22.3 实际问题与二次函数(2)

合集下载

人教版初中数学22.3 实际问题与二次函数(第2课时) 课件

人教版初中数学22.3 实际问题与二次函数(第2课时) 课件
人教版 数学 九年级 上册
22.3 实际问题与二次函数/
22.3 实际问题与二次函数 (第2课时)
导入新知
22.3 实际问题与二次函数/
在日常生活中存在着许许多多的与数学知识有关的实际 问题.如繁华的商业城中很多人在买卖东西。
【思考】如果你去买商品,你会选买哪一家呢?如果你是商 场经理,如何定价才能使商场获得最大利润呢?
探究新知
22.3 实际问题与二次函数/
素养考点 2 限定取值范围中如何确定最大利润
例3 某商店试销一种新商品,新商品的进价为30元/件,经过一段
时间的试销发现,每月的销售量会因售价的调整而不同.令每月销
售量为y件,售价为x元/件,每月的总利润为Q元.
(1)当售价在40~50元时,每月销售量都为60件,则此时每 月的总利润最多是多少元?
即定价65元时,最大利润是6250元.
探究新知
22.3 实际问题与二次函数/
例2 某商品现在的售价为每件60元,每星期可卖出300 件,市场调查反映:每涨价1元,每星期少卖出10件; 每降价1元,每星期可多卖出18件,已知商品的进价为 每件40元,如何定价才能使利润最大? 降价销售
①每件降价x元,则每星期售出商品的利润y元,填空:
解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件), (2)由题意得: y=(x﹣40)[200﹣10(x﹣50)] =﹣10x2+1100x﹣28000 =﹣10(x﹣55)2+2250.
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
课堂检测
22.3 实际问题与二次函数/
①每件商品的销售单价上涨x元,一个月内获取的商品总利润为y元,填空:

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教初中数学九上 22.3 实际问题与二次函数教案

人教初中数学九上  22.3 实际问题与二次函数教案

实际问题与二次函数(第1课时)课型:新授课教学目标知识与技能:1.经理探索物体运动中的最大高度等问题的过程,体会二次函数是一类最优化的数学模型,并感受数学的应用价值。

2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大值(或最小值),发展解决问题的能力。

过程与方法:经理物体运动中的最大高度等问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。

情感态度与价值观:体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。

教学重点:1、探究运动中的最大高度等问题2、能够分析和表示实际问题中变量之间的二次函数学关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力。

教学难点运用二次函数解决实际问题教学方法:讲解、归纳、讨论、分析、练习教学过程:一、创设问题情境,引入新课。

前面我们认识了二次函数,研究了二次函数的图像和性质,掌握了二次函数的表达式,首先我们来回顾二次函数的两种形式y=a(x-h)2+k和 y=ax2+bx+c各有怎样的性质:1.二次函数y=a(x-h)2+k的图象和性质(1)当a>0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。

(2)当a<0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。

2.二次函数y=ax2+bx+c 的图象和性质(1)当a>0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。

(2)当 a <0 时,二次函数的图象(抛物线)开口______,有最______点,对称轴是____ ,顶点坐标是___ 。

根据上述性质你能尝试解决下面的问题吗?1、二次函数 图象的开口方向、对称轴和顶点坐标分别为( ) (A )开口向下,对称轴为x = –3 ,顶点坐标为(3,5), (B )开口向下,对称轴为x = 3 ,顶点坐标为(3,5) (C )开口向上,对称轴为x = –3 ,顶点坐标为(-3,5) (D )开口向上,对称轴为x = 3 ,顶点坐标为(-3,5)2、抛物线y =x 2–2x –3 的对称轴和顶点坐标分别是( ) A .x =1,(1,-4) B .x =1,(1,4) C .x =-1,(-1,4) D .x =-1,(-1,-4)由此可以看出由二次函数的解析式可以求出相应函数的最大(小)值,这节课我们就来学习用二次函数解决实际问题。

