相交线与平行线知识点总结教学教材

合集下载

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线和平行线是几何学中两个重要的概念和性质。

下面是对相交线和平行线的知识点的总结。

一、相交线的性质:1.相交线的定义:在平面上,两条不重合的线段(或直线)在某一点相交,那么称这两条线段(或直线)为相交线。

2.相交线的分类:-相交线:两条线段在一点相交,但不共线。

-交叉线:两条线段在两个不同的点处相交。

-夹角线:两条直线之间形成的夹角称为夹角线。

3.相交线的性质:-相交线的交点是两条线段(或直线)共同的点,也是相交线上所有点的唯一共同点。

-相交线上的点在两条线段(或直线)上都有,而且在相交点上的两条线段(或直线)上都有。

-相交线的交点可以分为内点、外点和边上点。

4.相交线的判定:-直观法:两条线段(或直线)在平面上画出来,如果有交点,则存在相交线。

-代数法:通过方程组来求解两条线段(或直线)的交点,如果存在实数解,则存在相交线。

二、平行线的性质:1.平行线的定义:两条线段(或直线)在平面上没有交点,则称这两条线段(或直线)为平行线。

2.平行线的判定:-直观法:通过观察两条线段(或直线)之间是否平行来判断。

-几何法:利用两条平行线的性质,如平行线与平面关系、等角定理、相等短整数、全等三角形等来判定平行线。

-代数法:通过线段(或直线)的方程来计算斜率,如果两条线段(或直线)的斜率相等,则它们是平行的。

3.平行线的性质:-平行线的斜率相等。

-平行线的任意两条直线之间的夹角相等。

-平行线与平行线之间的距离相等。

-平行线与平行线之间可以通过平移相互转化。

4.平行线的性质的应用:-平行线的性质可以用于解决几何问题,如证明两个线段(或直线)平行、证明三角形相似等。

-平行线的性质还可以用于解决实际问题,如测量两条平行线之间的距离、设计平行线街道等。

总结:相交线和平行线是几何学中的重要概念和性质。

相交线的性质包括相交线的定义、分类和性质等,而平行线的性质包括平行线的定义、判定和性质等。

相交线和平行线的性质可以应用于解决几何问题和实际问题。

七年级下册数学平行线与相交线

七年级下册数学平行线与相交线

第一讲 两条直线的位置关系知识点一 :相交线、平行线的概念(1)相交线平行定义:若两条直线只有一个公共点,我们称这两条直线为相交线 (2)平行线定义:在同一平面内,不相交的两条直线叫做平行线(3)两套直线的位置关系:在同一平面内,两条直线的位置关系有相交和平行两种 (4)两条直线是指不重合的两条直线注意:1、两条直线在同一平面内2、我们有时说两条射线或线段平行,实际上是指它们所在的直线平行 知识点二:关于对顶角的定义和性质定义 对顶角:像这样直线AB 与直线CD 相交于O ,∠1与∠2有公共顶点,它们的两边互为反向延长线,这样的两个角叫做对顶角.注意:对顶角的判断条件:⎪⎩⎪⎨⎧无公共边有公共顶点两条直线相交另外,从对顶角的定义还可知:对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个。

性质 同角或等角的对顶角相等。

一般题型 下列说法中,正确的是( ). A .有公共顶点,并且相等的角是对顶角 B .如果两个角不相等,那么它们一定不是对顶角 C .如果两个角相等,那么这两个角是对顶角 D .互补的两个角不可能是对顶角 练习 1、如图2-1,共有________对对顶角.图2-1知识点三: 互为余角、互为补角的概念及其性质定义:互为余角:如果两个角的和是直角,则这两个角互为余角. 互为补角:如果两个角的和是平角,则这两个角互为补角 钝角没有余角注意: 互为余角、互为补角只与角的度数有关,与角的位置无关. 性质 同角或等角的余角相等,同角或等角的补角相等一般例题 ⑴∵1∠和2∠互余,∴=∠+∠21_____(或2_____1∠-=∠) ⑵∵1∠和2∠互补,∴=∠+∠21_____(或2_____1∠-=∠)练习1、若∠α=50º,则它的余角是 ,它的补角是 。

