材料力学(材料成型矿物等)第5章弯曲应力
材料力学第5章弯曲应力

( y)d d y
d
bb dx OO O'O' d
应变分布规律:
直梁纯弯曲时纵向纤维的应变与它到中性层的距离成正比.
三、物理关系
Hooke’s Law σ Eε M
z
所以 σ E y
?
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴
的距离成正比.
待解决问题
拉应力为 [t] = 30MPa ,许用压应力为[c] =160MPa. 已知截面
对形心轴z的惯性矩为 Iz =763cm4 , y1 =52mm,校核梁的强度.
20
F1=9kN
F2=4kN
80
y1
A C
z
B
D
1m
1m
1m
y2
20
120
y2
y1
FRA A
z
F1=9kN FRB F2=4kN 解: FRA 2.5kN FRB 10.5kN
B
C
2a
a
Fa
Iz
(3cm)(2cm)3 12
(1.4cm)(2cm)3 12
1.07cm4
Wz
Iz ymax
1.07cm4 1cm
1.07cm3
(3)求许可载荷
Fa Wz[σ]
Mmax Wz[σ]
F Wz[σ] 3kN a
+
φ14 φ30
20
例题2 T形截面铸铁梁的荷载和截面尺寸如图所示. 铸铁的许用
(4)切应力沿截面高度的变化规律
沿截面高度的变化由静矩 Sz 与y之间的关系确定.
Sz A1 y1dA
材料力学第五章弯曲应力

式中 : M 横截面上的弯矩
Iz
横截面对中性轴的惯性矩
y
求应力的点到中性轴的距离
I z A y2dA
m 惯性矩是面积与距离平方的乘积,恒为正值,单位为 4
My
IZ
讨论
应用公式时,一般将 M,y 以绝对值代入。根据梁变 形的情况直接判断 的正,负号。 以中性轴为界,梁 变形后凸出边的应力为拉应力( 为正号)。凹入边 的应力为压应力,( 为负号)。
max M (x) WZ
RA
P
A
C
5m 10m
RB B
a
12.5
z
166
例题1 :图示简支梁由 56 a 工字钢制成 ,其横截面见图 p = 150kN。求 (1) 梁上的最大正应力 max
(2) 同一截面上翼缘与腹板交界处 a 点的应力
解:
C 截面为危险截面。最大弯矩
+
M max 375KN.m
查型钢表,56 a 工字钢
I z 65586 cm6
W z 2342cm2
(1) 梁的最大正应力 +
σ max
M max WZ
160MPa
(2) a点的正应力
a点到中性轴的距离为
ya
560 2
21
所以 a 点的正应力为
σ a M max ya 145MPa IZ
12.5
My
IZ
最大正应力发生在横截面上离中性轴最远的点处 当 中性轴为对称轴时 ,ymax 表示最大应力点到中性轴 的距离,横截面上的最大正应力为
max M ymax Iz
WZ
IZ ymax
材料力学-第五章-弯曲应力

弯曲正应力强度条件的应用:
max
M max WZ
1、强度校核
M max
WZ
2、梁的截面尺寸设计
M max
WZ
3、确定许可载荷
Mmax WZ
例1 已知:F=10KN,a=1.2m F
3F
F
b
[σ]=10MPa,h/b=2
试:选择梁的截面尺寸。 解: 由对称性,可得:
故: b 121.6mm h 2b 243.2mm
选取截面为: 125 250 mm 2
例2 已知:l=1.2m[σ]=170MPa,
18号工字钢,不计自重。
F
A
求:F的最大许可值。
解: 作弯矩图,由图可得:
M
| M |max Fl 1.2F N m
查附录A表4,
Wz 185103 mm3 1.85104
的变形:
变形前: bb oo d x
变形后: oo d d x
b'b' ( y)d
bb的线应变为
( y)d d d
即: y
由实验观察,横截面变形后仍保持为平面,且仍与轴线垂直,γ=0
2、物理关系
由假设(2)知,各纵向纤维
(3)矩形横截面上宽下窄。
二、两个假设
(1)平面假设
(2)单向受力假设: 纵向纤维间互不挤压, 即单向拉压。
Fa
D
B
z y
z y
三、理论分析
从以下三方面来分析:
1、变形几何关系
中性层:梁中纤维即不 伸长也不缩短的那层。
中性轴:中性层与横截 面的交线。
材料力学第五章 弯曲应力-正式