22.3.2实际问题与二次函数②

22.3.2实际问题与二次函数②
数学九年级上册
探究3:
下图是抛物线形拱桥,当拱桥顶离水面 2 m时, 水面宽 4 m,水面下降 1 m, 水面宽度增加多少?
分析:二次函数的图象是抛物线,建立适当的坐标系, 就可以求出这条抛物线表示的二次函数。那么,如何建立 平面直角坐标系?
解:如图建立如下平面直角坐标系,
设这条抛物线解析式为
y 0 x
x
y 1
以水面所在直线为x轴, 拱桥与水面左侧交点为原 点,建立平面直角坐标系.

y 1 时, x 6 2
∴水面的宽度增加了 2 6 4 m
所以,水面下降1m,水面的 宽度为2 6 m.


y
y
0 0
x
X
注意:
建立平面直角坐标系要选择适当的x轴,y 轴,原点(3选2),以方便叙述和解决问题。
∴水面的宽度增加了 2 6 4 系, 设这条抛物线解析式为
y
(2,2)
y a( x 2)2 2
由抛物线经过点(0,0),可得
a 1 2
(0,0)

(4, 0)

0
所以,这条抛物线的二次函数为: 1 y ( x 2) 2 2 2 当水面下降1m时,水面的纵坐标为
当x 1.2时,y 1.1 1.2 2 4.4 2.816 2.7
∴汽车能顺利经过大门.
(-2,-2)

y ax2
由抛物线经过点(2,-2),可得
1 a 2
(2,-2)

所以,这条抛物线的二次函数为: 1 2 y x 2 当水面下降1m时,水面的纵坐标为

y 3 y 3 时,x 6
以抛物线顶点为原点, 抛物线对称轴为y轴,建立 平面直角坐标系.

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

22.3实际问题与二次函数 第2课时 最大利润问题(精品原创)

22.3实际问题与二次函数  第2课时 最大利润问题(精品原创)
1. 二次函数y=2(x-3)2+5的对称轴是

在日常生活中存在着许许多多的与数学知识有关的 实际问题。如商品销?
如果你是商场经理,如何定价才能使商场获得最大利润呢?
温故而知新
某商场春节前购进一批海南西瓜,每天能售出500千克, 每千克盈利0.3元.为了尽快减少库存,商场决定采取适当的 降价措施.调查表明:当销售价每降价0.1元时,其销售量每 天将多售出100千克.商场要想平均每天盈利达到120元,每 千克西瓜应降价多少元?
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
例 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:如调整价格,每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大? 分析: 调整价格包括涨价和降价两种情况
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品
解:设降低x元后,单件利润为(13.5-x-2.5),销售件 数是(500+100x), y=(13.5-x-2.5)(500+100x) 即y=-100x2+600x+5500 (0≤x≤11 )
配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元. ∴销售单价为10.5元时,最大利润为6400元.
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?

