专题三 函数的实际应用与决策

合集下载

决策专题教学大纲

决策专题教学大纲

决策专题教学大纲决策专题教学大纲在当今社会中,决策能力被认为是一项重要的素质。

无论是在个人生活中还是在职场中,我们都需要做出各种各样的决策。

然而,决策并非一项容易掌握的技能,它需要我们具备一定的知识和技巧。

为了帮助学生提高决策能力,决策专题教学应运而生。

决策专题教学旨在通过系统的学习和实践,培养学生的决策思维和决策能力。

它不仅仅是简单地告诉学生如何做出决策,而是通过理论和实践相结合的方式,让学生深入了解决策的本质和过程,学会运用各种工具和技巧进行决策分析,培养他们的判断力和决策能力。

决策专题教学大纲的第一部分是决策理论的介绍。

在这一部分中,学生将学习决策的基本概念、决策的类型和决策的过程。

他们将了解到决策是一个复杂的过程,需要考虑到多个因素和变量。

同时,他们还将学习到一些经典的决策理论,如期望效用理论和主观理论等。

通过学习这些理论,学生将能够更好地理解决策的本质和原理。

在第二部分中,学生将学习决策分析的方法和工具。

决策分析是指通过一系列的步骤和工具,对决策问题进行分析和评估,从而找到最佳的决策方案。

在这一部分中,学生将学习到一些常用的决策分析方法,如决策树、成本效益分析和风险分析等。

他们将学会如何运用这些方法和工具,对不同的决策问题进行分析和评估,从而做出明智的决策。

第三部分是决策实践的环节。

在这一部分中,学生将有机会参与到真实的决策案例中,通过实践来提高他们的决策能力。

他们将分组进行决策模拟,模拟真实的决策场景,面对各种挑战和困难,学会如何在复杂的环境中做出决策。

通过这种实践,学生将能够更好地理解决策的实际应用,并提高他们的决策能力。

最后一部分是决策反思和总结。

在这一部分中,学生将回顾他们在决策过程中的经验和教训,进行反思和总结。

他们将思考自己在决策中的问题和不足之处,并提出改进的方案。

通过这种反思和总结,学生将能够不断提高他们的决策能力,并在将来的决策中做出更加明智的选择。

总之,决策专题教学大纲旨在通过系统的学习和实践,培养学生的决策思维和决策能力。

中考数学 专题三 方案设计与决策型问题.ppt

中考数学 专题三 方案设计与决策型问题.ppt
(1)问:始终与△AGC相似的三角形有________及________;
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图②的情形
说明理由);
(3)问:当x为何值时,△AGH是等腰三角形. 【答案】解:(1)△HAB △HGA (2)∵∠GAC+∠CAH=∠GAH=45°,∠ACB=∠H+∠CAH=45°, ∴∠GAC=∠H. 又∵∠B=∠ACG=45°,∴△AGC∽△HAB.
若只去A超市购买的费用为: 9x+180=9×12+180=288(元). 若在B超市购买10副球拍,去A超市购买余下的乒乓球的费用为:
200+0.9×(12-3)×10=281(元).
∵281<288,∴最佳方案为:只在B超市购买10副球拍,同时获得赠送 30个乒乓球,然后去A超市按九折购买90个乒乓球.
【解析】连接 AD、BD,因为 AB 为⊙O 的直径,∴∠ADB=90°. 易证△ACD∽△DCB,得DACC=DCCB,即 DC2=AC·CB.
故正方形的面积若等于长方形的面积,则正方形的边长为
DC. 【答案】DC
三、解答题(共90分) 3.(15分)(2012中考预测题)某电信公司给顾客提供了两种手机上网 计费方式:
【答案】解:(1)设每个书包的价格为x元,则每本词典的价格为(x- 8)元,根据题意,得3x+2(x-8)=124.
解得x=28,∴x-8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)设购买书包y个,则购买词典(40-y)本,根据题意,得
1 000-[28y+2040-y]≥100,
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入 某一规格的纸箱.供应这种纸箱有两种方案可供选择:

