最新平行线与相交线的知识点总结与归纳教学提纲

合集下载

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结1.直线的定义:直线是平面上的一组点,这些点的任意两个点都可以用直线上的一段有向线段连接起来。

直线也可以看作没有端点的线段。

2.相交线的性质:(1)相交线:两条直线在平面上的交点。

两条相交的直线不可能平行。

(2)轴:两条相交线的交点称为轴。

(3)垂直交线:两条相交线互相垂直,即交角为90度。

(4)垂线:一条直线与另一条直线垂直,称为垂线。

(5)垂直平分线:两条相交直线的交点到两条直线距离相等的直线,称为垂直平分线。

3.平行线的性质:(1)平行线:在同一个平面内,两条直线不相交,称为平行线。

(2)平行符号:在直线上标记一对箭头表示平行关系。

(3)平行线定理:-同位角定理:两条平行线与同一条横截线相交,所得相对应的内角相等,相对应的外角相等。

-平行线之间的任意一对同位角互相相等。

(4)平行线判定定理:-直线与直线平行判定定理:直线与一条直线平行,则与这条直线平行的所有直线都平行。

-同位角平行判定定理:两条直线被一条横截线所截,使同位角相等,则这两条直线平行。

-垂直线判定定理:两条直线互相垂直,则这两条直线平行于同一直线。

(5)平行线的性质:-平行线之间的距离相等:两条平行线上任意两点之间的距离相等。

-平行线的夹角:两条平行线被一条直线截断所得的内角和为180度。

-平行线的斜率:两条平行线的斜率相等或者其中一条线的斜率不存在。

4.平行四边形:(1)平行四边形定义:有两对对边分别平行的四边形。

(2)平行四边形的性质:-对边相等:平行四边形的对边相等。

-对角线:平行四边形的对角线互相平分。

-同位角:平行四边形的同位角互相相等。

5.直线的倾斜角:(1)倾斜角定义:一条直线倾斜角的正切值等于该直线的斜率。

(2)平行线的倾斜角:平行线具有相同的倾斜角。

(3)垂直线的倾斜角:垂直线的倾斜角之和等于90度。

6.平行线与欧几里得公设:(1)欧几里得公设五:经过点外的一条直线上至少有两条平行线。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结在几何学中,相交线和平行线是基础概念。

它们在理解和解决几何问题时起着重要的作用。

本文将对相交线和平行线的概念、性质以及应用进行总结。

一、相交线的概念及性质相交线是指在同一个平面内交于一点或多个点的两条或多条线段。

我们来看一下相交线的性质。

1. 相交线的定义:两条线段在平面内交于一点或多个点。

2. 相交线的种类:根据其相交方式,相交线可以分为垂直相交线和斜交线两种。

垂直相交线是指交于一点且互相垂直的两条线段;斜交线是指交于一点但不互相垂直的两条线段。

3. 相交线上的角:相交线会形成一些特殊的角,主要包括相邻角、对顶角、内错角和外错角。

相邻角是指在同一侧的相交线上,且共享一个端点的两个角;对顶角是指在相交线的对立面上,且互相垂直的两个角;内错角是指在同一侧的相交线上,且不相邻的两个角;外错角是指在同一侧的相交线上,且与内错角互补的两个角。

4. 直线的平分线:两条相交直线的交点处的角被称为直线的平分线。

平分线将原角分成两个相等的角。

二、平行线的概念及性质平行线是指在同一平面内,永不相交的两条直线。

接下来我们来了解一下平行线的性质。

1. 平行线的定义:在同一平面内,两条直线如果不相交,则它们是平行线。

2. 平行线的判定:常用方法有欧几里得假设、对角线法、平行线法则等。

3. 平行线的性质:平行线之间相互平行;平行线与同一条直线的交线上的对应角相等;平行线与同一平行线的交线上的对应角相等;平行线与平行线之间的距离相等。

4. 平行线的应用:平行线在实际问题中有着广泛的应用,比如在测量、建筑、地理等领域。

通过平行线的性质,我们可以解决许多与位置、角度、距离等有关的问题。

三、相交线与平行线的关系相交线和平行线之间有着紧密的联系,它们的性质可以相互应用。

1. 垂直相交线与平行线:如果两条平行线被一条垂直相交线所截,那么所截得的对应角互为互补角。

2. 斜交线与平行线:如果两条平行线被一条斜交线所截,那么所截得的对应角互为相等角或互为互补角。

相交线与平行线知识点整理

相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中的基本概念,是研究点、直线、平面之间的关系的重要内容。

