北京市西城区2015届高三5月二模试题 数学文
北京市西城区2015届高三上学期期末考试数学文试题Word版含答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2x x x ∀>>,则p ⌝为( ) (A )2log 0,2x x x ∀>< (B )2log 0,2x x x ∃>≤ (C )2log 0,2x x x ∃>< (D )2log 0,2x x x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( ) (A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB < A BE CD GH F第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.侧(左)视图 正(主)视图俯视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R .(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1BCE ; (Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:B CA 1 D 1DA B 1C 1E F(1) 投资股市:(2) 购买基金:(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.210.2π311. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分 (Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分 得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD平面1A ECF EC =,B CA 1 D 1DA B 1C 1E F平面1111A BC D 平面11A ECF A F =,所以 1A F ∥CE . …………………3分 又 1A F ⊄平面1BCE ,CE ⊂平面1BCE , 所以 1A F ∥平面1BCE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小,得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”, 则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-,所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分 所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=,设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ①12as a s -=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <. 因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。
北京市西城区2015届高三上学期期末考试数学文试题及答案

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =( )(A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,sin 4B =,则( ) (A )3A π= (B )6A π=(C)sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )72.设命题p :2log 0,2xx x ∀>>,则p ⌝为( ) (A )2log 0,2xx x ∀>< (B )2log 0,2xx x ∃>≤ (C )2log 0,2xx x ∃><(D )2log 0,2xx x ∃>≥5.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天 13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( )(A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( ) (A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤ (D )2||d AB < A BE CD GH F第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b 的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.侧(左)视图 正(主)视图俯视图三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=,BC AD //,且122A A AD BC ===,1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1B CE ;(Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:B CA 1 D 1DA B 1C 1E F(1) 投资股市:(2) 购买基金:(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分.9.2 10.2π311. 12.221416x y -=13.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分 (Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分理由如下:由ππ2π22π22k x k -+≤≤, 解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分 当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分 得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <,所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞. ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD平面1A ECF EC =,B CA 1 D 1DA B 1C 1E F平面1111A B C D 平面11A ECF A F =,所以 1A F ∥CE . …………………3分 又 1A F ⊄平面1B CE ,CE ⊂平面1B CE ,所以 1A F ∥平面1B CE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,所以 90ACD ∠=,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CDC C C =,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小,得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,b =2c =, ………………2分则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为 ||21||42FA AP m ==-,所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅,所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分 所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=,设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ①12as a s -=, ② …………………4分 由②,得 1(21)a s s =-, 代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >, 所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞时()0F x <.因此,当且仅当1x =时()0F x =.所以方程(*)有且仅有一解1s =.于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分 当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。
北京市西城区2015届高三一模考试数学(文)试题