4.静力关系
横截面上内力系为垂直于横截 面的空间平行力系,这一力系简化 得到三个内力分量.
M
Mz
z
内力与外力相平衡可得
O
y
dA
x σdA
FN
FN A dFN AσdA 0
A A
(1)
My
y
M iy dM y zσ dA 0 (2)
dFN σ d A
d M y z dA
29
S * y1dA
* z A
z
h/2
y
FS S FS h ( y2 ) I zb 2 I z 4
* z
b h 2 y1bdy1 ( y ) 2 4
2
2
y1
y A1
O B1 A
x
d y1
m1
B
可见,切应力沿截面高度按抛物线规律变化. y=±h/2(即在横截面上距中性轴最远处)0 y=0(即在中性轴上各点处),切应力达到最大值
明,当
l / h 5 时, 用纯弯曲时的正应力公式计算横力弯曲
时横截面上的正应力,精度可以满足工程要求。 横力弯曲时,等直杆横截面上的最大正应力在弯矩最大截面、
离中性轴最远处:
σ max
M max ymax M max Iz W Iz W ymax
17
其中,抗弯截面系数为:
二、强度条件
x
m
n dx
m’
z
m
y
n x
B
z x
B1 A B y
h
O
A1 B1 A
FN1
ḿ
FN2
m’
y
m
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学第5章弯曲应力