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

高三数学复习专题目录.docx

高三数学复习专题目录.docx

高三数学复习专题目录专题一、数列与不等式数列(1)数列(2)专题二、三角函数三角函数(1)三角函数(2)专题三、立体几何立体几何(1)立体几何(2)专题一、数列与不等式一.基础知识梳理数列:1. 了解数列的概念和几种简单的表示方法(列表、图像、通项公式)2.了解数列是自变量为正整数的一类函数.3.了解递推公式是给出数列的一种方法,能据递推公式写出前几项,同时求出通项公式.4,理解等差、等比数列的概念,掌握等差数列的通项公式与前n项公式,并能解决简单实际问题.5.体会等差数列、等比数列与一次函数,指数函数,二次函数的关系.不等式:(必修部分)1.一元二次不等式^2+^ + c>0(cz>0)与相应的函数y = ax2+bx+c(a>0\相应的方程ax2+bx +c = 0(«〉。

)之间的关系2.一元二次不等式恒成立情况小结:J G >0 [a<0 ax2 + bx + c>0(a/0)恒成立 o。

,ax2 +bx + c <0(a/0)恒成立o。

3.二元一次不等式表示的平面区域:直线I: ax + by + c = 0把直角坐标平面分成了三个部分:(1)直线/上的点(x, y)的坐标满足ax +by+ c = 0(2)直线Z一侧的平面区域内的点(x, y)^^ax + by + oO(3)直线Z另一侧的平面区域内的点(x,y)满足ox + /<y + c<0所以,只需要在直线Z的某一侧的平面区域内,任取一特殊点(将,光),从ax0+by0+c值的正负,即可判断不等式表示的平面区域。

4.线性规划:如果两个变量x,y满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题.其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解.5.基本不等式:⑴如果"eR,那么/+〃 2 2沥,(当且仅当“=。

[高中数学新课程标准]高中数学新课程标准

[高中数学新课程标准]高中数学新课程标准

[高中数学新课程标准]高中数学新课程标准篇一: 高中数学新课程标准高中数学新课程标准第一部分前言数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。

[]数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。

数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在许多方面直接为社会创造价值,推动着社会生产力的发展。

数学在形成人类理性思维和促进个人智力发展的过程中发挥着独特的、不可替代的作用。

数学是人类文化的重要组成部分,数学素质是公民所必须具备的一种基本素质。

数学教育作为教育的组成部分,在发展和完善人的教育活动中、在形成人们认识世界的态度和思想方法方面、在推动社会进步和发展的进程中起着重要的作用。

在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的基础,是终身发展的需要。

数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基础知识、基本技能、基本思想,使学生表达清晰、思考有条理,使学生具有实事求是的态度、锲而不舍的精神,使学生学会用数学的思考方式解决问题、认识世界。

一、课程性质高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。

高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。

高中数学课程有助于学生认识数学的应用价值,增强应用意识,形成解决简单实际问题的能力。

高中数学课程是学习高中物理、化学、技术等课程和进一步学习的基础。

同时,它为学生的终身发展,形成科学的世界观、价值观奠定基础,对提高全民族素质具有重要意义。

二、课程的基本理念1.构建共同基础,提供发展平台高中教育属于基础教育。

[]高中数学课程应具有基础性,它包括两方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。

三角函数的乘除计算专题

三角函数的乘除计算专题

三角函数的乘除计算专题引言三角函数是数学中的重要概念,它们在几何、物理、工程等领域有着广泛的应用。

本文将针对三角函数的乘除计算进行专题讨论,旨在帮助读者更好地理解和应用三角函数乘除运算。

1. 三角函数的定义在开始讨论乘除运算之前,首先需要明确三角函数的定义。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