市西城区2015年高三一模试卷数 学(文科) 2015.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合0,1{}A =,集合{|}B x x a =>,若A B =∅,则实数a 的X 围是( )(A )1a ≤(B )1a ≥(C )0a ≥(D )0a ≤3.关于函数3()log ()f x x =-和()3x g x -=,下列说法中正确的是( ) (A )都是奇函数(B )都是偶函数(C )函数()f x 的值域为R (D )函数()g x 的值域为R4. 执行如图所示的程序框图,若输入的x 的值为3,则输出的n 的值为______. (A )4 (B )5 (C )6 (D )72.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限开始 1n =100x > 输出n否 是输入x5. 设,P Q 分别为直线0x y -=和圆22(6)2x y +-=上的点,则||PQ 的最小值为( )(A )22B )32(C )2D )46.设函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )7 (B )152(C )233(D )476侧(左)视图正(主)视图俯视图 211122 11118.已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____.10.函数22()sin cos f x x x =-的最小正周期是____.11.在区间[2,1]-上随机取一个实数x ,则x 使不等式1|1|x -≤成立的概率为____.12.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线 C的离心率为2,那么双曲线C 的方程为____;渐近线方程是____.13.设函数20,1,()4,0.x x x f x x x x -⎧+>⎪=⎨⎪-<⎩则[(1)]f f -=____;函数()f x 的极小值是____. 14.某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件.制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异. 现有甲、(A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同 (D )不确定乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费情况如下表:奖品一等奖奖品二等奖奖品收费(元/件)工厂甲500400乙800600则组委会定做该工艺品的费用总和最低为元.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC ∆中,90ABC ∠=,4AB =,3BC =,点D 在线段AC 上,且4AD DC =.(Ⅰ)求BD 的长; (Ⅱ)求sin CBD ∠的值.16.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =,57S a =. (Ⅰ)求数列{}n a 的通项公式n a 及n S ;(Ⅱ)若444,,m n a a a ++(*,m n ∈N )成等比数列,求n 的最小值.17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到FGB C AD,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)18.(本小题满分13分)2014年12月28日开始,市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.乘公共电汽车方案10公里(含)内2元;10公里以上部分,每增加1元可乘坐5公里(含).乘坐地铁方案(不含机场线) 6公里(含)内3元; 6公里至12公里(含)4元; 12公里至22公里(含)5元; 22公里至32公里(含)6元;32公里以上部分,每增加1元可乘坐20公里(含).(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价小于5元的概率;(Ⅱ)已知选出的120人中有6名学生,且这6人乘坐地铁的票价情形恰好与按票价...从.这.120人中..分层..抽样..所选的结果相同,现从这6人中随机选出2人,求这2人的票价和恰好为8元的概率;(Ⅲ)小李乘坐地铁从A 地到陶然亭的票价是5元,返程时,小李乘坐某路公共电汽车所花交通费也是5元,假设小李往返过程中乘坐地铁和公共电汽车的路程均为s 公里,试写出s 的取值X 围.(只需写出结论)19.(本小题满分14分)设点F 为椭圆2222 1(0)x y E a b a b +=>>:的右焦点,点3(1,)2P 在椭圆E 上,已知椭圆E 的离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过右焦点F 的直线l 与椭圆相交于A ,B 两点,记ABP ∆三条边所在直线的斜率的乘积为t ,求t 的最大值.20.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x=,函数e ()xn g x x =,(0,)x ∈+∞.(Ⅰ)判断函数()f x 在区间(0,)+∞上是否为单调函数,并说明理由;(Ⅱ)若当1n =时,对任意的12,(0,)x x ∈+∞,都有12()()g x f x t ≤≤成立,某某数t 的取值X 围;(Ⅲ)当2n >时,若存在直线l y t =:(t ∈R ),使得曲线()y f x =与曲线()y g x =分别位于直线l 的两侧,写出n 的所有可能取值. (只需写出结论)市西城区2015年高三一模试卷参考答案及评分标准高三数学(文科)2015.4一、选择题:本大题共8小题,每小题5分,共40分. 1.B 2.C 3.C4.B5.A 6.B 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分. 92 10.π11.1312.2213y x -=3y x =±13.103214.4900 注:第12,13题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为90=∠ABC ,4=AB ,3=BC ,所以3cos 5C =,4sin 5C =,5=AC , ………………3分 又因为DC AD 4=,所以4=AD ,1=DC . ……………… 4分在BCD ∆中,由余弦定理,得2222cos BD BC CD BC CD C =+-⋅………………7分223323123155=+-⨯⨯⨯=,所以5104=BD . ………………9分 (Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BDCBD C=∠,所以154sin 5CBD=∠, ……………… 12分所以sin CDB ∠=. ……………… 13分16.(本小题满分13分) (Ⅰ)解:设公差为d ,由题意,得11122,15546,2a d a d a d +=⎧⎪⎨+⨯⨯=+⎪⎩………………4分 解得12a =-,2d =,…………………5分所以2(1)224n a n n =-+-⨯=-,………………… 6分212(1)232n S n n n n n =-+-⨯=-.…………………7分(Ⅱ)解:因为444,,m n a a a ++成等比数列,所以2444m n a a a ++=,…………………9分即2(24)4(24)m n +=+,…………………10分化简,得21(2)22n m =+-,…………………11分FCADBG EM N 考察函数21()(2)22f x x =+-,知()f x 在(0,)+∞上单调递增,又因为5(1)2f =,(2)6f =,*n ∈N , 所以当2m =时,n 有最小值6.……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为AE AF =,点G 是EF 的中点,所以AG EF ⊥.…………………1分 又因为//EF AD ,所以AG AD ⊥. …………………2分 因为平面ADEF ⊥平面ABCD ,且平面ADEF平面ABCD AD =,AG ⊂平面ADEF ,所以AG ⊥平面ABCD . …………………4分 因为 CD ⊂平面ABCD , 所以AG ⊥CD .………………5分(Ⅱ)证明:如图,过点M 作MN //BC ,且交AB 于点N ,连结NF , 因为13AMMC =,所以14MN AM BC AC ==,………………6分 因为 2BC EF =,点G 是EF 的中点, 所以 4BC GF =,又因为//EF AD ,四边形ABCD 为正方形, 所以GF //MN ,GF MN =. 所以四边形GFNM 是平行四边形.GM FN. ……………8分所以//又因为GM⊄平面ABF,FN⊂平面ABF,所以GM//平面ABF.………………11分(Ⅲ)解:点O为线段GC的中点. ………………14分18.(本小题满分13分)(Ⅰ)解:记事件A为“此人乘坐地铁的票价小于5元”,………………1分由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人).