圆柱和圆锥的整理和练习1
人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。
A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。
A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。
11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。
13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。
14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。
六年级下学期 圆柱与圆锥 详细知识点总结+重难点题型训练+详细答案 很全面

圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
冀教版六年级数学下册 第4单元 圆柱和圆锥 讲义+练习(含答案)

1 圆柱和圆柱的侧面积1.一个长20厘米,宽4厘米的长方形面积为( )。
2.找找生活中哪些物体的形状是圆柱。
3.阅读教材第28页例题。
议一议:怎样计算罐头盒的侧面积?分析与解答:罐头盒是一个( ),沿着它的一条高将它的侧面剪开,可得到一个( ),因此,计算这个罐头盒的侧面积,即计算这个( )的面积。
其中,( )等于罐头盒的底面周长,( )等于罐头盒的高,所以,罐头盒的侧面积=( )。
4.(1)圆柱有( )个相同的底面,底面是( ),圆柱的上、下两个面之间的距离叫圆柱的( )。
(2)圆柱的侧面是一个( )面。
侧面展开是一个( )形。
这个( )形的长等于圆柱的( ),宽等于圆柱的( )。
5.圆柱的侧面积=( )×( )6.判断。
(对的画“ ”,错的画“✕”)(1)圆柱的侧面展开后一定是长方形。
( )(2)如果一个物体上、下两个面是面积相等的两个圆,那么它的形状一定是圆柱。
( )(3)圆柱的高有无数条。
( )7.把一个圆柱的侧面展开得到一个正方形,这个圆柱的底面半径是3分米,圆柱的侧面积是多少平方分米?(得数保留整数)知识准备:圆的面积、长方形的面积。
学具准备:罐头盒。
巩固练习1.下面哪些物体是圆柱?在下面的括号里画“√”。
2.填空题。
(1)把一个棱长6厘米的正方体削成一个最大的圆柱,圆柱的底面直径是( )厘米,高是( )厘米。
(2)一个圆柱的底面直径是3厘米,高也是3厘米,侧面展开的长方形的长是( )厘米,宽是( )厘米。
(3)一个圆柱的底面周长是16分米,高是8分米,侧面积是( )平方分米。
(4)一个圆柱的底面直径是10厘米,高是8厘米,侧面积是( )平方厘米。
(5)一个圆柱的底面半径是0.3米,高是0.5米,侧面积是( )平方米。
3.判断题。
(对的画“√”,错的画“✕”)(1)圆柱的高只有一条。
( )(2)圆柱两个底面的直径相等。
( )(3)圆柱的底面周长和高相等时,展开后的侧面一定是个正方形。
【精品】圆柱与圆锥练习题(培优)

【精品】圆柱与圆锥练习题(培优)一、圆柱与圆锥1.一个圆锥沙堆,底面半径是2米,高1.5米,每立方米的黄沙重2吨,这堆沙重多少吨? 【答案】解: ×3.14×22×1.5×2= ×3.14×4×1.5×2=6.26×2=12.56(吨)答:这堆沙重12.56吨。
【解析】【分析】圆锥的体积=底面积×高×,根据体积公式计算出沙子的体积,再乘每立方米黄沙的重量即可求出总重量。
2.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。
大棚内的空间有多大?【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)答:大棚内的空间有23.55立方米。
【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.3.有一个底面直径为20厘米的装有一些水的圆柱形玻璃杯,已知杯中水面距杯口2.24厘米.若将一个半径为9厘米的圆锥形铅锤完全浸入水中,水会溢出314立方厘米.求铅锤的高.【答案】解:3.14×(20÷2)2×2.24+314=3.14×100×2.24+314=703.36+314=1017.36(立方厘米),1017.36 ÷(3.14×92)=1017.36×3÷254.34=3052.08÷254.34=12(厘米),答:铅锤的高是12厘米。
【解析】【分析】根据题意可知,先求出圆锥形铅锥的体积,用圆柱形玻璃杯上面的空白部分的体积+溢出的水的体积=圆锥形铅锥的体积,然后用圆锥形铅锥的体积÷÷铅锥的底面积=铅锥的高,据此列式解答.4.我们熟悉的圆柱、长方体、正方体等立体的图形都称作直柱体,如图所示的三棱柱也是直柱体。
圆柱与圆锥的综合练习题1-12

