最新2015-2016高中数学-1.2.1-1.2.2极坐标概要教学讲义ppt

合集下载

高中数学 第一章 坐标系 1.2.2 常见曲线的极坐标方程 第2课时 圆锥曲线的极坐标方程及应用学

高中数学 第一章 坐标系 1.2.2 常见曲线的极坐标方程 第2课时 圆锥曲线的极坐标方程及应用学

2016-2017学年高中数学第一章坐标系1.2.2 常见曲线的极坐标方程第2课时圆锥曲线的极坐标方程及应用学案苏教版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第一章坐标系1.2.2 常见曲线的极坐标方程第2课时圆锥曲线的极坐标方程及应用学案苏教版选修4-4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第一章坐标系1.2.2 常见曲线的极坐标方程第2课时圆锥曲线的极坐标方程及应用学案苏教版选修4-4的全部内容。

圆锥曲线的极坐标方程及应用1.掌握极坐标系中圆锥曲线的方程.2.会求简单的圆锥曲线的极坐标方程.3.感受在极坐标系中椭圆、双曲线、抛物线方程的完美统一.[基础·初探]圆锥曲线的统一极坐标方程ρ=错误!,(***)其中p为焦点到相应准线的距离,称为焦准距.当0<e<1时,方程ρ=错误!表示椭圆;当e=1时,方程(***)为ρ=错误!,表示抛物线;当e>1时,方程ρ=ep1-e cos θ表示双曲线,其中ρ∈R.[思考·探究]1.用圆锥曲线统一极坐标方程的标准形式判别圆锥曲线需注意什么?【提示】应注意统一极坐标方程的标准形式,只有方程右边分母中的常数为1时,cos θ的系数的绝对值才表示曲线的离心率.如果该常数不是1,一定要将其转化为1,再去判别,例如方程ρ=错误!的离心率不是1,其不表示抛物线,将方程变形为ρ=错误!,则e=错误!,表示椭圆.2.我们由曲线的直角坐标方程很容易知道它是哪种曲线,那如何由曲线的极坐标方程确定其是哪一种曲线呢?【提示】如果对简单的直线和圆的极坐标方程及圆锥曲线统一的极坐标方程熟练的话,可由其判断,否则一般是将其化成直角坐标方程再判断其是哪种曲线.[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_____________________________________________________解惑:_____________________________________________________疑问2:_____________________________________________________解惑:_____________________________________________________疑问3:_____________________________________________________解惑:_____________________________________________________疑问4:_____________________________________________________解惑:_____________________________________________________椭圆极坐标方程的应用已知A、B为椭圆错误!+错误!=1(a>b>0)上两点,OA⊥OB(O为原点).求证:错误!+错误!为定值.【自主解答】以O为极点,x轴正方向为极轴,长度单位不变建立极坐标系,则x=ρcos θ,y=ρsin θ,代入错误!+错误!=1中得错误!=错误!+错误!.设A(ρ,α),B错误!。

高中数学第一章坐标系2.1极坐标系的概念2.2点的极坐标

高中数学第一章坐标系2.1极坐标系的概念2.2点的极坐标

π π 1.在极坐标系中,作出以下各点: A(4,0),B3,4 ,C2,2, 7π D3, 4 ;结合图形判断点
B,D 的位置是否具有对称性;并
求出 B, D 关于极点的对称点的极坐标. (限定 ρ≥0, θ∈[0,2π))
解:如图,A,B,C,D 四个点分别是唯一确定的.
2 |MN|= ρ2 + ρ 1 2-2ρ1ρ2cosθ1-θ2,
所以|AB|=
3 +1
2
2
2π π - - -2×3×1×cos =4. 3 3
化直角坐标为极坐标
[ 例 3] 0≤θ<2π).
分别将下列点的直角坐标化为极坐标 (ρ>0 ,
(1)(-1,1),(2)(- 3,-1).
2.1 & 2.2 §2 第 一 章 极 坐 标 系 极坐标 系的概 念 点的极 坐标与 直角坐 标的互 化
理解教 材新知
考点一 把握热 点考向
考点二
考点三
应用创 新演练
§ 2
极坐标系
2.1&2.2 极坐标系的概念 点的极坐标与直角坐标的互化
[自主学习]
1.极坐标系的概念 (1)极坐标系: 在平面内取一个定点 O,叫作 极点 ,自极点 O 引一条 射线 Ox,叫作 极轴;选定一个 单位长度 和角的正方向 (通 常取逆时针方向),这样就建立了一个极坐标系.
3 2 2
= 4+12=4.
1.将极坐标 M(ρ,θ)化为直角坐标(x,y),只需根据公
x=ρcos θ, 式: y=ρsin θ
即可得到;
2.利用两种坐标的互化,可以把不熟悉的极坐标问题转 化为熟悉的直角坐标问题求解.
本例中如何由极坐标直接求 A,B 两点间的距离?