若∠β=110º,则它的补角是 ,它的补角的余角是 。

2若∠1与∠2互余,∠3和∠2互补,且∠3=120º,那么∠1= 。

相交线与平行线知识点总结

相交线与平行线知识点总结

相交线与平行线知识点总结相交线与平行线第一节相交线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).对顶角与邻补角(1)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.(2)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.(3)对顶角的性质:对顶角相等.(4)邻补角的性质:邻补角互补,即和为180°.(5)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线订交的前提下构成的.二:垂线(1)垂线的界说当两条直线订交所成的四个角中,有一个角是直角时,就说这两条直线相互垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯独”“过一点”的点在直线上或直线外都可以.垂线段最短(1)垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(2)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(3)实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.点到直线的距离(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不克不及说画出,画出的是垂线段这个图形.第二节平行线及其断定一:平行线平行线在同一平面内,两条直线的位置干系有两种:平行和订交(重合除外).(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.平行线公理及推论(1)平行正义:颠末直线外一点,有且只有一条直线与这条直线平行.(2)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(3)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(4)平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.二:平行线的断定同位角、内错角同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是否是同位角、内错角或同旁内角,完整由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边动手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.平行线的断定(1)定理1:两条直线被第三条所截,假如同位角相等,那末这两条直线平行.XXX说成:同位角相等,两直线平行.(2)定理2:两条直线被第三条所截,假如内错角相等,那末这两条直线平行.XXX单说成:内错角相等,两直线平行.(3)定理3:两条直线被第三条所截,假如同旁内角互补,那末这两条直线平行.XXX单说成:同旁内角互补,两直线平行.(4)定理4:两条直线都和第三条直线平行,那么这两条直线平行.(5)定理5:在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.第三节平行线的性质平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.XXX说成:两直线平行,同位角相等.。