人教版九年级数学上册22.3 实际问题与二次函数第二课时课件

500. (1)李明在开始创业的第1个月将销售单价定为20元,那么政府
这个月为他承担的总差价为多少元? (2)设李明获得的利润为w(元),当销售单价为多少元时,每月
可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如
果李明想要每月获得的利润不低于3 000元,那么政府每个月为 他承担的总差价最少为多少元?
7.(12分)在“母亲节”前夕,我市某校学生积极参与“关爱贫 困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课 余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现, 若每件按24元的价格销售时,每天能卖出36件;若每件按29 元的价格销售时,每天能卖出21件.假定每天销售件数y(件) 与销售价格x(元/件)满足一个以x为自变量的一次函数.
C.y=a(1-x)2
D.y=a(1+x)2
2.(4分)一台机器原价60万元,如果每年的折旧率为x,两年 后这台机器的价位为y万元,则y关于x的函数关系式为( A )
A.y=60(1-x)2
B.y=60(1-x2)
C.y=60-x2
D.y=60(1+x)2
3.(4分)喜迎圣诞,某商店销售一种进价为50元/件的商品, 售价为60元/件,每星期可卖出200件,若每件商品的售价每上 涨1元,则每星期就会少卖出10件.设每件商品的售价上涨x元 (x为正整数),每星期销售该商品的利润为y元,则y与x的函数 关系式为(A )
资,则 5 年所获利润的最大值是 205万元 .
9.出售某种文具盒,若每个获利 x 元,一天可售出(6-x)个,则
当 x=__3__元时,一天出售该种文具盒的总利润最大.
二、解答题(共48分) 10.(14分)某网店以每件60元的价格购进一批商品,若以单 价80元销售,每月可售出300件.调查表明:单价每上涨1元, 该商品每月的销售量就减少10件. (1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的 函数关系式; (2)单价定为多少元时,每月销售该商品的利润最大?最大利 润为多少?

人教初中数学九上 22.3 实际问题与二次函数(第2课时)教案


随 S 出发时间如何变化?写出函数关系式及 t 的取值范围.
作业:1.必做:课本第 52 页,4、5 题.
作业设必做题
【例题】 1.一块三角形废料如图 26.3.2—2 所示,∠A=30°, 教师出示例题.
∠C=90°,AB=12.用这块废料剪出一个长方形 CDEF,其中,点 D、 请一位学生板练,其
E、F 分别在 AC,AB,BC 上,要使剪出的长方形 CDEF
他学生练习.完成练
面积最大,点 E 应选在何处?
习后,先在小组内进

2.一个圆柱的高等于底面半径,写出它的表面积 S 与半径 r 之 及表面积公式.
间的函数关系式
思考解答写出关系
3.一个长方形的长是宽的 2 倍,写出长方形的面积与宽之间的 式.
函数关系式
4.已知一个矩形的周长为 12 米,设矩形的一边长为 xm,面积为 Sm2,求 S 与 x 之间的函数关系式,并确定自变量的取值范围
态度
重点 用二次函数的知识分析解决有关面积问题的实际问题.
难点 通过图形之间的关系列出函数解析式.
【教学环节安排】
环节
教学问题设计
教学活动设计
情 创设情景 引入新课
首先让学生明确矩

1.正方体的六个面是全等的正方形,设正方形的棱长为 x,表面 形、圆、三角形、正
引 积为 y,求 y 与 x 之间的函数关系式,并求出自变量 x 的取值范围 方体、圆柱的面积以
行交流、讨论.
图 26.3.2—2
【分析】师生共同分析:长方形 CDEF 面积是大三角形的面积减
去两个小三角形的面积.
解:(略)
用一段长 30m 的篱笆,围城一个一边靠墙
1. 抓 住 图 形 的 特

人教版九年级上册数学22.3实际问题与二次函数(教案)

三、教学难点与重点
1.教学重点
-二次函数在实际问题中的应用:本节课的核心是让学生掌握如何将实际问题转化为二次函数模型,从而利用数学工具解决具体问题。例如,通过分析物体的抛物线运动,建立速度与时间的关系,进而求解物体的最大高度或最远距离。
-二次函数的性质及其图像:重点讲解二次函数的开口方向、顶点、对称轴等性质,并通过图像加深理解,使学生能够熟练运用这些性质解决实际问题。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次函数的基本概念。二次函数是形如y=ax²+bx+c的函数,它能够描述许多抛物线形状的现象。它在物理学、经济学等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。假设一个物体以抛物线轨迹运动,我们要计算它的最大高度和飞行距离。这个案例将展示二次函数在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂上,我们探讨了实际问题与二次函数的关联,尝试将抽象的数学概念应用到具体的生活实例中。我注意到,在理论介绍环节,学生对二次函数的基本概念掌握得还算扎实,但在案例分析时,一些学生在构建数学模型上遇到了困难。这让我意识到,将实际问题转化为数学语言,对他们来说是一个不小的挑战。
在实践活动和小组讨论中,学生们的参与度很高,大家积极讨论、动手实践,课堂氛围相当活跃。我特别高兴看到他们在讨论中互相启发,共同解决问题。然而,我也发现有些小组在分析问题时,还是局限于表面的理解,未能深入挖掘问题背后的数学原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

