ( 两直线平行,同位角相等.) (4)︒=∠704 (两直线平行,同旁内角互补.)例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么? 分析:因为CF AE //,所以FGB A ∠=∠因为CD AB //,所以C FGB ∠=∠ 所以︒=∠39C例3 如图,AB ∥CD ,AE 、DF 分别是∠BAD 、∠CDA 的角平分线,AE 与DF 平行吗?•为什么?分析:平行. ∵AB ∥CD ,∴∠BAD=∠CDA (两直线平行,内错角相等). ∵AE 、DF 分别是∠BAD 、∠CDA 的平分线,∴∠EAD=12∠BAD ,∠FDA=12∠CDA .∴∠EAD=∠FDA .∴AE ∥DF (内错角相等,两直线平行).例4 如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .分析:∵∠AMB=∠DMN ,又∠ENF=∠AMB ,∴∠DMN=∠ENF , ∴BD ∥CE .∴∠BDE+∠DEC=180°.又∠BDE=∠BCN ,∴∠BCN+∠CED=180°, ∴BC ∥DE ,∴∠CAF=∠AFD .例5 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A 是120°,第二次拐的角B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,问∠C 是多少度?说明你的理由.分析:∠C=150°.理由:如答图,过点B 作BE ∥AD ,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE ∥AD ,CF ∥AD ,∴BE ∥CF (平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补). ∴∠C=180°-∠CBE=180°-30°=150°.西B 30°A北东南例6 (1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.分析:(1)如答图5-3-2,过点C 作CF ∥AB ,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行).∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.理由:如答图5-3-2过点C 作CF ∥AB ,得∠B+∠1=180°(两直线平行,•同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.点拨:辅助线CF 是联系AB 与DE 的纽带.课堂练习01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等 B.同位角相等 C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种 B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.150°120°DBCE湖4321ABEFC D4P231A BEFC D12.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.13.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?14.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.第4节尺规作图知识点聚焦1.“尺规作图”的含义(1)在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.尺规作图在操作过程中不允许度量.(2)基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.2.熟练掌握尺规作图题的规范语言(1)用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .3.了解尺规作图题的一般步骤(1)已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1. 例2.例3. 典型例题如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于b a -2.解:(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.求作一个角等于已知角∠MON .解:(1)作射线11M O ;(2)以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.如下图,已知α∠及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .∙作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.已知∠AOB ,求作∠AOB 的平分线OC .解(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点;(3)作射线OC ,则OC 为∠AOB 的平分线.如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析 依据角平分线的性质可以知道,蓝方指挥部必在A 区内两条路所夹角的平分线上,然后由蓝方指挥部距B 点的距离,依据比例尺,计算出图上的距离为3.5cm ,就可以确定出蓝方指挥部的位置.解 如下图,图中C 点就是蓝方指挥部的位置.例4. 例5.课堂练习1.如图,已知∠A 、∠B ,求作一个角,使它等于B A ∠-∠.2.如图作△ABC ,使得BC=a 、AC=b 、AB=c3.如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h4.如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章平行线与相交线复习学案
备课人:王生明审核领导:
知识要点
一.余角、补角、对顶角
1,余角:如果两个角的和是直角,那么称这两个角互为余角.
2,补角:如果两个角的和是平角,那么称这两个角互为补角.
3,对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.
4,互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.
5,互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.
②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.
6,对顶角的性质:对顶角相等.
二.同位角、内错角、同旁内角的认识及平行线的性质
7,同一平面内两条直线的位置关系是:相交或平行.
8,“三线八角”的识别:
三线八角指的是两条直线被第三条直线所截而成的八个角.
正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.
三.平行线的性质与判定
9,平行线的定义:在同一平面内,不相交的两条直线是平行线.
10,平行线的性质:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
11,过直线外一点有且只有一条直线和已知直线平行.
12,两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.
13,如果两条直线都与第三条直线平行,那么这两条直线互相平行.
14,平行线的判定
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
如果内错角相等.那么这两条直线平行;
如果同旁内角互补,那么这两条直线平行.
这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角.
15,常见的几种两条直线平行的结论:
(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;
(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行.
四.尺规作图
16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图.用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角.利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差.