+=(人).………………2分所以票价小于5元的有6040100故120人中票价小于5元的频率是1005=.1206所以估计此人乘坐地铁的票价小于5元的概率5()=P A.………………4分6(Ⅱ)解:记事件B 为“这2人的票价和恰好为8元”,………………5分由统计图,得120人中票价为3元、4元、5元的人数比为60:40:203:2:1=,则6名学生中票价为3元、4元、5元的人数分别为3,2,1(人). ………6分a b c,票价为4元的同学为,d e,票价为5元的同学为f,记票价为3元的同学为,,a b a,从这6人中随机选出2人,所有可能的选出结果共有15种,它们是:(,),(,)c (,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a a ab b b bc c c d,d e f c d e f d e f ed e. ………………8分(,),(,)f fa b c d. ………9分其中事件B的结果有4种,它们是:(,),(,),(,),(,)f f f e所以这2人的票价和恰好为8元的概率为4P B=.………………10分()15(Ⅲ)解:(20,22]s∈.………………13分19.(本小题满分14分)(Ⅰ)解:设22b a c -=,由题意,得21=a c , 所以 2a c =,3b c =. …………………2分则椭圆方程为 2222143x y c c+=, 又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为 22143x y +=. ………………5分 (Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ………………6分设直线l 的方程为(1)y k x =-,与椭圆的交点A (x 1,y 1),B (x 2,y 2),………7分由22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(34)84120k x k x k +-+-=. ………………8分由题意,可知0>∆,则有2221438kk x x +=+,212241234k x x k -=+,………9分 所以直线PA 的斜率11321PAy k x -=-,直线PB 的斜率22321PB y k x -=-,…………10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯-- 12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++ 233()44k k k k =--⨯=--. ………………12分即22339()4864t k k k =--=-++, 所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964.……14分20.(本小题满分13分)(Ⅰ)解:结论:函数()f x 在区间(0,)+∞上不是单调函数. …………………1分求导,得 11ln ()n n xf x x +-'=, …………………2分 令 ()0f x '=,解得1e nx =.当x 变化时,()f x '与()f x 的变化如下表所示:x 1(0,e )n1e n1(e ,)n+∞()f x ' +0 -()f x↗↘所以函数()f x 在区间1(0,e )n上为单调递增,区间1(e ,)n+∞上为单调递减.所以函数()f x 在区间(0,)+∞上不是单调函数. …………………4分(Ⅱ)解:当1n =时,函数ln ()xf x x=,e ()x g x x =,0x >.由题意,若对任意的12,(0,)x x ∈+∞,都有12()()g x f x t ≤≤恒成立, 只需当(0,)x ∈+∞时,max min ()()g f x t x ≤≤. …………………5分因为 21ln ()xf x x-'=. 令()0f x '=,解得e x =.当x 变化时,()f x '与()f x 的变化如下表所示:所以max ()(e)ef x f ==. …………………7分 又因为2e (1)()x x g x x-'=. 令 ()0g x '=,解得1x =.当x 变化时,()g x '与()g x 的变化如下表所示:所以min ()(1)e g x g ==. …………………9分 综上所述,得1e et ≤≤. …………………10分 (Ⅲ)解:满足条件的n 的取值集合为{3,4}. …………………13分。
2015西城二模 北京市西城区2015届高三二模语文试题 扫描版含答案

2015西城二模北京市西城区2015届高三二模语文北京市西城区2015年高三二模试卷语文参考答案及评分标准2015.5一、(14分)1.(2分)B 2.(2分)C 3.(3分)D 4.(3分)C5.(4分)不矛盾。
“我愿天公怜赤子,莫生尤物为疮痏”表达自己对朝廷要求民间进贡荔枝以致百姓不堪其苦的愤慨,体现出苏轼关心百姓疾苦的爱民之心;“日啖荔枝三百颗,不辞长作岭南人”表达他在被贬岭南之后对当地所产荔枝的赞美,表现出苏轼身处困境依然豁达乐观的心态。
(意思对即可)二、(13分)6.(3分)C 7.(3分)D8.(4分)(丙)留蒂蜡封蜜浸法(丁)带叶封坛沉井法(意思对即可)9.(3分)①适时采收,选择完整新鲜的果实。
②及时密封,减少水分流失避免病毒入侵。
③在阴暗、凉爽低温的环境中保存。
评分标准:每个要点1分。
意思对即可。
三、(26分)10.(5分)吾曰/ 生可求乎/ 曰/求其生而不得/则死者与我皆无恨也/矧求而有得耶/以其有得/则知不求而死者有恨也/夫常求其生/ 犹失之死/而世常求其死也。
评分标准:标“/”处共有10处,断对两处得1分,断对10处得5分。
断错两处扣1分,扣完5分为止。
11.(3分)D(自身)12.(3分)A(不要拿钱财使人受累)13.(3分)D(“将会帮助自己获得更多的善报”与原文意思不符)14.(6分)①廉(廉洁),②孝(奉亲至孝),③仁(居官仁厚、好施之善)说明:以死后之贫明其廉,以思亲之久扬其孝,以治狱之叹显其仁意思对即可。
15.(6分)(1)①臣无祖母②无以至今日③祖母无臣④无以终余年⑤更相为命⑥是以区区不能废远(2)①积土成山②风雨兴焉③积水成渊④蛟龙生焉⑤而神明自得⑥圣心备焉评分标准:只能选定1题完成,跨题填空以第(1)题为准。
每空1分。
句中有错别字、多字、少字,则该句不得分。
四、(16分)16.(4分)①登、上②俱为一体③不宜异同④提升、提拔评分标准:每空1分。
①④意思对即可;②③句中有错别字、多字、少字,则该句不得分。
2015西城高三一模数学(文科)

北京市西城区2015年高三一模试卷数 学(文科) 2015.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合0,1{}A =,集合{|}B x x a =>,若A B =∅,则实数a 的范围是( )(A )1a ≤(B )1a ≥(C )0a ≥(D )0a ≤3.关于函数3()log ()f x x =-和()3x g x -=,下列说法中正确的是( ) (A )都是奇函数(B )都是偶函数(C )函数()f x 的值域为R (D )函数()g x 的值域为R4. 执行如图所示的程序框图,若输入的x 的值为3,则输出的n 的值为______. (A )4(B )5 (C )6 (D )72.复数z 满足i 3i z ⋅=-,则在复平面内,复数z 对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限5. 设,P Q 分别为直线0x y -=和圆22(6)2x y +-=上的点,则||PQ 的最小值为( ) (A) (B)(C)(D )46.设函数()f x 的定义域为R ,则“x ∀∈R ,(1)()f x f x +>”是“函数()f x 为增函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7. 一个几何体的三视图如图所示,则该几何体的体积的是( ) (A )7 (B )152(C )233(D )4768. 已知6枝玫瑰与3枝康乃馨的价格之和大于24元,而4枝玫瑰与4枝康乃馨的价格之和小于20元,那么2枝玫瑰和3枝康乃馨的价格的比较结果是( )(A )2枝玫瑰的价格高 (B )3枝康乃馨的价格高 (C )价格相同 (D )不确定侧(左)视图正(主)视图俯视图第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知平面向量,a b 满足(1,1)=-a ,()()+⊥-a b a b ,那么|b |= ____. 10.函数22()sin cos f x x x =-的最小正周期是____.11.在区间[2,1]-上随机取一个实数x ,则x 使不等式1|1|x -≤成立的概率为____. 12.已知双曲线C :22221(0,0)x y a b a b-=>>的一个焦点是抛物线28y x =的焦点,且双曲线 C的离心率为2,那么双曲线C 的方程为____;渐近线方程是____.13. 