高中数学 第1章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念学案 北师大版选修44

高中数学 第1章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念学案 北师大版选修44

1.2.1 极坐标系的概念1.了解极坐标系,理解极坐标的概念.(重点)2.能在极坐标系中用极坐标判定点的位置.(难点)3.能进行点坐标和极坐标的互化.(易错易混点)教材整理极坐标系与极坐标1.极坐标系的概念如图1­2­1所示,在平面内取一个定点O,叫作极点,从O点引一条射线Ox,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称极坐标系.图1­2­12.极坐标的概念对于平面内任意一点M,用ρ表示线段OM的长,θ表示以Ox为始边、OM为终边的角度,ρ叫作点M的极径,θ叫作点M的极角,有序实数对(ρ,θ)叫作点M的极坐标,记作M(ρ,θ).特别地,当点M在极点时,它的极径ρ=0,极角θ可以取任意值.3.点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点,特别地,极点O的坐标为(0,θ)(θ∈R).和点的直角坐标的唯一性不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.判断(正确的打“√”,错误的打“×”)(1)极轴是以极点为端点的一条射线.( )(2)极角θ的大小是唯一的.( )(3)点⎝ ⎛⎭⎪⎫3,π6与点⎝⎛⎭⎪⎫3,5π6是同一个点.( )【解析】 (1)√ 极轴是以极点为端点的一条射线.(2)× 因为极角是以极轴为始边,终边是过极点与目标点的射线,可正、可负,相差2k π.(3)× 因为极角不相差2π的整数倍,故不表示同一个点. 【答案】 (1)√ (2)× (3)×预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:设点A ⎝⎛⎭⎪⎫2,3,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴、直线l 、极点的对称点的极坐标(限定ρ>0,0<θ≤2π).【精彩点拨】 欲写出点的极坐标,首先应确定ρ和θ的值.【自主解答】 如图所示,关于极轴的对称点为B ⎝ ⎛⎭⎪⎫2,53π.关于直线l 的对称点为C ⎝ ⎛⎭⎪⎫2,23π. 关于极点O 的对称点为D ⎝⎛⎭⎪⎫2,4π3.四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是唯一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是唯一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序.1.若使正六边形的一个顶点为极点且边长为a ,极轴通过它的一边,试求正六边形各顶点的极坐标.【导学号:12990004】【解】 建立如图所示的极坐标系,则正六边形各顶点的极坐标为:A (0,0),B (a,0),C ⎝ ⎛⎭⎪⎫3a ,π6,D ⎝ ⎛⎭⎪⎫2a ,π3,E ⎝ ⎛⎭⎪⎫3a ,π2,F ⎝ ⎛⎭⎪⎫a ,23π.已知点A 的极坐标是⎝⎛⎭⎪⎫6,3,分别在下列给定条件下,画出点A 关于极点O的对称点A ′的位置,并写出A ′的极坐标:(1)ρ>0,-π<θ≤π; (2)ρ<0,0≤θ<2π; (3)ρ<0,-2π<θ≤0.【精彩点拨】 本题以极坐标系中点的对称为载体,主要考查极坐标系中点的极坐标的确定,同时考查应用极坐标系解决问题的能力.【自主解答】 如图所示, |OA |=|OA ′|=6, ∠xOA ′=2π3,∠xOA =5π3,即A 与A ′关于极点O 对称,由极坐标的定义知:(1)当ρ>0,-π<θ≤π时,A ′点的坐标为⎝⎛⎭⎪⎫6,2π3;(2)当ρ<0,0≤θ<2π时,A ′点的坐标为⎝ ⎛⎭⎪⎫-6,5π3; (3)当ρ<0,-2π<θ≤0时,A ′点的坐标为⎝⎛⎭⎪⎫-6,-π3.由极坐标确定点的位置的步骤: (1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边;(4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.2.在同一个极坐标系中,画出以下各点:A ⎝⎛⎭⎪⎫1,π4,B ⎝⎛⎭⎪⎫2,32π,C ⎝⎛⎭⎪⎫3,-π4,D ⎝⎛⎭⎪⎫4,94π.【解】 如图所示.