考点例析: 题型一 互余与互补
例 1 一个角的余角比它的补角的1
2少20°.则这个角为( )
A.30°
B.40°
C.60°
D.75°
分析 若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解.解 设这个角为x ,
则这个角的余角是90°-x ,补角是180°-x .则根据题意,得1
2(180°-x )-(90°-x )=20°.解得:x =40°.故应选B .说明 处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下不要引进未知数,构造方程求解.
题型二 平行线的性质与判定
例2 已知:如图1,l 1∥l 2,∠1=50°,则∠2的度数是( )
A.135°
B.130°
C.50°
D.40°
分析 要求∠2的度数,由l 1∥l 2可知∠1+∠2=180°,于是由∠1=50°,即可求解.解 因为l 1∥l 2,所以∠1+∠2=180°,又因为∠1=50°,所以∠2=180°-∠1=180°-50°=130°.故应选B .说明 本题是运用两条直线平行,同旁内角互补求解.
例3 如图2,已知直线l 1∥l 2,∠1=40°,那么∠2= 度.
分析 如图2,要求∠2的大小,只要能求出∠3,此时由直线l 1∥l 2,得∠3=∠1即可求解.解 因为l 1∥l 2,∠1=40°,所以∠1=∠3=40°.又因为∠2=∠3,所以∠2=40°.故应填上40°.说明 本题在求解过程中运用了两条直线平行,同位角相等求解.
例4 如图3,已知AB ∥CD ,∠1=30°,∠2=90°,则∠3等于( )
A.60°
B.50°
C.40°
D.30°
分析 要求∠3的大小,为了能充分运用已知条件,可以过∠2的顶点作EF ∥AB ,由有∠1=∠AEF ,∠3=∠CEF ,再由∠1=30°,∠2=90°求解.解 如图3,过∠2的顶点作EF ∥AB .所以∠1=∠AEF ,又因为AB ∥CD ,所以EF ∥CD ,所以∠3=∠CEF ,而∠1=30°,∠2=90°,所以∠3=90°-30°=60°.故应选A .说明 本题在求解时连续两次运用了两条直线平行,内错角相等求解.
例5如图4,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于( )
A.36°
B.54°
C.72°
D.108°
分析 要求∠EGF 的大小,由于AB ∥CD ,则有∠BEF +∠EFG =180°,∠EGF =∠BEG ,而EG 平分∠BEF ,∠EFG =72°,所以可以求得∠EGF =54°.解 因为AB ∥CD ,所以∠BEF +∠EFG =180°,∠EGF =∠BEG ,又因为EG 平分∠BEF ,∠EFG =72°,所以∠BEG =∠FEG =54°.故应选B .说明 求解有关平行线中的角度问题,只要能熟练掌握平行线的有关知识,灵活运用对顶角、角平分线等知识就能简洁获解.
图4
B D G
F C A E 图2 图1 F E
题型三 尺规作图
例6 已知角α和线段c 如图5所示,求作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,要求仅用直尺和圆规作
图,写出作法,并保留作图痕迹.
分析 要作等腰三角形ABC ,使其底角∠B =α,腰长AB =c ,可以先作出底角∠B =α,再在底角的一边截取BA =c ,然后以点A 为圆心,线段c 为半径作弧交BP 于点C ,即得.作法(1)作射线BP ,再作∠PBQ =∠α;(2)在射线BQ 上截取BA =c ;(3)以点A 为圆心,线段c 为半径作弧交BP 于点C ;(4)连接AC .则△ABC 为所求.如图6.
例7 如图7,已知∠AOB 和射线O ′B ′,用尺规作图法作∠A ′O ′B ′=∠AOB (要求保留作图痕迹).
分析 只要再过点O ′作一条射线O ′A ′,使得∠A ′O ′B ′=∠AOB 即可.
作法
(1)以O 为圆心,任意长为半径,画弧,交OA 、OB 于点C 、D ;
(2)以O ′为圆心,同样长为半径画弧,交O ′B ′于点D ′;
(3)以D ′为圆心,CD 长为半径画弧与前弧交于点C ′;
(4)过点O ′C ′作一条射线O ′A ′.如图7中的∠A ′O ′B ′即为所求作.说明 在实际答题时,根据题目的要求只要保留作图的痕迹即可了.
A O
B 图7
D C 图5 c α A 图6 c α c B C P。

相关文档
最新文档