M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
材料力学第五章-弯曲应力知识分享

材料力学第五章-弯曲应力注:由于本书没有标准答案,这些都是我和同学一起做的答案,其中可能会存在一些错误,仅供参考。
习 题6-1厚度mm h 5.1=的钢带,卷成直径 D=3m 的圆环,若钢带的弹性模量E=210GPa ,试求钢带横截面上的最大正应力。
解: 根据弯曲正应力公式的推导: Dy E yE 2..==ρσ MPa D h E 1053105.110210.39max =⨯⨯⨯==-σ 6—2直径为d 的钢丝,弹性模量为E ,现将它弯曲成直径为D 的圆弧。
试求钢丝中的最大应力与d /D 的关系。
并分析钢丝绳为何要用许多高强度的细钢丝组成。
解: ρσyE .= Dd E ED d .22max ==σ max σ与Dd成正比,钢丝绳易存放,而引起的最大引力很小.6—3 截面形状及尺寸完全相同的一根钢梁和一根木梁,如果所受的外力也相同,则内力是否相同?横截面上正应力的变化规律是否相同?对应点处的正应力与纵向线应变是否相同? 解: 面上的内力相同,正应力变化规律相同。
处的正应力相同,线应变不同6—4 图示截面各梁在外载作用下发生平面弯曲,试画出横截面上正应力沿高度的分布图.6—5 一矩形截面梁如图所示,已知F=1.5kN 。
试求(1) I —I 截面上A 、B 、C 、D 各点处的正应力; (2) 梁上的最大正应力,并指明其位置。
解:(1)m N F M .3002.0*10*5.12.0*3===MPa M I y M z A 11110*30*1812*10*15*.1233===--σ A B σσ-= 0=C σMPa M D 1.7410*30*1812*10*)5.15(*1233==--σ MPa W Fl z 5.16610*30*186*10*300*10*5.19233max ===--σ 位置在:固定端截面上下边缘处。
6—6 图示矩形截面简支梁,受均布载荷作用。
已知载荷集度q=20kN /m ,跨长l =3,截面高度=h 24cm ,宽度=b 8cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Q=60kN/m
M ma x q2/L 86 0 3 2/86.5 7 kN
A
B 求应力
1m
2m
1
Izb 13 h 211 2 12 0 3 8 10 10 25 .8 3 1 2 50 m 4
180 30
12
求曲率半径
+
M
qL 2
8
M1 Mmax
x
1E M 1 zI20 650 .8 03 1 2 019 .4m 4
§5-3 梁横截面上的剪应力
一、 矩形截面梁横截面上的剪应力
x dx
图a y
M(x)
Q(x)+d Q(x)
图b
Q(x) dx M(x)+d M(x)
z
t1
x
s
t y s1 图c
dx 图a
Q(x)+d Q(x)
N2
(MdM)Sz Iz
t1
dM dx
Sz bIz
QSz bIz
图b
由剪应力互等பைடு நூலகம்
Q(x)
s
dx
t1
M(x)+d z x
t
M(xS ) zyc Ath 2t2 (yyb )(h 2t1y) Qbb 2I(Szh 42y2)
y s1 图c
y
x
y
...... (1)
(二)物理关系:
假设:纵向纤维互不挤压。于是,任意一点均处于单项应
力状态。
sx
sx
sx Ex Ey....(..2)
(三)静力学关系:
N x A sd A A E d A yE A y d A E z S 0
Sz 0z(中性 )轴过形心
Iz为整个截面对z轴之惯性矩;b 为y点处截面宽度。 2、几种常见截面的最大弯曲剪应力
①工字钢截面:
Q
t max
Af
; Af —腹板的面积。
t m in t max
结论: 翼缘部分tmax«腹板上的tmax,只计算腹板上的tmax。
铅垂剪应力主要腹板承受(95~97%),且tmax≈ tmin
Q
B
1 Q=60kN/m
例1 受均布载荷作用的简支梁如 图所示,试求:
A
B (1)1—1截面上1、2两点的正
1m 1
2m
12 z
120 y
180 30
应力; (2)此截面上的最大正应力; (3)全梁的最大正应力; (4)已知E=200GPa,求1—1截
面的曲率半径。
+
M
qL 2
8
M1 Mmax
x 解:画M图求截面弯矩
1
第五章 弯曲应力
§5–1 引言 §5–2 平面弯曲时梁横截面上的正应力 §5–3 梁横截面上的剪应力 §5–4 梁的正应力和剪应力强度条件 梁的合理截面 §5–5 非对称截面梁的平面弯曲开口薄壁截面的弯曲中心 §5–6 考虑材料塑性时的极限弯矩
2
§5-1 引言
1、弯曲构件横截面上的(内力)应力
内力
剪力Q 弯矩M
剪应力t 正应力s
2、研究方法
平面弯曲时横截面s
平面弯曲时横截面t
例如:
P1
纯弯曲梁(横截面上只有M而无Q的情况) 剪切弯曲(横截面上既有Q又有M的情况)
P2
纵向对称面
aP A
Q
Pa
纯弯曲(Pure Bending):
B 某段梁的内力只有弯矩
没有剪力时,该段梁的变 形称为纯弯曲。如AB段。 x
EIz 杆的抗弯刚度。
s x
My Iz
...... (4)
(四)最大正应力:
s max
M Wz
… …(5)
W z yIm zax 抗 弯 截 面 模 量 。
d
a d
D
圆 环 W zyIm z a x3D32(1a4)
D
b
回字 框 W zyIm z axB62 H (1B b3h 3 H )
1、两点假设: 剪应力与剪力平行; 矩中性轴等距离处,剪应力
相等。
2、研究方法:分离体平衡。
在梁上取微段如图b; 在微段上取一块如图c,平衡
t X N 2 N 1 1 b ( d ) x 0
s N1A
dAM ydAMzS
I A z
Iz
x
y M(x)
W zIz/26 .4 8 1 4 0 m 3
z
120 y
s1
s2
M1y Iz
+
x
6060105 61.7MPa
5.832
M
qL 2
8
M1 Mmax
1 Q=60kN/m
A
B
s1maxW M z166.408 14 09.26MP
1m 1
2m
12 120
180 30
sma xM W m z a x6 6.4.7 5 814010.2M 4 P
Q
t矩
Q 2Iz
h2 (
4
y2)
tmax23Q A1.5t
t方向:与横截面上剪力方向相同;
t大小:沿截面宽度均匀分布,沿高度h分布为抛物线。
最大剪应力为平均剪应力的1.5倍。
二、其它截面梁横截面上的剪应力
1、研究方法与矩形截面同;剪应力的计算公式亦为:
t
QS
z
1 bIz
其中Q为截面剪力;Sz为y点以下的面积对中性轴之静矩;
3.推论 平面假设:横截面变形后仍为平面,只是绕中性轴发生转动, 距中性轴等高处,变形相等。
横截面上只有正应力。
(可由对称性及无限分割法证明)
4. 几何方程:
dq
a
b
A c
B d
O A1
) ))
)
x
A1B1ABA1B1O1O
AB
OO1
O1 B1
x
(y)dqdqy
dq
故工字钢最大剪应力
t max
Af
;
②圆截面:
tmax
4Q4t
3A 3
③ 薄壁圆环:
tmax2QA2t
④槽钢: Q
t 腹板 上QzS;合力 R, 为 RQ
bzI QA
x M
§5-2 平面弯曲时梁横截面上的正应力
纵向对称面 中性层
一、 纯弯曲时梁横截面 上的正应力
中性轴 (一)变形几何规律:
a
c
b
d
M
a
c
b
d
1.梁的纯弯曲实验
横向线(a b、c d)变
形后仍为直线,但有转动; M 纵向线变为曲线,且上缩
下伸;横向线与纵向线变 形后仍正交。
2.两个概念 中性层:梁内一层纤维既不伸长也不缩短,因而纤维不 受拉应力和压应力,此层纤维称中性层。 中性轴:中性层与横截面的交线。
s M yA (d A )zA Ed A y z E A yd A z E y z I0 (对称面)
s M zA (d A )yA E 2d y A EA y 2 d A E z IM
1 Mz EI z
… …(3)