相交线与平行线全章教案

相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。

2. 能够识别和判断直线之间的相交与平行关系。

3. 掌握平行线的性质及推论。

教学内容:1. 相交线的定义及特点。

2. 平行线的定义及特点。

3. 平行线的性质及推论。

教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。

2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。

3. 引导学生通过观察和思考,总结出平行线的性质及推论。

作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。

2. 请学生总结平行线的性质及推论,并加以证明。

第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。

2. 能够运用相交线的性质解决实际问题。

教学内容:1. 相交线的性质。

2. 相交线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。

2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。

作业布置:1. 请学生运用相交线的性质,解决一些实际问题。

2. 请学生总结相交线的判定方法,并加以证明。

第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的性质。

2. 平行线的判定方法。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。

2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。

作业布置:1. 请学生运用平行线的性质,解决一些实际问题。

2. 请学生总结平行线的判定方法,并加以证明。

第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。

2. 能够运用平行线的性质解决实际问题。

教学内容:1. 平行线的应用方法。

2. 实际问题解决。

教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。

2. 提供一些实际问题,让学生运用平行线的性质解决。

相交线与平行线的知识点

相交线与平行线的知识点

相交线与平行线的知识点一、相交线。

1. 邻补角。

- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

- 性质:邻补角互补,即它们的和为180°。

例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。

2. 对顶角。

- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。

- 性质:对顶角相等。

如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。

3. 垂直。

- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。

- 连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

二、平行线。

1. 平行线的定义。

- 在同一平面内,不相交的两条直线叫做平行线。

用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。

2. 平行公理及推论。

- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

即如果a∥b,b∥c,那么a∥c。

3. 平行线的判定。

- 同位角相等,两直线平行。

例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。

- 内错角相等,两直线平行。

如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。

- 同旁内角互补,两直线平行。

当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。

4. 平行线的性质。

- 两直线平行,同位角相等。

若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——同位角、内错角、同旁内角(知识梳理与考点分类讲解)【知识点一】同位角、内错角、同旁内角的概念(“三线八角”模型)如图1,直线AB、CD 与直线EF 相交(或者说两条直线AB、CD 被第三条直线EF 所截),构成八个角,简称为“三线八角”,如图1.特别提醒:⑴两条直线AB,CD与同一条直线EF 相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.【知识点二】同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD 的同一方,并且都在直线EF 的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD 之间,并且在直线EF 的两侧,像这样的一对角叫做内错角.(3)同旁内角:像∠3和∠6都在直线AB、CD 之间,并且在直线EF 的同一旁,像这样的一对角叫做同旁内角.特别提醒:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.【知识点三】同位角、内错角、同旁内角位置特征及形状特征图1特别提醒:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.【考点目录】【考点1】“三线八角”模型的认识;【考点2】同位角、内错角、同旁内角的辨别;【考点3】与同位角、内错角、同旁内角相关的综合【考点1】“三线八角”模型的认识;【例1】(1)图1中,∠1、∠2由直线被直线所截而成.(2)图2中,AB为截线,∠D是否属于以AB为截线的三线八角图形中的角?【答案】(1)EF,CD;AB;(2)不是.【分析】(1)根据三线八角的定义求解即可;(2)根据三线八角的定义求解即可;解:(1)∠1、∠2两角共同的边所在的直线为截线,而另一边所在的直线为被截线.所以图1中,∠1、∠2由直线EF,CD被直线AB所截而成.(2)因为∠D的两边都不在直线AB上,所以∠D不属于以AB为截线的三线八角图形中的角.【点拨】此题主要考查了“三线八角”,熟练掌握:“三线八角”的定义是解答此题的关键.【变式1】如图,下列说法正确的是()A.∠2与∠3是同旁内角B.∠1与∠2是同位角C.∠1与∠3是同位角D.∠1与∠2是内错角【答案】A【分析】根据同旁内角定义可判断A、根据同位角定义可判断B、根据内错角的定义可判断C、D即可.解:A、由图与同旁内角定义,∠2和∠3是两直线被第三条直线所截,在截线的同侧,在被截直线内部的角可知:∠2和∠3是同旁内角,故选项A正确符合题意;B、∠1和∠2是两条直线被两条直线所截得到的角,不是同位角,故选项B不正确不符合题意;C、∠1和∠3是两直线被第三条直线所截,在截线的两侧,在被截直线内部的角是内错角,不是同位角,故选项C不符合题意;D、∠1和∠2是两条直线被两条直线所截得到的角不是内错角,故选项D不符合题意;故选:A .【点拨】本题考查了同旁内角、同位角、内错角,熟练掌握同位角、内错角、同旁内角的定义是解题关键.【变式2】如图,有下列说法:①能与DEF ∠构成内错角的角的个数有2个;②能与BFE ∠构成同位角的角的个数有2个;③能与C ∠构成同旁内角的角的个数有4个.其中正确结论的序号是.【答案】①【分析】根据同位角、内错角、同旁内角的定义判断.解:①能与DEF ∠构成内错角的角的个数有2个,即EFA Ð和EDC ∠,故正确;②能与EFB ∠构成同位角的角的个数只有1个:即FAE ∠,故错误;③能与C ∠构成同旁内角的角的个数有5个:即CDE ∠,B ∠,CED ∠,CEF ∠,A ∠,故错误;所以结论正确的是①.故答案为:①.【点拨】本题主要考查了同位角、内错角、同旁内角,解题的关键是熟记相关的定义.【考点2】同位角、内错角、同旁内角的辨别;【例2】两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.(1)画出示意图,标出∠1,∠2,∠3.(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.【答案】(1)见分析;(2)36°【分析】(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;(2)利用邻补角的关系可求出∠3的度数.解:(1)如图所示:(2)∵∠1=2∠2,∠2=2∠3,∴设∠3=x,则∠2=2x,∠1=4x,故x+4x=180°,解得:x=36°,故∠3的度数为36°.【点拨】此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.【变式1】下列四幅图中,1∠和2∠是同位角的是几个()A.1个B.2个C.3个D.4个【答案】B【分析】根据同位角的定义(截线的同一侧,被截线的同一方位)解决此题.解:根据同位角的定义,第一张图和第四张图中的∠1和∠2是同位角.故选:B.【点拨】本题主要考查同位角的定义,熟练掌握同位角的定义是解决本题的关键.【变式2】如图,直线a,b被直线c所截,145∠=︒,2110∠=︒,则1∠的同位角的度数是;4∠的内错角的度数是;3∠的同旁内角的度数是.【答案】70︒/70度45︒/45度70︒/70度【分析】根据同位角,内错角和同旁内角的概念以及邻补角求解即可.解:∵24180∠+∠=︒,2110∠=︒,∴470∠=︒,∵1∠和4∠是一组同位角,∴1∠的同位角的度数是70︒;∵145∠=︒,∴31801135∠=︒-∠=︒,∴4∠的内错角的度数是180318013545︒-∠=︒-︒=︒;3∠的同旁内角4∠的度数是70︒.故答案为:70︒;45︒;70︒.【点拨】此题考查了邻补角,同位角,内错角和同旁内角的概念,解题的关键是熟练掌握以上知识点.【考点3】与同位角、内错角、同旁内角相关的综合【例3】如图,直线AB ,CD 被直线EF 所截,交点分别为G ,H ,∠CHG =∠DHG =34∠AGE .(1)CD 与EF 有怎样的位置关系?请说明理由.(2)求∠CHG 的同位角、内错角、同旁内角的度数.【答案】(1)CD ⊥EF ;(2)∠CHG 的同位角∠AGE =120°,内错角∠BGF =∠AGE =120°,同旁内角∠AGF =60°【分析】(1)先由∠CHG +∠DHG =180°及∠CHG =∠DHG ,可得∠CHG =∠DHG =90°,再根据垂直的定义得到CD 与EF 互相垂直;(2)先由∠CHG =∠DHG =34∠AGE ,可得∠AGE =120°,再根据同位角、内错角、同旁内角的定义即可求解.解:(1)CD ⊥EF .理由如下:因为CD是直线,所以∠CHG+∠DHG=180°,又∠CHG=∠DHG,所以∠CHG=∠DHG=90°,所以CD⊥EF.(2)由(1)知∠CHG=∠DHG=90°,因为∠CHG=∠DHG=34∠AGE,所以∠AGE=120°,所以∠CHG的同位角∠AGE=120°,内错角∠BGF=∠AGE=120°,同旁内角∠AGF=180°-∠AGE=60°.【点拨】本题考查了垂直的定义,邻补角的定义,同位角、内错角、同旁内角的定义,以及对顶角和邻补角的性质的计算,是基础知识,比较简单.【变式1】如图,下列判断正确的是()A.有2对同位角,2对内错角,2对同旁内角B.有2对同位角,2对内错角,3对同旁内角C.有4对同位角,2对内错角,4对同旁内角D.以上判断均不正确【答案】B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解:观察图形可知,有2对同位角,2对内错角,3对同旁内角.故选B.【点拨】本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.注意按顺序一个点一个点的数,不要重复,不要遗漏.【变式2】如图两条直线被第三条直线所截,2∠是3∠的同旁内角,1∠是3∠的内错角,若243∠=∠,321∠=∠,则1∠的度数是.【答案】20︒/20度【分析】设1x ∠=︒,则32x ∠=︒,28x ∠=︒,根据邻补角互补可得方程,求解即可.解:如图,设1x ∠=︒,则32x ∠=︒,28x ∠=︒,∵12180∠+∠=︒,∴8180x x ︒+︒=︒,解得:20x =,∴120∠=︒.故答案为:20︒.【点拨】本题考查了内错角、同旁内角、邻补角互补、角的计算,解本题的关键是掌握内错角的边构成“Z ”形,同旁内角的边构成“U ”。