圆柱和圆锥的练习题1一、填空。
(第1题4分,其余每题2分,共22分。
)1. 1.2平方分米=()平方厘米15厘米=()分米68立方分米=()升4000毫升=()立方厘米。
2. 用一张长18厘米,宽8厘米的长方形纸围成一个最大的圆柱,圆柱的侧面积是()平方厘米。
3. 等底等高的圆柱体和圆锥体,已知圆锥的体积是3立方米,圆柱的体积是()。
4. 一个圆柱体,底面周长是12.56厘米,高是5厘米,侧面积是()平方厘米。
5. 一个圆锥的底面半径是2分米,高是3分米,它的体积是()平方分米。
6. 一个盛满水的圆锥形容器,水深30厘米,将水全部倒入和它等底等高的圆柱形容器里,水深()厘米。
7. 一个圆锥和一个圆柱等底等高,已知圆锥的体积比圆柱的体积少36立方分米,那么圆柱的体积是()立方分米,圆锥的体积是()立方分米。
8.两个高都是18厘米的圆柱体的底面半径之比是5:4,它们的体积之比是():()。
9. 一个圆柱体的侧面展开是一个正方形,这个正方形的边长是6.28厘米,那么,这个圆柱体的底面半径是()厘米。
10. 一根圆柱形的木料底面周长是12.56分米,高是4米。
如果把它截成三段小圆柱,表面积增加()平方分米。
二、判断题。
(10分)(对的请打“√”,错的请打“×”。
)1.圆柱比与它等底等高的圆锥体积多2倍。
()2.等底等高的长方体、正方体、圆柱体、圆锥体的体积都相等。
()3. 圆柱体的底面积扩大2倍,高不变,它的体积也扩大2倍。
()4. 两个圆柱的侧面积相等,体积也一定相等。
()5. 一个圆柱形水桶能装水多少升,就是求这只水桶的体积。
()三、选择正确答案的序号填空。
(10分)1、在地面挖一个深2米,底面半径1米的圆柱形油池,这个油池的占地面积是()平方米。
A.6.28 B. 3.14 C. 12.562、如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是底面直径的()倍。
A.3.14 B.6.28 C.∏3、做一节圆柱形烟囱需要多少铁皮,是求烟囱的()A.表面积B.侧面积C.体积。
圆柱圆锥练习题以及答案

圆柱圆锥练习题以及答案圆柱圆锥练习题以及答案圆柱和圆锥是几何学中常见的几何体,它们具有广泛的应用。
在学习几何学时,我们经常会遇到与圆柱和圆锥相关的练习题。
下面,我将给大家提供一些圆柱和圆锥的练习题以及相应的答案,希望能帮助大家更好地理解和掌握这些概念。
练习题一:计算圆柱的体积已知一个圆柱的底面半径为5cm,高度为10cm,求其体积。
解答:圆柱的体积公式为V = πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = 3.14 × 5² × 10 = 785 cm³。
因此,该圆柱的体积为785立方厘米。
练习题二:计算圆锥的体积已知一个圆锥的底面半径为8cm,高度为12cm,求其体积。
解答:圆锥的体积公式为V = (1/3)πr²h,其中r为底面半径,h为高度。
将已知数据代入公式,可得V = (1/3) × 3.14 × 8² × 12 = 803.84 cm³。
因此,该圆锥的体积为803.84立方厘米。
练习题三:计算圆柱的表面积已知一个圆柱的底面半径为6cm,高度为15cm,求其表面积。
解答:圆柱的表面积由底面积和侧面积组成。
底面积为πr²,侧面积为2πrh。
将已知数据代入公式,底面积为3.14 × 6² = 113.04平方厘米,侧面积为2 ×3.14 × 6 × 15 = 565.2平方厘米。
因此,该圆柱的表面积为113.04 + 565.2 = 678.24平方厘米。
练习题四:计算圆锥的表面积已知一个圆锥的底面半径为10cm,高度为16cm,求其表面积。
解答:圆锥的表面积由底面积、侧面积和底面到顶点的距离构成。
底面积为πr²,侧面积为πrl,其中l为底面到顶点的距离。
根据勾股定理,l = √(r² + h²)。
圆柱圆锥题型整理