22.3 实际问题与二次函数(第2课时)-人教版九年级数学上册课时互动训练

22.3 实际问题与二次函数(第2课时)自主预习1.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.2.某服装店购进价格为每件15元的童装若干件,销售一段时间后发现:当每件的售价为25元时平均每天能售出8件,若每件每降价2元,平均每天能多售出4件.若设每件服装定价为x(x<25)元,则每件服装的利润为________元,每天销售服装________件,该服装店每天的销售利润y=____________________元;若设每件服装降价x元,则每件服装的利润为____________元,每天销售服装____________件,该服装店每天的销售利润y=_______________________________________元.(所列算式均不化简)互动训练知识点一:利用二次函数解决销售中的最大利润等问题1.某种产品按质量分为10个档次,生产最低档次产品,每件获利8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,每提高一个档次将减少3件.如果每天获得利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5 B.7 C.9 D.102.某玩具厂计划生产一种玩具熊,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊的成本为R(元),售价为每只P(元),且R,P与x之间的关系式分别为R=30x+500,P=170-2x.若想获得最大利润,则日产量为()A.25只B.30只C.35只D.40只3.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=-x2+10x,y2=2x.若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元4. 某商店购进一批单价为20元/件的日用品,如果以单价30元/件销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价定为多少,才能在半个月内获得最大利润?5.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x 元(x为正整数),每月的销售量为y条.(1)直接写出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?6. 某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:且日销量y(件)是销售价x(元)的一次函数.(1)求日销量y(件)与x(元)的一次函数.(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时最大销售利润是多少?知识点二:利用二次函数解决房间住宿中的最大利润等问题7. 某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间每天的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为W元,求W与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?8.某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:(1)根据所给数据在图(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?课时达标1.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=-x2+70x-800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元2.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)3.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,可列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=154. 某批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查发现,若每箱以45元的价格销售,则平均每天销售105箱;若每箱以50元的价格销售,则平均每天销售90箱,假定每天的销售量y(箱)与销售价x(元/箱)之间满足一次函数关系.(1)求每天的销售量y(箱)与销售价x(元/箱)之间的函数解析式(不需要写出自变量的取值范围);(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少时,可以获得最大利润?最大利润是多少?5. 为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.6. 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?6题图拓展探究1.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元/本,且获利不高于30%.试销售期间发现,当销售单价定为44元/本时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元/本.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围.(2)当每本足球纪念册销售单价是多少元时,商店每天获利2 400元?(3)将足球纪念册销售单价定为多少元/件时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?2.利民商店经销甲、乙两种商品,现有如图22­3­11所示的信息.图22­3­11请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价分别是多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品的零售单价分别每降0.1元/件,这两种商品每天均可多销售100件.