设函数20,1,()4,0.x x x f x x x x -⎧+>⎪=⎨⎪-<⎩则[(1)]f f -=____;函数()f x 的极小值是____. 14. 某赛事组委会要为获奖者定做某工艺品作为奖品,其中一等奖奖品3件,二等奖奖品6件. 制作一等奖和二等奖奖品所用原料完全相同,但工艺不同,故价格有所差异. 现有甲、乙两家工厂可以制作奖品(一等奖、二等奖奖品均符合要求),甲厂收费便宜,但原料有限,最多只能制作4件奖品,乙厂原料充足,但收费较贵,其具体收费情况如下表:则组委会定做该工艺品的费用总和最低为 元.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC ∆中,90ABC ∠=,4AB =,3BC =,点D 在线段AC 上,且4AD DC =.(Ⅰ)求BD 的长; (Ⅱ)求sin CBD ∠的值.AD16.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =,57S a =. (Ⅰ)求数列{}n a 的通项公式n a 及n S ;(Ⅱ)若444,,m n a a a ++(*,m n ∈N )成等比数列,求n 的最小值.17.(本小题满分14分)如图,在五面体ABCDEF 中,四边形ABCD 为正方形,//EF AD , 平面ADEF ⊥平面ABCD ,且2BC EF =,AE AF =,点G 是EF 的中点.(Ⅰ)证明:AG ⊥CD ; (Ⅱ)若点M 在线段AC 上,且13AM MC=,求证:GM //平面ABF ;(Ⅲ)已知空间中有一点O 到,,,,A B C D G 五点的距离相等,请指出点O 的位置. (只需写出结论)18.(本小题满分13分)2014年12月28日开始,北京市公共电汽车和地铁按照里程分段计价. 具体如下表.(不考虑公交卡折扣情况)已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.FA DBG E(Ⅰ)如果从那些只乘坐四号线地铁,且在陶19.(本小题满分14分)设点F 为椭圆2222 1(0)x y E a b a b+=>>:的右焦点,点3(1,)2P 在椭圆E 上,已知椭圆E 的离心率为12.(Ⅰ)求椭圆E 的方程;(Ⅱ)设过右焦点F 的直线l 与椭圆相交于A ,B 两点,记ABP ∆三条边所在直线的斜率的乘积为t ,求t 的最大值.20.(本小题满分13分)设*n ∈N ,函数ln ()n x f x x =,函数e ()xn g x x=,(0,)x ∈+∞.(Ⅰ)判断函数()f x 在区间(0,)+∞上是否为单调函数,并说明理由;(Ⅱ)若当1n =时,对任意的12,(0,)x x ∈+∞, 都有12()()g x f x t ≤≤成立,求实数t 的取值范围;(Ⅲ)当2n >时,若存在直线l y t =:(t ∈R ),使得曲线()y f x =与曲线()y g x =分别位于直线l 的两侧,写出n 的所有可能取值. (只需写出结论)北京市西城区2015年高三一模试卷参考答案及评分标准高三数学(文科) 2015.4一、选择题:本大题共8小题,每小题5分,共40分. 1.B 2.C 3.C 4.B 5.A 6.B 7.D 8.A 二、填空题:本大题共6小题,每小题5分,共30分. 9.10. π;11. 13; 12. 2213y x -= ,y = ;13. 103,2 ; 14. 4900; 注:第12,13题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 90=∠ABC ,4=AB ,3=BC ,所以3cos 5C =,4sin 5C =,5=AC , ……… 3分 又因为DC AD 4=,所以4=AD ,1=DC . ……… 4分在BCD ∆中,由余弦定理,得2222cos BD BC CD BC CD C=+-⋅ ………… 7分223323123155=+-⨯⨯⨯=,所以 5104=BD . ……… 9分 (Ⅱ)在BCD ∆中,由正弦定理,得sin sin CD BDCBD C=∠,所以154sin 5CBD=∠, ……… 12分所以sin CDB ∠= ………… 13分16.(本小题满分13分) (Ⅰ)解:设公差为d ,由题意,得11122,15546,2a d a d a d +=⎧⎪⎨+⨯⨯=+⎪⎩………… 4分 解得12a =-,2d =, …………5分 所以2(1)224n a n n =-+-⨯=-, ………… 6分212(1)232n S n n n n n =-+-⨯=-. ………… 7分(Ⅱ)解:因为444,,m n a a a ++成等比数列,所以2444m n a a a ++=, ………… 9分即2(24)4(24)m n +=+, ………… 10分化简,得21(2)22n m =+-, ………… 11分考察函数21()(2)22f x x =+-,知()f x 在(0,)+∞上单调递增,又因为5(1)2f =,(2)6f =,*n ∈N , 所以当2m =时,n 有最小值6. ………… 13分17.(本小题满分14分)(Ⅰ)证明:因为AE AF =,点G 是EF 的中点,所以 AG EF ⊥. ……………1分 又因为 //EF AD ,所以 AG AD ⊥. ………2分因为平面ADEF ⊥平面ABCD ,且平面ADEF 平面ABCD AD =,AG ⊂平面ADEF ,所以 AG ⊥平面ABCD . ……………4分 因为 CD ⊂平面ABCD ,所以 AG ⊥CD . …………5分(Ⅱ)证明:如图,过点M 作MN //BC ,且交AB 于点N ,连结NF ,FCADBG EMN 因为13AM MC=,所以14MN AM BCAC==, …………6分因为 2BC EF =,点G 是EF 的中点, 所以 4BC GF =,又因为 //EF AD ,四边形ABCD 为正方形, 所以 GF //MN ,GF MN =. 所以四边形GFNM 是平行四边形.所以 //GM FN . ……………8分 又因为GM ⊄平面ABF ,FN ⊂平面ABF ,所以 GM //平面ABF . …………11分 (Ⅲ)解:点O 为线段GC 的中点. ……………14分18.(本小题满分13分)(Ⅰ)解:记事件A 为“此人乘坐地铁的票价小于5元”, ……………1分 由统计图可知,得120人中票价为3元、4元、5元的人数分别为60,40,20(人). 所以票价小于5元的有6040100+=(人). ………2分 故120人中票价小于5元的频率是10051206=. 所以估计此人乘坐地铁的票价小于5元的概率5()=6P A . …………4分 (Ⅱ)解:记事件B 为“这2人的票价和恰好为8元”, …………5分由统计图,得120人中票价为3元、4元、5元的人数比为60:40:203:2:1=,则6名学生中票价为3元、4元、5元的人数分别为3,2,1(人). ………6分记票价为3元的同学为,,a b c ,票价为4元的同学为,d e ,票价为5元的同学为f , 从这6人中随机选出2人,所有可能的选出结果共有15种,它们是:(,),(,)c a b a ,(,),(,),(,),(,),(,),(,),(,),(,),(,(,)d e f c d e f d e f e a a a b b b b c c c d ,(,),(,)f f d e .…………8分(Ⅲ)解:(20,22]s ∈. ……………13分19.(本小题满分14分)(Ⅰ)解:设22b a c -=,由题意,得21=a c , 所以 2a c =,b =. ……………2分则椭圆方程为 2222143x y c c+=, 又点)23,1(P 在椭圆上, 所以2213144c c+=,解得21c =, 故椭圆方程为22143x y +=. …………… 5分 (Ⅱ)解:由题意,直线l 的斜率存在,右焦点(1,0)F , ……………… 6分 设直线l 的方程为(1)y k x =-,与椭圆的交点A (x 1,y 1),B (x 2,y 2), …… 7分由 22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得 2222(34)84120k x k x k +-+-=. ……………… 8分由题意,可知0>∆,则有 2221438kk x x +=+,212241234k x x k -=+, …… 9分 所以直线PA 的斜率11321PAy kx -=-,直线PB 的斜率22321PB y k x -=-, …… 10分 所以PA PB t k k k =⨯⨯1212332211y y k x x --=⨯⨯-- 12121233[(1)][(1)]22()1k x k x k x x x x --⨯--=⨯-++2121212121239[()1](2)24()1k x x x x k x x k x x x x -++-+-+=⨯-++122121239(2)24[]()1k x x k k x x x x -+-+=+⨯-++ 233()44k k k k =--⨯=--. …… 12分 即 22339()4864t k k k =--=-++, 所以当38k =-时,ABP ∆三条边所在直线的斜率的乘积t 有最大值964. …14分20.(本小题满分13分)(Ⅰ)解:结论:函数()f x 在区间(0,)+∞上不是单调函数. ……1分求导,得 11ln ()n n xf x x +-'=, ………2分 令 ()0f x '=,解得1e nx =.当x 变化时,()f x '与()f x 的变化如下表所示:所以函数()f x 在区间1(0,e )n上为单调递增,区间1(e ,)n+∞上为单调递减.所以函数()f x 在区间(0,)+∞上不是单调函数. ………4分(Ⅱ)解:当1n =时,函数ln ()xf x x =,e ()xg x x=,0x >.由题意,若对任意的12,(0,)x x ∈+∞, 都有12()()g x f x t ≤≤恒成立, 只需当(0,)x ∈+∞时,max min ()()g f x t x ≤≤. ………5分 因为 21ln ()xf x x -'=. 令()0f x '=,解得e x =.第 11页 共 11页当x 变化时,()f x '与()f x 的变化如下表所示:所以max ()(e)ef x f ==. …………7分 又因为2e (1)()x x g x x -'=. 令 ()0g x '=,解得1x =.当x 变化时,()g x '与()g x 的变化如下表所示:所以min ()(1)e g x g ==. ………9分 综上所述,得1e et ≤≤. ………10分 (Ⅲ)解:满足条件的n 的取值集合为{3,4}. …………13分。