下面是关于相交线和平行线的详细知识整理。

一、相交线的定义和性质:1.相交线的定义:当两条线或两条线段在空间中共有一个交点时,我们称这两条线或线段为相交的。

2.相交线的性质:(1)两条相交线必有且只有一个交点。

(2)相交线的交点在两条相交线上。

(3)相交线可以分割平面为两个部分。

(4)相交线可以交换位置,即线的交点不变。

(5)相交线的角度和弧度可以相互转化。

二、平行线的定义和性质:1.平行线的定义:在同一个平面上,两条直线如果没有交点,则称这两条直线为平行线。

2.平行线的性质:(1)平行线永不相交。

(2)平行线的夹角为0度。

(3)平行线在任何一点上的垂直线也是平行线。

(4)如果两条直线分别与一条直线相交,且对应的内角或同旁内角互补,则这两条直线是平行线。

(5)平行线与一个截线相交,对应角相等。

三、相交线与平行线之间的关系:1.两条相交线切割出的平行线性质:(1)两条相交线切割出的平行线长度相等。

(2)两条相交线切割出的平行线夹角相等。

(3)两条相交线切割出的平行线互相垂直。

2.平行线夹角关系:(1)两条平行线被一条截线切割,对应角相等。

(2)两条平行线被两条截线交叉切割,对应角互补。

四、平行线的判断方法:1.距离判定法:两条直线上一点到另一直线上的距离相等,则这两条直线平行。

2.角度判定法:如果两条直线上的任意一组对应角相等,则这两条直线平行。

3.线段比较法:两条平行线上两对相交线段的比值相等。

五、相交线和平行线的应用:1.在建筑设计中,平行线用于调整房屋结构的直角度量。

2.在交通规划中,相交线和平行线用于规划道路的交叉口和分隔带。

3.在地理学中,相交线和平行线用于绘制地图上的经纬线和等高线。

4.在数学教学中,相交线和平行线可以帮助学生理解几何概念,并解决相关问题。

总结:相交线和平行线是几何学中的基本概念,对于点、直线、平面的研究具有重要意义。

2023年相交线与平行线知识点归纳总结

2023年相交线与平行线知识点归纳总结

《相交线与平行线》知识点总结一: 相交线(1)相交线旳定义两条直线交于一点, 我们称这两条直线相交.相对旳, 我们称这两条直线为相交线.(2)两条相交线在形成旳角中有特殊旳数量关系和位置关系旳有对顶角和邻补角两类.(3)在同一平面内, 两条直线旳位置关系有两种: 平行和相交(4)对顶角: 有一种公共顶点, 并且一种角旳两边分别是另一种角旳两边旳反向延长线, 具有这种位置关系旳两个角, 互为对顶角.∠1和∠3, ∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们旳另一边互为反向延长线,具有这种关系旳两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角旳性质:对顶角相等.(如图∠1=∠3, ∠2=∠4)(7)邻补角旳性质:邻补角互补, 即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现, 在相交直线中, 一种角旳邻补角有两个. 邻补角、对顶角都是相对与两个角而言, 是指旳两个角旳一种位置关系. 它们都是在两直线相交旳前提下形成旳。

二、垂线(1)、垂线旳定义: 当两条直线相交所成旳四个角中, 有一种角是直角时, 就说这两条直线互相垂直, 其中一条直线叫做另一条直线旳垂线, 它们旳交点叫做垂足.如图, OD⊥AB, 垂足为O(2)、垂线旳性质过一点有且只有一条直线与已知直线垂直.注意: “有且只有”中, “有”指“存在”, “只有”指“唯一”“过一点”旳点在直线上或直线外都可以。