为了使每天获取最大的利润,商店决定把甲、乙两种商品的零售单价都降m元/件,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?最大利润是多少?22.3 实际问题与二次函数(第2课时)答案自主预习 1.32.(x -15), (8+25-x 2×4),(x -15)(8+25-x2×4);(25-15-x ), (8+x 2×4), (25-15-x )(8+x2×4).互动训练1.C 2.C 3.D4.解:设单价提高x 元,利润为y 元.根据题意,列函数解析式为y =(30+x -20)(400-20x )=-20x 2+200x +4000(0≤x ≤20). 所以当x =5时,y 有最大值为4500元.5.解:(1)由题意可得:y =100+5(80-x ),整理得y =-5x +500. (2)由题意,得 w =(x -40)(-5x +500)=-5x 2+700x -20000 =-5(x -70)2+4500.∵a =-5<0,∴w 有最大值,当x =70时,w 最大值=4500. 80-70=10(元).答:当每条裤子的售价降价10元时,每月获得的利润最大,最大利润为4500元. (3)由题意,得-5(x -70)2+4500=4220+200, 解得x 1=66,x 2=74.∵抛物线开口向下,∴当66≤x ≤74时,符合该网店要求. 而为了让顾客得到最大的实惠,应取x =66, 故休闲裤的销售单价应定为66元/条. 6. 解:(1)设此一次函数解析式为y =kx +b ,∴⎩⎨⎧=+=+20202515b k b k ,解得,⎩⎨⎧==401-b k ,即一次函数的解析式为y =-x +40.(2)设销售利润为w 元,则W =(x -10)(-x +40)=-(x -25)2+225, 当x =25时,w 有最大值225.即产品的销售价定为25元时,每日获得销售利润最大为225元. 7. 解:(1)y =50-101x (0≤x ≤160,且x 是10的正整数倍). (2) W =(50-101x )(180+x -20)=-101x 2+34x +8000. (3) W =-101x 2+34x +8000=-101(x -170)2+10890. 当x <170时,W 随x 增大而增大,但0≤x ≤160, ∴当x =160时,y =50-101x =34. 答:一天订住34个房间时,宾馆的利润最大,最大利润为10880元. 8. 解:(1)如答图.第1题答图(2)设y =kx +b (k ≠0),把(200,60)和(220,50)代入,得⎩⎪⎨⎪⎧ 200k +b =60,220k +b =50,解得⎩⎪⎨⎪⎧ k =-12,b =160.∴y =-12x +160(170≤x ≤240). (3)w =xy =x ⎝⎛⎭⎫-12x +160=-12(x -160)2+12 800. ∵a =-12<0,∴当170≤x ≤240时,w 随x 的增大而减小, ∴当x 取170时,w 有最大值,最大值为12 750.∴当宾馆标准房的价格定为170元时,客房的日营业额最大,最大为12 750元. 课时达标1. B. 解析:∵y =﹣x 2+70x ﹣800=﹣(x ﹣35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,销售利润最大,故选:B .2. B. 解析:每件商品降价x 元后,则每星期的销售量为(300+20x)件,单价为(60-x)元,则y =(60-x)(300+20x),故选B.3. A. 解析:设每盆应该多植x 株,由题意得, (3+x )(4-0.5x )=15,故选A .4. 解:(1)y =-3x +240.(2)由题意,得w =(x -40)(-3x +240)=-3x 2+360x -9600.(3)当x =60时,w 有最大值,因为x ≤55,所以当x =55时,w 的值最大,为1125元.5. 解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)6. 解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638. ∴ y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12). 设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338, ∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214, ∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 拓展探究1. 解:(1)y =300-10(x -44),即y =-10x +740(44≤x ≤52).(2)根据题意,得(x -40)(-10x +740)=2 400,解得x 1=50,x 2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2 400元. (3)w =(x -40)(-10x +740)=-10x 2+1 140x -29 600=-10(x -57)2+2 890.当x <57时,w 随x 的增大而增大,而44≤x ≤52,∴当x =52时,w 有最大值,最大值为-10×(52-57)2+2 890=2 640.答:将足球纪念册销售单价定为52元/件时,商店每天销售纪念册获得的利润w 元最大,最大利润是2 640元.2.解:(1)设甲商品的进货单价是x 元/件,乙商品的进货单价是y 元/件.根据题意,得⎩⎪⎨⎪⎧ x +y =5,3x +1+22y -1=19,解得⎩⎪⎨⎪⎧x =2,y =3. 答:甲商品的进货单价是2元/件,乙商品的进货单价是3元/件.(2)设每天销售甲、乙两种商品获取的利润为w 元,则w =(1-m )⎝⎛⎭⎫500+100×m 0.1+[(2×3-1)-3-m ]·⎝⎛⎭⎫300+100×m 0.1=-2 000m 2+2 200m +1 100=-2 000(m -0.55)2+1 705,∴当m =0.55时,w 有最大值,最大值为1 705.答:当m 定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,最大利润是1 705元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