它们是通过在单位圆上取点坐标来定义的,具体定义如下:- 正弦函数(sin):在单位圆上,对于任意角度θ,取与角度θ对应的点的y坐标,记为sin(θ)。

- 余弦函数(cos):在单位圆上,对于任意角度θ,取与角度θ对应的点的x坐标,记为cos(θ)。

- 正切函数(tan):在单位圆上,对于任意角度θ,取与角度θ对应的点的y坐标除以x坐标,记为tan(θ)。

2. 三角函数的乘法计算当需要计算两个三角函数的乘积时,可以利用三角函数的基本性质来进行计算。

以下是几个常见的乘法公式:- sin(θ) * cos(θ) = (sin(θ + cos(θ))) / 2- sin(θ) * sin(θ) = (1 - cos(2θ)) / 2- cos(θ) * cos(θ) = (1 + cos(2θ)) / 2这些乘法公式可以通过三角函数的定义和三角恒等式推导得出,我们可以根据具体的计算需求选择合适的公式进行计算。

3. 三角函数的除法计算三角函数的除法运算可以通过乘法运算来转换为求倒数的运算。

例如,如果需要计算tan(θ) / sin(θ),可以先计算sin(θ)的倒数,然后再与tan(θ)相乘。

具体计算步骤如下:1. 计算sin(θ)的倒数,即1 / sin(θ)。

2. 将tan(θ)与1 / sin(θ)相乘,得到最终结果。

需要注意的是,由于三角函数在某些角度上的值可能为零,因此在进行除法计算时,需要特别注意是否存在除数为零的情况,并进行相应的处理。

结论本文针对三角函数的乘除计算进行了专题讨论,介绍了三角函数的定义、乘法计算和除法计算的基本方法。

中考数学复习:专题3-15 二次函数在经济决策问题中的应用

中考数学复习:专题3-15 二次函数在经济决策问题中的应用

二次函数在经济决策问题中的应用【专题综述】经济问题是中考中的热点问题,在今年的中考试题中,出现了很多和经济有关的函数型试题.解决此类试题,需要从已知条件中捕捉函数信息,通过函数关系,进一步解决实际问题.本文就二次函数在经济决策问题中的应用举例说明.【方法解读】例1:枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些 枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克? 解:设增种x 棵树,果园的总产量为y 千克, 依题意得:y =(100 + x )(40 – 0.25x )=4000 – 25x + 40 x – 0,25x 2 = - 0.25 x 2 + 15x + 4000 因为a = - 0.25〈0,所以当1530220.25b x a =-=-=-⨯,y 有最大值 2244(0.25)400015422544(0.25)ac b y a -⨯-⨯-===⨯-最大值答:(略)例2我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销. 经过调查,得到如下数据:(1)把上表中x 、y 的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能..超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?销售单价x (元∕件) …… 30 40 50 60 …… 每天销售量y (件)……500400300200……解:(1)画图如右图;由图可猜想y与x是一次函数关系,设这个一次函数为y= k x+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴5003040040k bk b=+⎧⎨=+⎩解得10800kb=-⎧⎨=⎩∴函数关系式是:y=-10x+800(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.例3、某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z (元)会相应降低,且z 与x 之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y 和每亩蔬菜的收益z 与政府补贴数额x 之间的函数关系式; (3)要使全市这种蔬菜的总收益w (元)最大,政府应将每亩补贴数额x 定为多少?并求出总收益w 的最大值.解:(1)政府没出台补贴政策前,这种蔬菜的收益额为30008002400000⨯=(元)(2)由题意可设y 与x 的函数关系为800y kx =+ 将(501200),代入上式得120050800k =+ 得8k =所以种植亩数与政府补贴的函数关系为8800y x =+同理可得每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+ (3)由题意(8800)(33000)u yz x x ==+-+224216002400000x x =-++224(450)7260000x =--+所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大为7260000元.例4、 研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润? 解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).∵w w >乙甲,∴应选乙地.【强化训练】1. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2.2.(2017湖北省荆州市)荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:116(140)4146(4180)2t t t p t t t ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩,为整数,为整数 ,日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式? (2)哪一天的日销售利润最大?最大利润是多少? (3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m (m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.3.(2017湖北省荆门市)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y 1(百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y 2(百件)与时间t (t 为整数,单位:天)的部分对应值如图所示.(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y 1与t 的变化规律,并求出y 1与t 的函数关系式及自变量t 的取值范围;(2)求y 2与t 的函数关系式,并写出自变量t 的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y (百件),求y 与t 的函数关系式;当t 为何值时,日销售总量y 达到最大,并求出此时的最大值.4.(2017湖北省随州市)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大?时间x (天) 1≤x <9 9≤x <15 x ≥15售价(元/斤) 第1次降价后的价格 第2次降价后的价格销量(斤) 80﹣3x 120﹣x 储存和损耗费用(元)40+3x3x 2﹣64x +400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?5.(2017湖北省襄阳市)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用1y (元)与x (m 2)的函数关系式为()()11206006001000k x x y k x b x ≤<⎧⎪=⎨+≤≤⎪⎩,其图象如图所示:栽花所需费用2y (元)与x (m 2)的函数关系式为220.012030000y x x =--+(0≤x ≤1000).(1)请直接写出1k 、2k 和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.6.(2017湖北省黄石市)小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律:①该蔬菜的销售价P (单位:元/千克)与时间x (单位:月份)满足关系:P =9﹣x ;②该蔬菜的平均成本y (单位:元/千克)与时间x (单位:月份)满足二次函数关系210y ax bx =++,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克. (1)求该二次函数的解析式;(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L (单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)7.(2017辽宁省锦州市)为解决消费者停车难的问题,某商场新建一小型轿车停车场,经测算,此停车场每天需固定支出的费用(包括设施维修费、管理人员工资等)为600元,为制定合理的收费标准,该商场对每天轿车停放辆次(每辆轿车每停放一次简称为“辆次”)与每辆轿车的收费情况进行调查,发现每辆次轿车的停车费定价不超过10元时,每天来此停放的轿车都为300辆次;若每辆次轿车的停车费定价超过10元,则每超过1元,每天来此停放的轿车就减少12辆次,设每辆次轿车的停车费x 元(为便于结算,停车费x 只取整数),此停车场的日净收入为y 元(日净收入=每天共收停车费﹣每天固定的支出)回答下列问题:(1)①当x ≤10时,y 与x 的关系式为:; ②当x >10时,y 与x 的关系式为:;(2)停车场能否实现3000元的日净收入?如能实现,求出每辆次轿车的停车费定价,如不能实现,请说明理由;(3)该商场要求此停车场既要吸引顾客,使每天轿车停放的辆次较多,又要有最大的日净收入,按此要求,每辆次轿车的停车费定价应定为多少元?此时最大日净收入是多少元?8.(2017山东省潍坊市)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?9.(2017内蒙古包头市)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?10.(2017四川省达州市)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:()()7.504510414x xyx x⎧≤≤⎪=⎨+<≤⎪⎩.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?。