(3)、垂线段: 从直线外一点引一条直线旳垂线, 这点和垂足之间旳线段叫做垂线段.(4)垂线段旳性质: 垂线段最短.对旳理解此性质, 垂线段最短, 指旳是从直线外一点到这条直线所作旳垂线段最短. 它是相对于这点与直线上其他各点旳连线而言.(如图, PA,PB,PC等线段中, PO最短)(4)、点到直线旳距离(如图, PO旳长)(1)点到直线旳距离:直线外一点到直线旳垂线段旳长度, 叫做点到直线旳距离.(2)点到直线旳距离是一种长度, 而不是一种图形, 也就是垂线段旳长度, 而不是垂线段.它只能量出或求出, 而不能说画出, 画出旳是垂线段这个图形.三、平行线1.在同一平面内, 两条直线旳位置关系有两种: 平行和相交.(1)平行线旳定义:在同一平面内,不相交旳两条直线叫平行线.记作: a∥b;读作: 直线a平行于直线b.(2)同一平面内, 两条直线旳位置关系: 平行或相交, 对于这一知识旳理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说, 指旳是它们所在旳直线.(3)平行公理:通过直线外一点, 有且只有一条直线与这条直线平行.如图, 过点P只有直线a 与直线b 平行(4)平行公理中要精确理解“有且只有”旳含义.从作图旳角度说, 它是“能但只能画出一条”旳意思.(5)平行公理旳推论:假如两条直线都与第三条直线平行, 那么这两条直线也互相平行.如图, 假如a∥c, b∥c, 那么a∥c2.同位角、内错角、同旁内角(1)同位角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳同侧, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳两旁, 则这样一对角叫做内错角. 例如∠3和∠5, ∠4和∠6.(3)同旁内角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同旁内角。

平行线与相交线的关系知识点

平行线与相交线的关系知识点

平行线与相交线的关系知识点在几何学中,平行线和相交线是两个基本的几何概念,它们之间有着密切的关联。

本文将介绍平行线与相交线的性质以及它们之间的一些重要关系。

一、平行线的定义与性质平行线是指在同一个平面上永远不会相交的直线。

两条平行线之间的距离始终保持相等,且它们的斜率也相等。

平行线具有以下性质:1. 平行线的性质一:同一平面内两直线要么相交于一点,要么平行。

2. 平行线的性质二:如果一条直线与另外两条平行线相交,那么这两条平行线之间的对应角相等。

3. 平行线的性质三:平行线的倾斜角度相等。

4. 平行线的性质四:两条平行线与一条相交线所构成的内角和为180度。

二、相交线的定义与性质相交线是指在同一个平面上交于一点的两条直线。

相交线之间的夹角是它们各自的内角和,且夹角的大小和形状取决于直线的倾斜程度。

相交线具有以下性质:1. 相交线的性质一:相交线之间夹角的大小可以是锐角、直角或钝角。

2. 相交线的性质二:相交线之间夹角的大小等于其对应的对顶角。

3. 相交线的性质三:两条相交线若交于一点,则点的坐标满足这两条直线的方程。

三、平行线与相交线的关系平行线与相交线之间有以下重要的关系:1. 平行线切割相交线:如果一条直线与一对平行线相交,那么它将会把这对平行线切割成相似的线段。

2. 内错角与同旁内角:当一条直线与两条平行线相交时,所构成的对应角(内错角)相等,而相应于同旁外角(同旁内角)也相等。

3. 平行线的判定:如果两条直线与一条相交线所构成的内外角相等,那么这两条直线是平行的。

4. 平行线的传递性:如果直线a与直线b平行,直线b与直线c平行,那么直线a与直线c也平行。

通过对平行线和相交线的定义、性质以及它们之间的关系的认识,我们能够更好地理解几何学中的相关概念,并应用它们解决问题。

总结:平行线是在同一平面上永不相交的直线,其性质包括对应角相等、倾斜角相等以及内角和为180度等;相交线是在同一平面上交于一点的直线,其性质包括夹角等于内角和以及夹角的种类;平行线与相交线之间的关系包括平行线切割相交线、内错角与同旁内角相等、平行线的判定方法以及平行线的传递性。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中两个重要的概念和性质。