43
12

最高点为
3 8
,
9 1671 12

.
2.某种商品每件的进价为30元,在某段时间内若以每件x元 出售,可卖出(200-x)件,应如何定价才能使利润最大?
解:设所得利润为y元, 由题意得y=(x-30)(200-x)
=-x2+230x-6000 =-(x-115)2+7225 (0<x<200) 当x=115时,y有最大值. 即当这件商品定价为115元时,利润最大.
重点:建立销售问题中的二次函数模型. 难点:建立二次函数模型.
推进新课
总利润=单件利润×件数
某商品现在的售价为每件60元,每星期可卖出300
件.市场调查反映:如调整价格,每涨价1元,每星期要少
卖出10件;每降价1元,每星期可多卖出20件.已知商
品的进价为每件40元,如何定价才能使利润最大?
分析:
进价/元 售价/元 单件利润 件数
总利润
现价 40 涨价 40 降价 40
60
60-40
300
(60 40)300
60+n 60+n-40 300-10n (60 n 40)(300 10n)
60-m 60-m-40 300+20m(60- m 40)(300 20m)
进价/元 售价/元 单件利润 件数
总利润
现价 40 涨价 40
60
60-n4取0 何值30时0 ,y有(最60大 40)300
60+n 60+n值-4?0 最30大0-1值0n是(多60少 n? 40)(300 10n)
解:(1)设每件涨价n元,利润为y1.
则y1=(60+n – 40 )(300 – 10n)
怎样确定n的取
即y1=-10n2+100n+6000
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a

3
2 4

3 8
,
4ac b2 32
9
4a 4 4 16 ,
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71

,
4a
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
教学反思
本课时探究二次函数在商品销售利润问题中的应用, 教学时,让学生自行分析,找出问题中的数量关系并列函 数关系式,教师适时予以引导,需要注意的是,自变量的取 值要满足问题的实际意义。
拓展延伸
3.求函数y=-x2+6x+5的最大值和最小值.
(1)0≤x≤6;
(2) -2≤x≤2.
解:y=-x2+6x+5=-(x-3)2+14 (1)当0≤x≤6时, 当x=3时, y有最大值14, 当x=0或6时, y有最小值5.
(2)当-2≤x≤2时, 当x=2时,y有最大值13, 当x=-2时,y有最小值-11.
值范围?


n 0, 300 10n

0.
可得:0≤n≤30.
当n b 100 5 2a 2 (10)
y1最大 -1052 1005 6000 6250
即涨价情况下,定价65元时,有最大利润6250元.
降价情况下的最大利润又是多少呢?
降价:
即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综合以上可知: 该商品的价格定价为65元时,可获得最大利润6250元。
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
n取何值时,y有最大 值?最大值是多少?
y2=-20m2+100m+6000 (0≤n≤20) =-20(m2-5m)+6000
=-20(m-2.5)2+6125
抛物线y2=-20m2+100m+6000顶点坐标为 (2.5,6125) , 所以商品的单价上涨 2.5 元时,利润最大为 6125 元.
22.3 实际问题与二次函数
第2课时 实际问题与二次函数(2)
R·九年级上册
新课导入
问题:某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每涨价1元,每星期要少卖出10 件;每降价1元,每星期可多卖出20件.已知商品的进价为 每件40元,如何定价才能使利润最大?
(1)能用二次函数表示实际问题中的数量关系(包括写出解 析式、自变量的取值范围、画图象草图). (2)会用二次函数求销售问题中的最大利润.
相关文档
最新文档