中考数学复习:专题3-4 一次函数考点分析及典型试题

中考数学复习:专题3-4 一次函数考点分析及典型试题

一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。

⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。

类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三 函数的实际应用与决策命题规律:纵观青海(西宁)五年中考,函数的实际应用是中考必考内容,常考类型有:1.一次函数的实际应用(带有决策性问题);2.二次函数的实际应用(带有决策性问题);(3)一次函数与二次函数结合的实际应用问题(最优问题),主要是考查学生将实际问题转化为数学问题的能力(难度中上等).命题预测:预计2018年中考对函数的实际应用仍会考查,要求在复习中有对针对性训练、分层提高.一次函数的实际应用【例1】(2018中考预测)山地自行车越来越受到中学生的喜爱,各种品牌相继投入市场,某车行经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车进货价格(元)1100 1400 销售价格(元) 今年的销售价格 2000 (1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?【解析】(1)根据卖出的数量相同作为等量关系列方程;(2)建立获利的函数关系式,然后用一次函数的性质回答问题.【学生解答】(1)设今年A 型车每辆售价x 元,则去年每辆售价(x +400)元.由题意,得50 000x +400=50 000(1-20%)x.解得x =1 600;(2)当车行新进A 型车20辆,B 型车40辆时,这批车获利最多.【方法指导】弄清题意建立相应数学模型是关键.1.(2018南京中考)下图中的折线ABC 表示某汽车的耗油量y(单位:L /km )与速度x(单位:km /h )之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km /h ,耗油量增加0.002 L /km .(1)当速度为50 km /h ,100 km /h 时,该汽车的耗油量分别为________L /km ,________L /km .(2)求线段AB 所表示的y 与x 之间的函数解析式;(3)速度是多少时,该汽车的耗油量最低?最低是多少?解:(1)0.13;0.14;(2)设直线AB 所表示的解析式为y =kx +b ,∴⎩⎪⎨⎪⎧30k +b =0.15,60k +b =0.12, ∴⎩⎪⎨⎪⎧k =-0.001,b =0.18. ∴y =-0.001x +0.18;(3)根据题意得线段BC 表示的函数解析式为y =0.002x -0.06,由图象可知点B 是折线ABC 的最低点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18,y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80,y =0.1,因此,速度是80 km /h ,该汽车的耗油量最低,最低是0.1 L /km .2.(2018金华模拟)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1 km ,出租车离甲地的距离为y 2 km ,两车行驶的时间为x h ,y 1、y 2关于x 的函数图象如图所示:(1)根据图象,直接写出y 1、y 2关于x 的函数关系式;(2)若两车之间的距离为s km ,请写出s 关于x 的函数关系式;(3)甲、乙两地间有A 、B 两个加油站,相距200 km ,若客车进入A 加油站时,出租车恰好进入B 加油站,求A 加油站离甲地的距离.解:(1)y 1=60x(0≤x ≤10);y 2=-100x +600(0≤x ≤6);(2)s =⎩⎪⎨⎪⎧600-160x (0≤x <154),160x -600(54≤x <6),60x (6≤x ≤10);(3)150 km 或300 km .二次函数的实际应用【例2】天猫网某店铺销售新疆薄皮核桃,这种食品是健脑的佳品,它的成本价为每千克20元,经市场调查发现,该产品每天销售利润w(元)与销售价x(元/kg )有如下关系:w =ax 2+bx -1 600,当销售价为22元/kg 时,每天的销售利润为72元;当销售价为26元/kg 时,每天的销售利润为168元.(1)求该产品每天的销售利润w(元)与销售价x(元/kg )的关系式;(2)当销售价定为每千克24元时,该产品每天的销售利润为多少元?(3)如果该店铺的负责人想要在销售价不超过32元的情况下每天获得150元的销售利润,求销售价应定为每千克多少元?(4)如果物价部门规定这种产品的销售价不高于每千克29元,此店铺每天获得的最大利润为多少元?【解析】(1)根据题意可求出y 与x 的二次函数关系式;(2)将x =24代入w =-2x 2+120x -1 600中计算所得利润;(3)将w =150带入w =-2x 2+120x -1 600=150中计算出定价;(4)由二次函数解析式可知w =-2x 2+120x -1 600=-2(x -30)2+200,所以当x =29时利润最大.【学生解答】解:(1)该产品每天的销售利润w(元)与销售价x(元/kg )的关系式为w =-2x 2+120x -1 600;(2)略;(3)当w =150时,有w =-2x 2+120x -1 600=150.解得x 1=25,x 2=35.∵x ≤32,∴x =25.