(完整版)相交线与平行线复习知识点总结

(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。

人教版初中数学相交线与平行线全章知识点

人教版初中数学相交线与平行线全章知识点

人教版初中数学相交线与平行线全章知识点相交线与平行线是初中数学中的基础知识之一,本章主要介绍了相关概念、性质和应用。

一、基本概念1. 平行线:在同一平面内,不相交且在无限远处也不相交的两条直线称为平行线。

2. 相交线:在同一平面内,有公共点的两条直线称为相交线。

3. 夹角:由两条相交的直线和它们所夹的两个角所组成的角称为夹角。

夹角可以用符号“∠”表示。

4. 同位角:当一条直线与另外两条直线相交时,同侧对应的角互为同位角,它们的度数相等。

5. 对顶角:由两条相交的直线所形成的两组相对角称为对顶角,它们的度数相等。

二、性质与定理1. 平行线的性质:平行线具有如下性质:(1)平行线不相交,无交点。

(2)平行线所成的同位角互相相等。

(3)平行线与一条截面所成的内角和为180°。

2. 相交线的性质:相交线具有如下性质:(1)相交线所成的对顶角互相相等。

(2)相交线所成的内角和为360°。

三、应用1. 判断两条直线的关系:根据两条直线的位置关系可以判断它们是否平行或者相交。

2. 求解线段长度:通过利用相似三角形的性质,可以计算出在平行线所形成的三角形中,线段长度之间的比例关系。

3. 构造平行线:通过辅助线的方法,可以在给定的平面内构造出一条与已知线段平行的直线。

4. 解题方法:利用夹角、同位角、对顶角等概念与性质,结合所给条件,运用相关的定理和公式进行计算和推理。

相交线与平行线是初中数学中的基本概念和知识点,对于理解和掌握平面几何学有着重要的作用。

通过熟练掌握相关的概念和性质,可以更好地应用到实际问题和解决生活中的问题中去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线知识
点总结
相交线与平行线
第一节相交线一:相交线
对顶角与邻补角
二:垂线
垂线段最短
点到直线的距离
第二节平行线及其判定一:平行线
平行线
平行线公理及推论
二:平行线的判定
同位角、内错角同旁内角
平行线的判定
第三节平行线的性质
平行线的性质
1、平行线性质定理
定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.
定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.
定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.
2、两条平行线之间的距离处处相等
平行线的判定及性质
(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.
(2)(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.
(3)(3)平行线的判定与性质的联系与区别
(4)区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.
(5)联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
(6)(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角
平行线之间的距离
(1)平行线之间的距离
(2)从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.
(3)(2)平行线间的距离处处相等
第四节平移
生活中的平移现象
1、平移的概念
2、在平面内,把一个图形整体沿某一的方向移动,这种图形的平
行移动,叫做平移变换,简称平移.
3、2、平移是指图形的平行移动,平移时图形中所有点移动的方
向一致,并且移动的距离相等.
4、3、确定一个图形平移的方向和距离,只需确定其中一个点平
移的方向和距离
平移的性质
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等
作图----平移变换
魅羽枫之夜制造。

相关文档
最新文档