探究1【提示】 建立极坐标系的要素是:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0.但必要时,允许ρ<0.探究2 为什么点的极坐标不唯一?能用三角函数的概念解释吗?【提示】 根据我们学过的任意角的概念:一是终边相同的角有无数个,它们相差2π的整数倍,所以点(ρ,θ)还可以写成(ρ,θ+2k π)(k ∈Z );二是终边在一条直线上且互为反向延长线的两角的关系,所以点(ρ,θ)的坐标还可以写成(-ρ,θ+2k π+π)(k ∈Z ).某大学校园的部分平面示意图如图1­2­2所示.图1­2­2用点O ,A ,B ,C ,D ,E ,F 分别表示校门、器材室、公寓、教学楼、图书馆、车库、花园,建立适当的极坐标系,写出各点的极坐标.(限定ρ≥0,0≤θ<2π且极点为(0,0)).【精彩点拨】 解答本题先选定极点作极轴,建立极坐标系,再求出各点的极径和极角,即可得出各点的极坐标.【自主解答】 以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系,如图所示.由|OB |=600 m ,∠AOB =30°,∠OAB =90°,得 |AB |=300 m ,|OA |=300 3 m , 同样求得|OD |=2|OF |=3002m , 所以各点的极坐标分别为O (0,0),A (3003,0),B ⎝⎛⎭⎪⎫600,π6,C ⎝⎛⎭⎪⎫300,π2,D ⎝⎛⎭⎪⎫3002,3π4,E (300,π),F ⎝⎛⎭⎪⎫1502,3π4.在极坐标系中,由点的位置求极坐标时,随着极角的范围的不同,点的极坐标的表示也会不同,只有在ρ>0,θ∈3.在极坐标系中,已知△ABC 的三个顶点的极坐标分别为A ⎝⎛⎭⎪⎫2 ,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3. (1)判断△ABC 的形状; (2)求△ABC 的面积.【解】 (1)如图所示,由A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3得|OA |=|OB |=|OC |=2,∠AOB =∠BOC =∠AOC =2π3.∴△AOB ≌△BOC ≌△AOC , ∴AB =BC =CA , 故△ABC 为等边三角形.(2)由上述可知,AC =2OA sin π3=2×2×32=23,∴S △ABC =34×(23)2=3 3.1.在极坐标系中与点P ⎝⎛⎭⎪⎫2,π3表示同一点的是( )A.⎝⎛⎭⎪⎫-2,π3B.⎝⎛⎭⎪⎫2,-π3C.⎝⎛⎭⎪⎫-2, 4π3 D.⎝⎛⎭⎪⎫-2,-π3 【解析】 在极坐标系中将点P 确定,再逐个验证知C 正确. 【答案】 C2.已知极坐标平面内的点P ⎝⎛⎭⎪⎫2,-5π3,则P 关于极点的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3B.⎝⎛⎭⎪⎫2,-π3C.⎝⎛⎭⎪⎫2,2π3 D.⎝⎛⎭⎪⎫2,-2π3 【解析】 点P ⎝ ⎛⎭⎪⎫2,-5π3关于极点的对称点的极坐标为⎝ ⎛⎭⎪⎫2,-2π3.【答案】 D3.若A ⎝⎛⎭⎪⎫3,4π3,B ⎝ ⎛⎭⎪⎫5,π6,O 为极点,则△AOB 的面积为________.【解析】 S △AOB =12×⎪⎪⎪⎪⎪⎪3×5×sin ⎝ ⎛⎭⎪⎫43π-π6=154.【答案】1544.关于极坐标系的下列叙述: ①极轴是一条射线; ②极点的极坐标是(0,0); ③点(0,0)表示极点;④点M ⎝ ⎛⎭⎪⎫4,π4与点N ⎝⎛⎭⎪⎫4,5π4表示同一个点.其中,叙述正确的序号是________.【导学号:12990005】【解析】 设极点为O ,极轴就是射线Ox ,①正确;极点O 的极径ρ=0,极角θ是任意实数,极点的极坐标应为(0,θ),②错误;给定极坐标(0,0),可以在极坐标平面内确定唯一的一点,即极点,③正确;点M 与点N 的极角分别是θ1=π4,θ2=5π4,二者的终边互为反向延长线,④错误.【答案】 ①③5.已知边长为2的正方形ABCD 的中心在极点,且一组对边与极轴Ox 平行,求正方形的顶点的极坐标(限定ρ≥0,0≤θ<2π).【解】 如图所示,由题意知|OA |=|OB |=|OC |=|OD |=2,∠xOA =π4,∠xOB =3π4,∠xOC =5π4,∠xOD =7π4.∴正方形的顶点坐标分别为A ⎝ ⎛⎭⎪⎫2,π4,B ⎝⎛⎭⎪⎫2,3π4,C ⎝ ⎛⎭⎪⎫2,5π4,D ⎝ ⎛⎭⎪⎫2,7π4.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。