圆柱和圆锥题型总结一、瓶子正倒放不论是正放还是倒放,瓶子的容积不变,正放酒的高度加上倒放时空余部分的高度,就是瓶子的高度一个容积为2500ml的饮料瓶,当瓶子正放时瓶内的饮料高为16cm,把瓶盖拧紧倒立,无饮料的部分高为4cm,瓶中有饮料多少L?有一种酒瓶,容积为286立方厘米,当瓶口向上时,瓶内酒的高度是18厘米,当瓶口向下时,余下部分的高度是4厘米,瓶内酒有多少毫升?一个药瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示,它的容积为26.4cm3,瓶子正放时,瓶内药水液面高6cm,瓶子倒放时,空余部分高2cm,则瓶内药水的体积是多少立方厘米?一满瓶饮料,爸爸喝了一些后液面高度是10cm,若把瓶盖拧紧后倒置放平,空余部分高8cm,已知饮料瓶的内直径是6cm,这瓶饮料原有多少毫升?二、切割问题1.圆柱切割一个圆柱形木块按图甲中的方式切成形状、大小四块,表面积增加了96cm2,按图乙的方式切成形状、大小相同的三块,表面积增加了50.24cm2,若把它削成一个最大的圆锥,体积减少多少立方厘米?把一个高为5cm的圆柱从直径处沿高剖成两个半圆柱,这两个半圆柱的表面积比原来增加80cm2,原来圆柱的体积是多少立方厘米?2.削成最大的圆柱(圆锥)三、浸水问题1、完全浸没物体体积=水上升体积一个高40厘米的圆柱形水桶,底面半径是20厘米,这个桶盛有半桶水,小红将一块石头完全浸入水桶中,水面比原来上升了3厘米,这块石头的体积是多少?在一个底面直径是40厘米的圆柱形水桶里,浸没了一根半径是10厘米的圆柱形铁块.当铁块从水桶里取出后,水面下降了8厘米,这根圆柱形铁块的长是多少厘米?一个圆柱形容器内,放有一个长方体铁块,现在打开一个水龙头往容器中注水3分钟,水恰好没过铁块的顶面;又过了18分钟后,水灌满了容器.已知容器的高度是50cm,铁块的高度是20cm,那么铁块的底面积与容器底面积的比是多少?在一个底面直径10厘米圆柱体形杯中装有水,水里浸没一个底面半径是2厘米的圆锥形铅锤,当铅锤取出时,水面下降2厘米,铅锤的高是多少厘米?一个底面半径是6厘米的圆柱形容器(厚度不计)里面装有一些水,水中浸没着一个高9厘米的圆锥形铅锥.当铅锤从水中取出后,水面下降了0.5厘米.这个铅锤的底面积是多少?一个圆柱形铁盒,底面半径是10厘米,高是18.84厘米,现在圆柱形铁盒正立在桌上,铁盒中盛有部分水,水面高度是12.56厘米.如果往这个铁盒中放入若干个长3.14厘米,宽1.57厘米,高1厘米的长方体铁块,至少加入多少个铁块后,使水刚好不外溢?一个底面直径为20厘米的圆柱形容器中装有水,水中放着一个底面直径为12厘米,高为5厘米的圆锥体铅锤,当铅锤从水中取出后,容器中水面高度下降了几厘米?有一个底面积是300平方厘米,高10厘米的圆柱体容器,里面盛有5厘米深的水。
圆柱和圆锥的整理和练习1教案