(全优试卷)北京市西城区高三5月模拟测试(二模)数学(文)试题Word版含答案

西城区高三模拟测试数学(文科)2018.5第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1(A(B(C(D2(A(B(C(D3(A(B(C(D4.某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是(A(B(C(D5(A(B(C(D6(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件7.设不等式组(A(B(C(D8.地铁某换乘站设有编号为A,B,C,D,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是(A)A (B)B (C)D (D)E第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9____.10____.11.12____.13.为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5.14.范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)16.(本小题满分13分)17.(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.18.(本小题满分14分)19.(本小题满分13分)20.(本小题满分14分)全优试卷..西城区高三模拟测试数学(文科)参考答案及评分标准2018.5一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.D 4.B5.D 6.D 7.B 8.C二、填空题:本大题共6小题,每小题5分,共30分.910111213.25% 14注:第12题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:依题意,得 (2)分解得或 (4)分所以 (6)分(Ⅱ)因为 (7)分所以 (9)分 (11)分 (13)分16.(本小题满分13分)解:(Ⅰ)由 (2)分得 (3)分所以 (4)分 (5)分(Ⅱ)因为 (7)分 (9)分 (11)分由(Ⅰ)得所以 (12)分所以 (13)分17.(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为 (2)分 (4)分(Ⅱ)指标检测值不低于5的样本中,37人. (6)分此地区该项身体指标检测值不低于5 (8)分100个样本数据中, (10)分 (12)分 (13)分18.(本小题满分14分)解:(Ⅰ)因为所以所以……2分因为3分所以4分因为所以所以 (6)分因为所以所以所以所以 (7)分因为所以所以 (8)分所以 (9)分所以 (10)分(Ⅲ)设由(Ⅰ)得由(Ⅱ)得所以所以 (11)分由(Ⅱ)得所以 (12)分 (14)分19.(本小题满分13分)解: (2)分依题意,有即 (4)分解得 (5)分所以 (8)分因为所以 (9)分设 (10)分则故 (11)分所以即 (12)分故 (13)分20.(本小题满分14分)解:且 (2)分解得 (3)分所以 (4)分(Ⅱ)(ⅰ)由 (5)分由得 (6)分设则 (8)分由 (9)分所以 (10)分因为所以所以 (12)分 (14)分。
北京市西城区高三二模试卷.docx

北京市西城区2015年高三二模试卷数 学(文科) 2015.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|10}A x x =->,集合3{|}B x x =≤,则A B =( )(A )(1,3)-(B )(1,3](C )[1,3)(D )[1,3]-3. 设命题p :函数1()e x f x -=在R 上为增函数;命题q :函数()cos 2f x x =为奇函数. 则 下列命题中真命题是( )(A )p q ∧ (B )()p q ⌝∨ (C )()()p q ⌝∧⌝ (D )()p q ∧⌝4.执行如图所示的程序框图,若输入的{1,2,3}n ∈,2.已知平面向量,,a b c 满足(1,1)=-a ,(2,3)=b ,(2,)k =-c ,若()//+a b c ,则实数k =( ) (A )4 (B )4- (C )8 (D )8-则输出的s 属于( ) (A ){1,2} (B ){1,3} (C ){2,3}(D ){1,3,9}5. 一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图可以为( )(A ) (B ) (C ) (D )6. 某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与 x 满足函数关系2464y x =+,若欲使此设备的年平均花费最低,则此设备的使用年限x 为( )(A )3 (B )4 (C )5 (D )67. “3m >”是“曲线22(2)1mx m y --=为双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8. 在长方体1111ABCD A B C D -中,12,1AB BC AA ===,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则1B P PQ +的最小值为( )第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数10i3i=+____. 10. 抛物线24C y x =:的准线l 的方程是____;以C 的焦点为圆心,且与直线l 相切的圆的 方程是____.11.设函数,11,1()2,.x x f x x x -⎧>⎪=⎨⎪-⎩≤ 则[(2)]f f =____;函数()f x 的值域是____.12.在ABC ∆中, 角A ,B ,C 所对的边分别为,,a b c , 若7a =,3b =,2c =, 则A =____;ABC ∆的面积为____.13. 若,x y 满足,2,1,y x y x x y +⎧⎪⎨⎪⎩≥≤≤若z x my =+的最大值为53,则实数m =____.14. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为([0,π])x x ∈,OP 所经过的在正方形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论: ○1 π3()32f =;○2 函数()f x 在区间π(,π)2上为减函数;○3 任意π[0,]2x ∈,都有()(π)4f x f x +-=.其中所有正确结论的序号是____.(A )2 (B )3 (C )32(D )2三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分) 已知函数cos 2(sin cos )()cos sin x x x f x x x+=-.(Ⅰ)求函数()f x 的定义域; (Ⅱ)求函数()f x 的单调增区间.16.(本小题满分13分)设数列{}n a 的前n 项和为n S ,且11a =,*11()n n a S n +=+∈N . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 为等差数列,且11b a =,公差为21a a . 当3n ≥时,比较1nb +与121nb b b ++++的大小.17.(本小题满分14分)如图,在四棱锥E ABCD -中,AE DE ⊥,CD ⊥平面ADE , AB ⊥平面ADE ,6CD DA ==,2AB =,3DE =.