高中数学极坐标和参数方程讲义

高中数学极坐标和参数方程讲义

极坐标和参数方程讲义姓名: 学号:一、极坐标与普通方程互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρθ的象限由点(x,y)所在的象限确定.【典型范例】例题1. 点M 的极坐标分别是(2,)2π,(4,)π,2(6,)3π,3(2,)4π 换算成直角坐标是3. 点M 的直角坐标分别是(2,0),(0,2)-,(2,2)--,(如果0,02ρθπ≥≤<换算成极坐标是例题2.在极坐标系中,过圆4cos =ρθ的圆心,且垂直于极轴的直线的极坐标方程为 .变式1.在极坐标系中,圆心在()2,π且过极点的圆的方程为( )A.ρθ=22cosB.ρθ=-22cosC.ρθ=22sinD.ρθ=-22sin变式2.(广东文)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__ ___.变式3. (广州一模)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的 极坐标方程是 .例题3.( 广东文)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,6π)到直线l 的距离为 .变式1.(韶关调研理) 设M、N分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点, 则M、N的最小距离是变式2.(深圳一模理)在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间的距离是 .二、常见的参数方程的概念:圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=.椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数θθθ⎩⎨⎧==. 经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数)。

《1.2.2极坐标和直角坐标的互化》课件2-优质公开课-人教A版选修4-4精品

《1.2.2极坐标和直角坐标的互化》课件2-优质公开课-人教A版选修4-4精品
教学目标:
• 能进行极坐标和直角坐标的互化.
复习
[1]建立一个极坐标系需要哪些要素
极点;极轴;长度单位;角度单位和 它的正方向. [2]极坐标系内一点的极坐标有多少种 表达式? 无数,极角有无数个. [3]一点的极坐标有否统一的表达式?
有.(ρ,2ห้องสมุดไป่ตู้π+θ)
复习
1、极坐标 (ρ,2kπ+θ) 和(-ρ,2kπ+θ+π) k Z 其中 表示同一个点(ρ,θ);
2 2
3 3. 的直角坐标方程是 4 y 3 y 解: tan tan , 即y x ( y 0 ) x 4 x
5.若两条曲线的极坐标方程分别为 1 与 A, B 两点,求线段 2 cos ,它们相交于
3
AB的长.
问题:若点M的直角坐标为 (1, 3 ) 用极坐标如何表示?
在直角坐标系中, 以原点作为极 点,x轴的正半轴作为极轴,两种 坐标系中取相同的长度单位. y
M( 1,3 )
设点M的极坐标为(ρ,θ)
2 2
O
θ
3
x
3 tanθ ρ 1 ( 3) 2 1 点M的极坐标为(2, ) 3
极坐标与直角坐标的互化关系式:
小结:
1、极坐标化为平面直角坐标;
2、平面直角坐标化为极坐标.
2 2 1 解:由 得 x y 1
2cos( ) cos 3 sin , 2 cos 3 sin 3 2 2 x y x 3y 0