下面是对相交线和平行线的知识点的总结。

一、相交线的性质:1.相交线的定义:在平面上,两条不重合的线段(或直线)在某一点相交,那么称这两条线段(或直线)为相交线。

2.相交线的分类:-相交线:两条线段在一点相交,但不共线。

-交叉线:两条线段在两个不同的点处相交。

-夹角线:两条直线之间形成的夹角称为夹角线。

3.相交线的性质:-相交线的交点是两条线段(或直线)共同的点,也是相交线上所有点的唯一共同点。

-相交线上的点在两条线段(或直线)上都有,而且在相交点上的两条线段(或直线)上都有。

-相交线的交点可以分为内点、外点和边上点。

4.相交线的判定:-直观法:两条线段(或直线)在平面上画出来,如果有交点,则存在相交线。

-代数法:通过方程组来求解两条线段(或直线)的交点,如果存在实数解,则存在相交线。

二、平行线的性质:1.平行线的定义:两条线段(或直线)在平面上没有交点,则称这两条线段(或直线)为平行线。

2.平行线的判定:-直观法:通过观察两条线段(或直线)之间是否平行来判断。

-几何法:利用两条平行线的性质,如平行线与平面关系、等角定理、相等短整数、全等三角形等来判定平行线。

-代数法:通过线段(或直线)的方程来计算斜率,如果两条线段(或直线)的斜率相等,则它们是平行的。

3.平行线的性质:-平行线的斜率相等。

-平行线的任意两条直线之间的夹角相等。

-平行线与平行线之间的距离相等。

-平行线与平行线之间可以通过平移相互转化。

4.平行线的性质的应用:-平行线的性质可以用于解决几何问题,如证明两个线段(或直线)平行、证明三角形相似等。

-平行线的性质还可以用于解决实际问题,如测量两条平行线之间的距离、设计平行线街道等。

总结:相交线和平行线是几何学中的重要概念和性质。

相交线的性质包括相交线的定义、分类和性质等,而平行线的性质包括平行线的定义、判定和性质等。

相交线和平行线的性质可以应用于解决几何问题和实际问题。

相交线与平行线知识点总结

相交线与平行线知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(4)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.∠1和∠3,∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角的性质:对顶角相等.(如图∠1=∠3,∠2=∠4)(7)邻补角的性质:邻补角互补,即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的。

二、垂线(1)、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,OD⊥AB,垂足为O(2)、垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以。

(3)、垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(4)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(如图,PA,PB,PC等线段中,PO最短)(4)、点到直线的距离(如图,PO的长)(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线1、在同一平面内,两条直线的位置关系有两种:平行和相交.(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.(3)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如图,过点P只有直线a 与直线 b平行(4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(5)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如图,如果a∥c,b∥c,那么a∥c2、同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.例如∠3和∠5,∠4和∠6.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角。

相交线与平行线的知识点

相交线与平行线的知识点一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即它们的和为180°。

例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂直。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线。

1. 平行线的定义。

- 在同一平面内,不相交的两条直线叫做平行线。

用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。

2. 平行公理及推论。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥b,b∥c,那么a∥c。

3. 平行线的判定。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。

4. 平行线的性质。

- 两直线平行,同位角相等。

若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。

精编版平行线与相交线知识点整理总复习

精编版平行线与相交线知识点整理总复习平行线与相交线是几何学中重要的概念,它们在平面几何、解析几何以及立体几何中都有广泛的应用。

下面对平行线与相交线的相关知识点进行整理总复习。

一、平行线的定义与性质:1.定义:在平面上的两条直线,如果它们没有交点,就称为平行线。

2.平行线的判定方法:(1)同一条直线上的两条直线,如果与另一条直线平行,则它们互相平行。

(2)用直角板判定法:如果两直线上各取一点P和Q,再通过P、Q各画一条与给定直线垂直的直线,则这两条垂直线相交的点连同P、Q四点是否共线,如果共线,则给定直线与这两条垂直线平行;否则,不平行。