(Ⅰ)求棱锥C ADE -的体积; (Ⅱ)求证:平面ACE ⊥平面CDE ;(Ⅲ)在线段DE 上是否存在一点F ,使//AF 平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.18.(本小题满分13分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(Ⅱ)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a >b 的概率;(Ⅲ)若a =1,记乙型号电视机销售量的方差为s 2,根据茎叶图推断b 为何值时,s 2达到最小值.(只需写出结论) (注:方差2222121[()()()]n s x x x x x x n=-+-++-,其中x 为1x ,2x ,…,n x的平均数)19.(本小题满分14分)设1F ,2F 分别为椭圆2222 + 1(0)x y E a b a b=>>:的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且||2AB =. (Ⅰ)若椭圆E 的离心率为63,求椭圆E 的方程;(Ⅱ)设P 为椭圆E 上一点,且在第一象限内,直线2F P 与y 轴相交于点Q . 若以PQ 为直径的圆经过点1F ,证明:点P 在直线20x y +-=上.20.(本小题满分13分)已知函数21()1xf x ax-=+,其中a ∈R . (Ⅰ)当14a =-时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)当0a >时,证明:存在实数0m >,使得对任意的x ,都有()m f x m -≤≤成立; (Ⅲ)当2a =时,是否存在实数k ,使得关于x 的方程()()f x k x a =-仅有负实数解?当12a =-时的情形又如何?(只需写出结论)北京市西城区2015年高三二模试卷参考答案及评分标准高三数学(文科) 2015.5一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.A 5.C 6.B 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分.9.13i + 10.1x =- 22(1)4x y -+= 11.52- [3,)-+∞ 12.π3 33213.2 14.○1 ○3 注:第10,11题第一问2分,第二问3分. 第14题多选、漏选或错选均不得分. 三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:由题意,得cos sin 0x x -≠, ……………… 1分即 tan 1x ≠, ……………… 2分解得 ππ4x k ≠+, ……………… 4分 所以函数()f x 的定义域为π{|π,}4x x k k ≠+∈Z . ……………… 5分(Ⅱ)解:cos 2(sin cos )()cos sin x x x f x x x +=-22(cos sin )(sin cos )cos sin x x x x x x-+=-……………… 7分(cos sin )(sin cos )x x x x =++sin 21x =+, ……………… 9分由 ππ2π22π22k x k -++≤≤,得 ππππ44k x k -++≤≤, ……………… 11分又因为 ππ4x k ≠+,所以函数()f x 的单增区间是ππ(π,π)44k k -++,k ∈Z . (或写成ππ[π,π)44k k -++)……………… 13分16.(本小题满分13分)(Ⅰ)证明:因为11n n a S +=+, ○1 所以当2n ≥时,11n n a S -=+, ○2由 ○1○2两式相减,得1n n n a a a +-=,即12n n a a +=(2)n ≥, ………………3分 因为当1n =时,2112a a =+=,所以212a a =, ………………4分 所以 *12()n nan a +=∈N . ………………5分所以数列{}n a 是首项为1,公比为2的等比数列,所以 12n n a -=. ………………7分 (Ⅱ)解:因为1(1)221n b n n =+-⨯=-, ………………9分所以121n b n +=+,212(121)1112n n n b b b n +-++++=+=+, ………………11分 因为2(1)(21)(2)n n n n +-+=-, ………………12分 由3n ≥,得(2)0n n ->,所以当3n ≥时,1121n n b b b b +<++++. ………………13分17.(本小题满分14分) (Ⅰ)解:在Rt ΔADE 中,2233AE AD DE =-=. ………………1分因为CD ⊥平面ADE ,所以棱锥C ADE -的体积为Δ1193332C ADE ADE AE DEV S CD CD -⋅==⋅⋅=⋅. ………………4分(Ⅱ)证明:因为 CD ⊥平面ADE ,AE ⊂平面ADE ,所以CD AE ⊥. ………………5分 又因为AE DE ⊥,CDDE D =,所以AE ⊥平面CDE . ………………7分 又因为AE ⊂平面ACE ,所以平面ACE ⊥平面CDE . …………………8分 (Ⅲ)结论:在线段DE 上存在一点F ,且13EFED =,使//AF 平面BCE .…………………9分解:设F 为线段DE 上一点, 且13EF ED =, ………………10分过点F 作//FM CD 交CE 于M ,则1=3FM CD .因为CD ⊥平面ADE ,AB ⊥平面ADE , 所以//CD AB . 又因为3CD AB =所以MF AB =,//FM AB ,所以四边形ABM F 是平行四边形,则//AF BM . ………………12分 又因为AF ⊄平面BCE ,BM ⊂平面BCE ,所以//AF 平面BCE . ………………14分18.(本小题满分13分) (Ⅰ)解:根据茎叶图, 得甲组数据的平均数为101014182225273041432410+++++++++=, ………2分由茎叶图,知甲型号电视机的“星级卖场”的个数为5. ………………4分 (Ⅱ)解:记事件A 为“a >b ”, ………………5分因为乙组数据的平均数为26.7, 所以10182022233132(30)(30)4326.710a b +++++++++++=,解得 8a b +=. ………………7分 所以 a 和b 取值共有9种情况,它们是:(0,8),(1,7),(2,6),(3,5),(4,4),(5,3), (6,2),(7,1),(8,0), ………………8分ABCED FM其中a >b 有4种情况,它们是:(5,3),(6,2),(7,1),(8,0), ………………9分 所以a >b 的概率4()9P A =. ………………10分 (Ⅲ)解:当b =0时,2s 达到最小值. ………………13分19.(本小题满分14分)(Ⅰ)解:设22c a b =-,由题意,得224a b +=,且63c a =, ………………2分 解得3a =,1b =,2c =. ………………4分所以椭圆E 的方程为2213x y +=. ………………5分 (Ⅱ)解:由题意,得224a b +=,所以椭圆E 的方程为222214x y a a +=-, 则1(,0)F c -,2(,0)F c ,22224c a b a =-=-. 设00(,)P x y ,由题意,知0x c ≠,则直线1F P 的斜率10F P y k x c=+, ………………6分 直线2F P 的斜率200F P y k x c=-, 所以直线2F P 的方程为00()y y x c x c=--, 当0x =时,00y cy x c -=-,即点00(0,)Q y c x c--, 所以直线1F Q 的斜率为10F Q y k c x =-, ………………8分 因为以PQ 为直径的圆经过点1F , 所以11PF F Q ⊥.所以1100001F P F Q y yk k x c c x ⨯=⨯=-+-, ………………10分化简,得22200(24)y x a =--, ○1又因为P 为椭圆E 上一点,且在第一象限内,所以22002214x y a a +=-,00x >,00y >, ○2 由○1○2,解得202a x =,20122y a =-, ………………12分 所以002x y +=,即点P 在直线20x y +-=上. ………………14分20.(本小题满分13分)(Ⅰ)解:当14a =-时,函数21()114x f x x -=-, 求导,得22222224(1)3()114(1)4(1)44x x x f x x x -+----'==--, ………………2分 因为(1)0f =,(1)43f '=-, ………………3分 所以函数()f x 的图象在点(1,(1))f 处的切线方程为4340x y +-=.………………4分 (Ⅱ)证明:当0a >时,21()1x f x ax -=+的定义域为R . 求导,得22221()(1)ax ax f x ax --'=+, ………………5分 令()0f x '=,解得11110x a =-+<,21111x a =++>, ………………6分当x 变化时,()f x '与()f x 的变化情况如下表: x1(,)x -∞ 1x 12(,)x x 2x 2(,)x +∞ ()f x ' +0 - 0 + ()f x↗ ↘ ↗ ………………8分所以函数()f x 在1(,)x -∞,2(,)x +∞上单调递增,在12(,)x x 上单调递减.又因为(1)0f =,当1x <时,21()01xf x ax -=>+;当1x >时,21()01xf x ax -=<+,所以当1x ≤时,10()()f x f x ≤≤;当1x >时,2()()0f x f x <≤.记12max{()|,()|}||M f x f x =,其中12max{()|,()|}||f x f x 为两数1()||f x ,2()||f x 中最大的数,综上,当0a >时,存在实数[,)m M ∈+∞,使得对任意的实数x ,不等式()m f x m -≤≤ 恒成立. ………………10分(Ⅲ)解:当12a =-与2a =时,不存在实数k ,使得关于实数x 的方程()()f x k x a =-仅 有负实数解.。