∴定价为每千克25元;(4)w =-2x 2+120x -1 600=-2(x -30)2+200.又∵物价部门规定这种产品的销售价不高于每千克29元,∴当x =29元时,利润最大,为w =-2(29-30)2+200=198.【方法指导】正确建立二次函数模型,利用配方法和二次函数的性质结合自变量的取值范围,求出最佳方案.3.(2018丽水中考)如图(1),地面BD 上两根等长立柱AB ,CD 之间悬挂一根近似成抛物线y =110x 2-45x +3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为3 m 的位置处用一根立柱MN 撑起绳子[如图(2)],使左边抛物线F 1的最低点离MN 为1 m ,离地面1.8 m ,求MN 的长;(3)将立柱MN 的长度提升为3 m ,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为14.设MN 离AB 的距离为m ,抛物线F 2的顶点离地面k m ,当2≤k ≤2.5时,求m 的取值范围.解:(1)∵110>0,而y =110x 2-45x +3=110(x -4)2+75,∴强子最低点离地面的距离为75m ;(2)由(1)可知,BD =8,令x =0,y =3,∴A(0,3),C(8,3),由题意得抛物线F 1的顶点为(2,1.8),∴F 1:y =a(x -2)2+1.8,把(0,3)代入F 1得4a +1.8=3,∴a =0.3,∴F 1=0.3(x -2)2+1.8,当x =3时,y =0.3×1+1.8=2.1,∴MN 的长为2.1m ;(3)∵MN =CD =3,根据抛物线的对称性可知F 2的顶点在ND 的垂直平分线上,∴F 2的顶点为(12m +4,k),∴F 2的解析式为y =14(x -12m -4)2+k ,把C(8,3)代入F 2得k =-116(m -8)2+3,∴0<m <8时,y 随m 的增大而增大,当k =2时,-116(m -8)2+3=2,解得m 1=4,m 2=12(不合题意,舍去),当k =2.5时,-116(m -8)2+3=2.5,解得m 1=8-22,m 2=8+22(舍去),∴m 的取值范围是4≤m ≤8-2 2.4.(2018青岛中考)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?(3)商场的营销部结合上述情况,提出了A 、B 两种营销方案:方案A :该文具的销售单价高于进价且不超过30元;方案B :每件文具的利润不低于25元且不高于29元.请比较哪种方案的最大利润更高,并说明理由.解:(1)w =-10(x -20)(x -50)=-10x 2+700x -10 000;(2)∵w =-10x 2+700x -10 000=-10(x -35)2+2 250,∴当x =35时,w 取得最大值2 250,即销售单价为35元时,每天销售利润最大,最大利润为2 250元;(3)略.一次、二次函数综合应用【例3】(2018黄冈中考)某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y 1(元)与国内销售数量x(千件)的关系为:y 1=⎩⎪⎨⎪⎧15x +90(0<x ≤2),-5x +130(2≤x <6).若在国外销售,平均每件产品的利润y 2(元)与国外的销售数量t(千件)的关系为:y 2=⎩⎪⎨⎪⎧100(0<t ≤2),-5t +110(2≤t <6). (1)用x 的代数式表示t 为:t =________;当0<x<4时,y 2与x 的函数关系式为:y 2=________;当4≤x <________时,y 2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x 的取值范围.【学生解答】解:(1)6-x ;5x +80;6;(2)w =⎩⎪⎨⎪⎧10x 2+40x +480(0<x ≤2),-10x 2+80x +480(2<x ≤4),-5x 2+30x +600(4<x <6).5.(2018成都中考)某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园橙子产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种x 棵橙子树,请回答下列问题.(1)直接写出平均每棵树结的橙子数y(个)与x(棵)之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少?解:(1)y=600-5x;(2)设橙子的总质量为w个,则w=(100+x)y=(100+x)(600-5x)=-5x2+100x+60 000=-5(x-10)2+60 500.∴当x=10时,w最大值=60 500.即多种10棵橙子树时,橙子的总产量最大为60 500个.6.(2018辰溪模拟)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价定在35元到70元之间较为合理,设甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20-0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万件)与x(元)之间的函数关系式;(2)若公司第一年的年销售利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.解:(1)y=-0.1x+15;(2)当x=45时,即甲、乙产品定价均为45元时,可使第一年的销售利润最大为415万元;(3)30≤m≤40.。

相关文档
最新文档