(3)用平行线定理判定:如果两直线上各取一点P和Q,并通过Q画一条与给定直线平行的线段,则通过P和平行线段的直线相交的点与P、Q、两直线上平行线段的两个端点是否共线,如果共线,则给定直线与平行线段平行;否则,不平行。

3.平行线性质:(1)平行线具有等斜率。

(2)平行线的判定是对称的,即如果直线l与直线m平行,那么直线m与直线l也平行。

(3)平行线的传递性。

(4)平行线的交线和倾斜度。

(5)两个平行线与同一直线的交线上的对应角相等。

(6)两个平行线分别与同一直线的两条截线上的对应角相等。

二、相交线与交角的定义与性质:1.定义:在平面上的两条直线如果有一个交点,就称为相交线。

2.存在且唯一:平面上任意两条不平行的直线都有一个且仅有一个交点。

如果两条直线有两个或多个交点,则它们必定重合。

3.交角的定义:两条相交线之间的夹角。

三、平行线与相交线的相关知识点:1.平行线的判定与构造:可以通过几何推理来判定两条直线是否平行,也可以通过构造垂直线段或平行线段等方法来构造平行线。

2.平行线于直线的夹角:直线与平行线的夹角为0度。

3.平行线与截线的夹角:一条直线与平行线的截线上的各个角的和等于180度。

4.形成平行线的条件:如果两个直线分别与一条第三条直线相交,在交点两侧所夹的内角或外角相等,则这两个直线平行。

初中数学知识归纳平行线与相交线

初中数学知识归纳平行线与相交线平行线与相交线是初中数学中的基础概念,它们在几何学和代数学中都有重要应用。

了解这些概念,对于学习几何学和解决与直线相关的问题非常有帮助。

本文将对平行线和相交线的概念、性质和应用进行归纳总结。

一、平行线的定义和性质平行线指在同一个平面内,永远不相交的两条直线。

平行线的定义可以从两个方面进行解释:点线距离相等和夹角相等。

1.1 点线距离相等如果两条直线上的任意一点到另一条直线的距离都相等,那么这两条直线是平行线。

1.2 夹角相等如果两条直线之间的夹角相等,那么这两条直线是平行线。

平行线的性质包括以下几点:1.3 平行线不会相交由于平行线的定义,它们在同一个平面内永远不会相交,即使无限延长也不会相交。

1.4 平行线与平面的关系在一个平面上,与给定直线平行的直线存在无数条。

1.5 平行线的判定常用的判定方法包括:点线距离相等、夹角相等、平行线的等价定义等。

二、相交线的定义和性质相交线指在同一个平面内相交的两条直线。

相交线的性质如下:2.1 直线交于一点根据直线的定义,一条直线与另一条直线一定相交于一个点。

2.2 夹角的特性两条相交直线之间会形成两对相对的夹角:相邻角和对顶角。

相邻角指的是两条直线之间有一个公共点,并且在该公共点上有一条共同的边的角,它们是相互独立的。

对顶角指的是两条直线之间有一个公共点,并且在该公共点上没有共同的边的角,它们是相等的。

2.3 相交线的性质相交线的性质还包括垂直线和角平分线。

垂直线是指两条直线的夹角为90度,垂直于另一条直线。

角平分线是指将一个角分成两个相等角的直线。

三、平行线与相交线的应用平行线与相交线的概念在数学中有广泛的应用,特别是在几何学和代数学中。

3.1 平行线的应用在几何学中,平行线的性质用于证明和构造各种定理。

例如,平行线截割同一直线上的两个平行线段,可以得到相似三角形。

基于这一原理,我们可以用相似三角形的性质来解决各种问题。

此外,平行线还与平行四边形和直角梯形等特殊四边形的性质相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线与相交线(1)
一、知识概述
(一)从台球桌面上的角,引出有关角的概念
1、两角互余、互补的概念及性质
(1)定义:
如果两个角的和是180°,那么这两个角互为补角.(如图)简称互补.
如果两个角的和是90°,那么这两个角互为余角.(如图)简称互余.
说明:①互余、互补是指两个角的关系.
②互补或互余的两个角,只与它们的和有关,而与其位置无关.
③用数学语言表述为:
若∠α+∠β=180°,则∠α与∠β互补;反之,若∠α与∠β互补,则∠α+∠β=180°.