北京市西城区2015届高三上学期期末考试数学(文)试题(有答案)AqUwMq

北京市西城区2014 — 2015学年度第一学期期末试卷高三数学(文科) 2015.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合1,0,1,2{}A -=,2{|}B x x x =>,则集合A B =I ( ) (A ){1,0,1}-(B ){1,2}-(C ){0,1,2}(D ){1,1,2}-3.在锐角∆ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若2a b =,3sin B =,则( ) (A )3A π= (B )6A π=(C )3sin A =(D )2sin 3A =4.执行如图所示的程序框图,输出的x 值为( ) (A )4 (B )5 (C )6 (D )75.设函数()y f x =的定义域为R ,则“(0)0f =”是“函数()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6. 某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天2.设命题p :2log 0,2xx x ∀>>,则p ⌝为( ) (A )2log 0,2xx x ∀>< (B )2log 0,2xx x ∃>≤ (C )2log 0,2xx x ∃><(D )2log 0,2xx x ∃>≥a =2,x =3开始 x y a =x =x +1103y x >+ 输出x结束否是13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是( ) (A )13 (B )34 (C )58 (D )458. 如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. 复数i1iz =+,则||z =______.10.设平面向量,a b 满足||3=a ,||2=b ,3⋅=-a b ,那么,a b的夹角θ=____.11.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱7. 设抛物线2:4W y x =的焦点为F ,过F 的直线与W 相交于A ,B 两点,记点F 到直线l :1x =-的距离为d ,则有( )(A )2||d AB ≥ (B )2||d AB = (C )2||d AB ≤(D )2||d AB <A BE CD GH F侧(左)视图正(主)视图俯视图 22111 11长为_____.12.设12,F F 为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,且直线2y x =为双曲线C 的一条渐近线,点P 为C 上一点,如果12||||4PF PF -=,那么双曲线C 的方程为____;离心率为_____.13. 某小学教师准备购买一些签字笔和铅笔盒作为奖品,已知签字笔每支5元,铅笔盒每个6元,花费总额不能超过50元. 为了便于学生选择,购买签字笔和铅笔盒的个数均不能少于3个,那么该教师有_______种不同的购买奖品方案.14. 设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2π()12sin ()4f x x =--,x ∈R . (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)判断函数()f x 在区间ππ[,]66-上是否为增函数?并说明理由.16.(本小题满分13分)已知数列{}n a 满足25a =,且其前n 项和2n S pn n =-. (Ⅰ)求p 的值和数列{}n a 的通项公式;(Ⅱ)设数列{}n b 为等比数列,公比为p ,且其前n 项和n T 满足55T S <,求1b 的取值范围.17.(本小题满分14分)如图,在四棱柱1111D C B A ABCD -中,A A 1⊥底面ABCD ,90BAD ∠=o,BC AD //,且122A A AD BC ===,B CA 1 D 1 DA B 1C 1E F1AB =. 点E 在棱AB 上,平面1A EC 与棱11C D 相交于点F .(Ⅰ)求证:1A F ∥平面1B CE ; (Ⅱ)求证: AC ⊥平面11CDD C ;(Ⅲ)写出三棱锥11B A EF -体积的取值范围. (结论不要求证明)18.(本小题满分13分)最近,张师傅和李师傅要将家中闲置资金进行投资理财. 现有两种投资方案,且一年后投资盈亏的情况如下:(1) 投资股市:投资结果 获利不赔不赚亏损概 率121838(2) 购买基金:投资结果 获利不赔不赚亏损概 率p13q(Ⅰ)当2p =时,求q 的值; (Ⅱ)已知“购买基金”亏损的概率比“投资股市”亏损的概率小,求p 的取值范围;(Ⅲ)已知张师傅和李师傅两人都选择了“购买基金”来进行投资,假设三种投资结果出现的可能性相同,求一年后他们两人中至少有一人获利的概率. 19.(本小题满分14分)已知椭圆C :2211612x y +=的右焦点为F ,右顶点为A ,离心率为e ,点(,0)(4)P m m >满足条件||||FA e AP =. (Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记PMF ∆和PNF ∆的面积分别为1S ,2S ,若122S S =,求直线l 的方程.20.(本小题满分13分)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由;(Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)北京市西城区2014 — 2015学年度第一学期期末高三数学(文科)参考答案及评分标准2015.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.B 3.A 4.C 5.B 6.D 7.A 8.D 二、填空题:本大题共6小题,每小题5分,共30分. 9.22 10.2π311. 22 12.221416x y -=513.9 14.2-或4 (1,3]- 注:第12,14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为2π()12sin ()4f x x =--πcos 2()4x =- ……………… 3分sin 2x =, ……………… 5分所以函数()f x 的最小正周期2ππ2T ==.……………… 7分(Ⅱ)解:结论:函数()f x 在区间ππ[,]66-上是增函数. ……………… 9分 理由如下:由ππ2π22π22k x k -+≤≤,解得ππππ44k x k -+≤≤,所以函数()f x 的单调递增区间为ππ[π,π]44k k -+,()k ∈Z .……………… 12分当0=k 时,知)(x f 在区间ππ[,]44-上单调递增, 所以函数()f x 在区间ππ[,]66-上是增函数. ……………… 13分16.(本小题满分13分)(Ⅰ)解:由题意,得11S p =-,242S p =-,因为 25a =,212S a a =+, 所以 24215S p p =-=-+,解得 2p =. ……………… 3分所以 22n S n n =-.当2n ≥时,由1n n n a S S -=-, ……………… 5分得 22(2)[2(1)(1)]43n a n n n n n =-----=-. ……………… 7分 验证知1n =时,1a 符合上式,所以43n a n =-,*n ∈N . ……………… 8分(Ⅱ)解:由(Ⅰ),得11(12)(21)12n n n b T b -==--. ……………… 10分 因为 55T S <, 所以 521(21)255b -<⨯-,解得 14531b <. ……………… 12分 又因为10b ≠,所以1b 的取值范围是45(,0)(0,)31-∞U . ……………… 13分17.(本小题满分14分)(Ⅰ)证明:因为1111D C B A ABCD -是棱柱,所以平面ABCD ∥平面1111A B C D . 