“整理与练习”1教学内容:九年义务教育六年制小学数学第十二册P33、34教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。
2、熟练地运用公式进行计算,让学生感受数学与生活的联系。
3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。
教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。
教学难点:灵活地运用相关知识解决实际问题。
设计理念:本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。
通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行自我评价和反思。
教学步骤教师活动学生活动一、整理知识、形成网络。
1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知识向大家展示一下。
2、圆柱和圆锥有什么特征?请同学们完整地表述一下。
3、强化公式的推导过程。
圆柱体体积公式是什么?请说一说它的转化和推导过程。
圆锥体体积公式是什么?说一说它的转化和推导过程?4、根据学生的复习整理,让学生把下表填写完整。
图形特征计算公式圆柱1、上下粗细一样2、底面是两个相等的圆3、侧面是一个曲面,沿高展开是一个长方形或正方形S底=πrS侧=ch=πdh=2πrhS底=2s底+s侧V柱=sh=πr h圆锥1、有一个顶点2、底面是一个圆3、侧面是一个曲面,沿母线展开是一个扇形S底=πrV锥=1/3sh=1/3πr h5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?根据学生的讨论得出:(1)根据圆柱和圆锥的特征判断圆柱和圆锥。
(2)针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。
(3)能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。
学生先互相交流一下自己整理的结果。
学生填写表格,并互相提问表格中的有关内容学生分组讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“整理与练习”1
教学内容:九年义务教育六年制小学数学第十二册P33、34
教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。
2、熟练地运用公式进行计算,让学生感受数学与生活的联系。
3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实
际问题的能力。
教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。
教学难点:灵活地运用相关知识解决实际问题。
设计理念:本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。
通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行
自我评价和反思。
教学步骤教师活动学生活动
一、整
理知
识、形
成网
络。
1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请
各位同学把自己整理好的知识向大家展示一下。
2、圆柱和圆锥有什么特征?请同学们完整地表述一下。
3、强化公式的推导过程。
圆柱体体积公式是什么?请说一说它的转化和推导过程。
圆锥体体积公式是什么?说一说它的转化和推导过程?
4、根据学生的复习整理,让学生把下表填写完整。
图形特征计算公式
圆柱1、上下粗细一样
2、底面是两个相等的圆
3、侧面是一个曲面,沿高展开
是一个长方形或正方形
S底=πr
S侧=ch
=πdh
=2πrh
S底=2s底+s侧
V柱=sh
=πr h
圆锥1、有一个顶点
2、底面是一个圆
3、侧面是一个曲面,沿母线
展开是一个扇形
S底=πr
V锥=1/3sh
=1/3πr h
5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解
决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?
根据学生的讨论得出:
(1)根据圆柱和圆锥的特征判断圆柱和圆锥。
(2)针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。
(3)能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。
学生先互相
交流一下自
己整理的结
果。
学生填写表
格,并互相
提问表格中
的有关内容
学生分组讨
论。
二、运用知
识、解决
问题。
1、相关概念分得清。
(1)把圆柱的侧面沿高展开后通常得到一个(),这
个长方形的长就是圆柱的(),这个长方形的宽就是
圆柱的(),这个长方形的面积就是圆柱的(),
所以圆柱的侧面积等于()。
当圆柱的
()和()相等时,圆柱的侧面展开后是一个正方形。
(2)一个圆柱底面半径是1厘米,高是 2厘米。
它的侧面积是
( )平方厘米。
(3)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱
的体积是()立方米,圆锥的体积是()立方
米。
(4)一个圆柱形水箱,从里面量底面周长是18.84米,高3米,
它最多能装()立方米水。
(5)一个圆锥形机器零件,体积是125.6立方厘米,底面半径
是2厘米,这个圆柱的高是( )厘米。
2、有关计算算得准。
(1)、一个圆柱形铁皮盒,底面半径2分米,
高5分米。
①如果沿着这个铁皮盒的侧面贴一圈商标纸,需要多少平方分
米的纸?
②某工厂做这样的铁皮盒100个,需要多少铁皮?
③如果用这个铁皮盒盛食品,最多能盛多少升?
(2)、一个圆锥形沙堆,底面直径8米,高3米,这个沙堆占
地多少平方米?如果每立方米沙重15千克,这堆沙一共重多少
千克?
3、解决问题用得妙。
(1)、一个长9分米的圆柱形木材,底面半径是4分米。
如果
将它加工成一个最大的圆锥,这个圆锥的体积是多少立方分
米?削去部分的体积是多少?
(2)、一个压路机的滚筒的横截面直径是1米,它的长是2米。
如果滚筒每分钟转动8周,5分钟能压路多少平方米?
(3)、一个圆柱形钢块,底面半径和高都是6分米,把它熔铸
成一个等高的圆锥,这个圆锥的底面积是多少平方分米?
学生说一说
求容积为什
么要从里面
量。
学生讨论一
下每一个问
题各是求什
么
三、综合运用、提高能力。
1、八仙过海,各显神通:
(1)在一个直径是20厘米的圆柱形容器里,放入一个底面半径3
厘米的圆锥形铁块,全部浸没在水中,这时水面上升0.3厘米。
圆锥形铁块的高是多少厘米?
(2)一根圆柱形木料,底面直径20厘米,长40厘米,现需要
沿直径把它对半锯开,锯开后每根木料的表面积和体积是多
少?”
2、总结复习,畅谈收获。
3、作业:34页3、4
学生分组讨
论。