2 2 x y 1 由 2 2 x y x 3y 0 2 2 1 3 1 3 A (1,0), B ( , ) 得 AB 1 0 3 2 2 2 2

极坐标PPT优秀课件

极坐标PPT优秀课件
在平面内取一个定点O,叫做极点。 引一条射线OX,叫做极轴。
再选定一个长度单位和角 度正方向(通常取逆时针 方向)。
O
X
这样就建立了一个极坐标系。
二、极坐标系内一点的极坐标的规定
对于平面上任意一点M, 用 表示线段OM的长度, 用 表示从OX到OM 的 角度, 叫做M的极径, 叫做点M的极角,有序 数对(,)就叫做M的 O 极坐标。
P
O
X
四、2、负极径的实例 在极坐标系中画出点 M (-3,/4)的位置 [1]作射线OP,使XOP= /4 P = /4
[2]在OP的反向延长 线上取一点M,使 OM= 3
O
M
X
练习:10页1(3)A点和B点
负极径总结: 极径是负的,等于极角增加 。 负极径的负与数学中历来的习惯相同,用 来表示“反向”
④不同的极坐标是否可以写出统一表达式?
三、点的极坐标的表达式的研究 请说出点M的极坐标的其他 表达式(四个人回答) O 思:极径都是一样的;不同的是极角。但是,X 极角和极角之间有什么关系? 启:极角的始边变没有?极角的终边动没有?
如图:OM的长度为4, 4

M
2k 点M的极坐标统一表达式: 4 , 4

4
)
F (4, )

2
5 6
4

4 3
E F O
C A B X
D
G
5 3
一 个 极 坐 标 只 能 画 出 一 个 点
特别规定: 当M在极点时,它的 极坐标=0,可以取任意值。
想一想?
①平面上一点的极坐标是否唯一? ②若不唯一,那有多少种表示方法? ③坐标不唯一是由谁引起的?

高中数学第一章坐标系1.2.1极坐标系的的概念教案新人教A版选修4_

高中数学第一章坐标系1.2.1极坐标系的的概念教案新人教A版选修4_

极坐标系的的概念教学目的:知识目标:理解极坐标的概念能力目标:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:理解极坐标的意义教学难点:能够在极坐标系中用极坐标确定点位置授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。

(1)他向东偏60°方向走120M后到达什么位置?该位置惟一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.二、讲解新课:从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

1、极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

(其中O 称为极点,射线OX 称为极轴。

)2、极坐标系内一点的极坐标的规定对于平面上任意一点M ,用 ρ 表示线段OM 的长度,用 θ 表示从OX 到OM 的角度,ρ 叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。

特别强调:由极径的意义可知ρ≥0;当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)建立一一对应的关系 .们约定,极点的极坐标是极径ρ=0,极角是任意角.3、负极径的规定在极坐标系中,极径ρ允许取负值,极角θ也可以去任意的正角或负角当ρ<0时,点M (ρ,θ)位于极角终边的反向延长线上,且OM=ρ。

高中数学极坐标 ppt课件

高中数学极坐标  ppt课件

角,有序数对(,)就
叫做M的极坐标。
O
X
特别强调:表示线段OM的长度,即点M到
极点O的距离;表示从OX到OM的角度,即
以OX(极轴)为始边,OM 为终边的角。
ppt课件
5
题组一:说出下图中各点的极坐标
2
4
5
6
C
E
D
B
A
O
X
4 F
G 5
3
ppt课件
3
6
特别规定: 当M在极点时,它的 极坐标=0,可以取任意值。
O
x
M ( 2, ∏ / 3)
12 ( 3)2 2 tan 3 3
ppt课件
1
13
极坐标与直角坐标的互化关系式: 设点M的直角坐标是 (x, y)
极坐标是 (ρ,θ)
2 x2 y2 , tan y ( x 0)
x
x=ρcosθ, y=ρsinθ
ppt课件
14
互化公式的三个前提条件: 1. 极点与直角坐标系的原点重合; 2. 极轴与直角坐标系的x轴的正半
对应了.
ppt课件
11
极坐标和直角坐标的互化
平面内的一个点的直角坐标是(1, 3 ) 这个点如何用极坐标表示?
ppt课件
12
在直角坐标系中, 以原点作为极点, x轴的正半轴作为极轴, 并且两种坐标系中取相 同的长度单位
点M的直角坐标为 (1, 3) 设点M的极坐标为(ρ,θ)
y
M (1, 3)
θ
B (2, )
C (1, )
6
2
2
D (3, )
24
E (2, 3 )
4
ppt课件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档