若∠α+∠β =90°,则∠α与∠β互余;反之若∠α与∠β互余,则∠α+∠β=90°.
(2)性质:
①同角或等角的补角相等.
②同角或等角的余角相等.
2、对顶角的概念
(1)如果一个角的两边分别是另一个角的两边的反向延长线,这样的两个角叫做对顶角.如图中的∠1和∠3,∠2和∠4是对顶角.
由对顶角的位置特点也可将其描述为:
①两条直线相交成四个角,其中不相邻的两个角叫做对顶角.
②一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角.
说明:只有两条直线相交时,才能产生对顶角,对顶角是成对出现的.
③对顶角的本质特征是:两个角有公共顶点,其两边互为反向延长线.
(2)对顶角的性质:对顶角相等.
(二)探索直线平行的条件
1、两条直线相交构成四个有公共顶点的角.一条直线与两条直线相交得八个角,简称“三线八角”,则
不共顶点的角的位置关系有同位角、内错角、同旁内角.
如图所示,直线 AB、CD被直线EF所截,形成了8个角.
(1)同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角.如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.
(2)内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角.例如∠3和∠5,∠4和∠6.
(3)同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫做同旁内角.例如∠4和∠5,∠3和∠6.
2、两条直线平行的条件:
两条直线被第三条直线所截,如果
(1)同位角相等,两直线平行. (2)内错角相等,两直线平行. (3)同旁内角互补,两直线平行.
二、重难点知识剖析
1、互为补角和互为邻补角的关系. 互为补角是两个角的和为 180°,与它们的位置无关. 而互为邻补角既与它们的和为 180°有关,又与位置有关,不要混淆.
2、灵活运用互余、互补等知识点以及对顶角的性质列方程求解,即学会用代数法解几何题的方法.
3、证明两直线平行时,必须弄清所用条件中的同位角、内错角、同旁内角是哪两条直线被哪一条直线所截而
成的,因为推出的结论是除截线外的另两条直线平行.
平行线与相交线(2)
一、知识概述
1、平行线的特征
特征一:两条平行线被第三条直线所截,同位角相等,简单说成“两直线平行,同位角相等”,使用方法如图:
∵ a∥b,∴∠1=∠2(两直线平行,同位角相等)
特征二:两直线平行,内错角相等 .
使用方法:∵ a∥b,∴∠2=∠3(两直线平行,内错角相等)
特征三:两直线平行,同旁内角互补 .
使用方法:∵ a∥b,∴∠2+∠4=180°(两直线平行,同旁内角互补)
2、直线平行的条件与平行线的特征的区分表
3、尺规作图的意义在几何里,把限定用直尺和圆规来画图,称为尺规作图。

虽然尺规也是画图工具,但尺规作图不同于用工具画图,尺规作图只限于用无刻度的直尺和圆规,直尺用于根据两点的位置作直线、射线、线段或作延长线,圆规用于根据圆心位置、半径
大小作弧或圆。

所以作图题都应用直尺或圆规作图,而不能把用三角尺画直角、画平行线等当作尺规作图。

本节课要求会利用尺、规作线段和一个角等于已知角等。

二、重难点知识剖析
1、(1)同位角相等、内错角相等、同旁内角互补,都是平行线特有的性质,切不可忽略前提条件:“两直线平行”。

当两直线不平行时,同位角、内错角就不相等,同旁内角不互补。

(2)只要两条直线被第三条直线所截,都存在同位角、内错角,但不一定相等,同旁内角不一定互补。

2、要分清平行线的识别和平行线的特征之间的关系,不要混淆运用,同时要学会综合运用这两者之间都是存在着“位置关系”和“数量关系”,其中由“数量关系”去确定“位置关系”是平行线的识别方法和过程,反之是平行线的特征。

3、用尺、规作线段和角时,要学会叙述几何作图语言,如过点×作直线××与直线××平行,或以点×为圆心,以××为半径作弧,等等。

相关文档
最新文档