又因为平面ABCD I 平面1A ECF EC =, 平面1111A B C D I 平面11A ECF A F =,所以1A F∥CE.…………………3分又 1A F ⊄平面1B CE ,CE ⊂平面1B CE ,所以 1A F ∥平面1B CE . …………………6分 (Ⅱ)证明:在四边形ABCD 中,因为 90BAD ∠=o ,BC AD //,且BC AD 2=,2AD =,1AB =, 所以 222112AC =+=,222112CD =+=. 所以 222AC CD AD +=,B CA 1 D 1 DAB 1C 1EF所以 90ACD ∠=o ,即AC CD ⊥. …………………7分 因为 1A A ⊥平面ABCD AC ⊂,平面ABCD , 所以 1A A AC ⊥.因为在四棱柱1111D C B A ABCD -中,11//A A C C ,所以 1C C AC ⊥. …………………9分 又因为 1,CD C C ⊂平面11CDD C ,1CD C C C =I ,所以 AC ⊥平面11CDD C . …………………11分(Ⅲ)解:三棱锥11B A EF -的体积的取值范围是12[,]33. …………………14分18.(本小题满分13分)(Ⅰ)解:因为“购买基金”后,投资结果只有“获利”、“不赔不赚”、“亏损”三种 且三种投资结果相互独立,所以 p +13+q =1. ……………… 2分又因为 12p =, 所以 q =61. ……………… 3分(Ⅱ)解:由“购买基金”亏损的概率比“投资股市”亏损的概率小, 得 38q <, ……………… 4分 因为 p +13+q =1,所以 2338q p =-<,解得 724p >. ……………… 7分 又因为 113p q ++=,0q ≥, 所以 23p ≤. 所以72243p ≤<. ……………… 8分 (Ⅲ)解:记事件A 为 “一年后张师傅和李师傅两人中至少有一人获利”, ………… 9分用a ,b ,c 分别表示一年后张师傅购买基金“获利”、“不赔不赚”、“亏损”,用x ,y ,z 分别表示一年后李师傅购买基金“获利”、“不赔不赚”、“亏损”,则一年后张师傅和李师傅购买基金,所有可能的投资结果有339⨯=种, 它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)b y ,(,)b z ,(,)c x ,(,)c y ,(,)c z , ……………10分所以事件A 的结果有5种,它们是:(,)a x ,(,)a y ,(,)a z ,(,)b x ,(,)c x .…………… 11分 因此这一年后张师傅和李师傅两人中至少有一人获利的概率5()9P A =. …………13分19.(本小题满分14分)(Ⅰ)解:因为椭圆C 的方程为 2211612x y +=,所以 4a =,23b =,222c a b =-=, ………………2分 则 12c e a ==,||2FA =,||4AP m =-. ………………3分 因为||21||42FA AP m ==-, 所以 8m =. ………………5分 (Ⅱ)解:若直线l 的斜率不存在,则有 21S S =,不合题意. ………………6分若直线l 的斜率存在,设直线l 的方程为)2(-=x k y ,),(11y x M ,),(22y x N .由 ⎪⎩⎪⎨⎧-==+),2(,1121622x k y y x 得 2222(43)1616480k x k x k +-+-=, ……………… 7分可知 0>∆恒成立,且 34162221+=+k k x x ,3448162221+-=k k x x . ……………… 8分 因为PMF ∆和PNF ∆的面积分别为111||||2S PF y =⋅,221||||2S PF y =⋅, 所以2||||212121=-==y yy y S S . ……………… 9分 即 212y y -=.所以 221y y y -=+,2212221)(22y y y y y +-=-=, ……………… 11分则 22121)]2()2([2)2()2(-+--=-⋅-x k x k x k x k , 即 2212121)4(24)(2-+-=++-x x x x x x ,即 2222222)43416(2434162344816-+-=++⋅-+-k k k k k k , 解得 25±=k . ……………… 13分 所以直线l 的方程为 )2(25-=x y 或 )2(25--=x y . ……………… 14分20.(本小题满分13分)(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分所以当0x >时,()20f x x '=-<,1()0g x x '=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=, 设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………4分 由②,得 1(21)a s s =-,代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >,所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,x1(,1)21 (1,)+∞()F x '+0 -()F x↗↘…………………8分所以当1x =时,()F x 取到最大值(1)0F =,且当1(,1)(1,)2x ∈+∞U 时()0F x <. 因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………………11分 当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2015年高三二模试卷
数 学(文科) 2015.5
第Ⅰ卷(选择题 共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目
要求的一项.
1.设集合{|10}A x x =->,集合3{|}B x x =≤,则A B =( )
(A )(1,3)- (B )(1,3] (C )[1,3) (D )[1,3]-
3. 设命题p :函数1()e x f x -=在R 上为增函数;命题q :函数()cos 2f x x =为奇函数. 则
下列命题中真命题是( )
(A )p q ∧ (B )()p q ⌝∨
(C )()()p q ⌝∧⌝ (D )()p q ∧⌝
4.执行如图所示的程序框图,若输入的{1,2,3}n ∈,
则输出的s 属于( )
(A ){1,2}
2.已知平面向量,,a b c 满足(1,1)=-a ,(2,3)=b ,(2,)k =-c ,若()//+a b c ,则实数k =(
) (A )4 (B )4-
(C )8 (D )8-
(B ){1,3}
(C ){2,3}
(D ){1,3,9}
5. 一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图可以为( )
(A ) (B ) (C ) (D )
6. 某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与 x 满足函数关系2464y x =+,若欲使此设备的年平均花费最低,则此设备的使用年限x 为( )
(A )3 (B )4
(C )5 (D )6
7. “3m >”是“曲线22(2)1mx m y --=为双曲线”的( )
(A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件
8. 在长方体1111ABCD A B C D -中,11AB BC AA ===,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则1B P PQ +的最小值为( )
第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共6小题,每小题5分,共30分.
9. 复数10i 3i
=+____. 10. 抛物线24C y x =:的准线l 的方程是____;以C 的焦点为圆心,且与直线l 相切的圆的 方程是____.
11.设函数,11,1()2,.
x x f x x x -⎧>⎪=⎨⎪-⎩≤ 则[(2)]f f =____;函数()f x 的值域是____. 12.在ABC ∆中, 角A ,B ,C 所对的边分别为,,a b c ,
若a =3b =,2c =, 则A =____;ABC ∆的面积为____.
13. 若,x y 满足,
2,1,y x y x x y +⎧⎪⎨⎪⎩
≥≤≤若z x my =+的最大值为5
3,则实数m =____.
14. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋
转至OD ,在旋转的过程中,记AOP ∠为([0,π])x x ∈,OP 所经过的在正方形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:
○1
π()3f ○2 函数()f x 在区间π(,π)2
上为减函数; (A
(B
(C )3
2
(D )2。