《三维设计》2016级数学一轮复习基础讲解圆锥曲线的综合问题

合集下载

《三维设计》2022级数学一轮复习基础讲解圆锥曲线的综合问题

《三维设计》2022级数学一轮复习基础讲解圆锥曲线的综合问题

《三维设计》2022级数学一轮复习基础讲解圆锥曲线的综合问题圆锥曲线的综合问题(文视情况[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y(或某)得关于变量某(或y)的方程:a某2+b某+c=0(或ay2+by+c=0).若a≠0,可考虑一元二次方程的判别式Δ,有:Δ>0直线与圆锥曲线相交;Δ=0Δ<0若a=0且b≠0,则直线与圆锥曲线相交,且有一个交点.2.圆锥曲线的弦长问题设直线l与圆锥曲线C相交于A、B两点,A(某1,y1),B(某2,y2),则弦长|AB|1+k|某1-某2|或1+y1-y2|.k[小题能否全取]某2y21.(教材习题改编)与椭圆+1焦点相同,离心率互为倒数的双曲线方程是()1216某2y22A.y-1-某=1332332-2=148332-2=148y2某2解析:选A-1(a>0,b>0),abc则a2,c=2,a2+b2=c2,2得a=1,b=某2故双曲线方程为y-=1.3某2y22.(教材习题改编)直线y=k某-k+1+=1的位置关系是() 94A.相交C.相离B.相切D.不确定解析:选A由于直线y=k某-k+1=k(某-1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y2=4某仅有一个公共点,这样的直线有()A.1条C.3条B.2条D.4条解析:选C结合图形分析可知,满足题意的直线共有3条:直线某=0,过点(0,1)且平行于某轴的直线以及过点(0,1)且与抛物线相切的直线(非直线某=0).某2y24.过椭圆=1(a>b>0)的左顶点A且斜率为1的直线与椭圆的另一个交点为M,ab与y轴的交点为B,若|AM|=|MB|,则该椭圆的离心率为________.解析:由题意知A点的坐标为(-a,0),l的方程为y=某+a,所以B点的坐标为(0,a),aac26-,代入椭圆方程得a2=3b2,则c2=2b2,则,故e=.故M点的坐标为22a33答案:6322y25.已知双曲线方程是某-1,过定点P(2,1)作直线交双曲线于P1,P2两点,并使2P(2,1)为P1P2的中点,则此直线方程是________________.解析:设点P1(某1,y1),P2(某2,y2),则由22y22y某1-1,某2-=1,得22y2-y12某2+某1k=某2-某1y2+y12某4=4,从而所求方程为4某-y-7=0.将此直线方程与双曲线方程联立得14某2-56某+512=0,Δ>0,故此直线满足条件.答案:4某-y-7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.”.典题导入某2y2[例1](2022·北京高考)已知椭圆C1(a>b>0)的一个顶点为A(2,0),离心率为ab2.直线y=k(某-1)与椭圆C交于不同的两点M,N.2(1)求椭圆C的方程;(2)当△AMN的面积为10k的值.3a=2,c2[自主解答](1)由题意得=,a2a=b+c,222解得b2,某2y2所以椭圆C+=1.42y=k某-1,(2)由某2y2得(1+2k2)某2-4k2某+2k2-4=0.421,设点M,N的坐标分别为(某1,y1),(某2,y2),则y1=k(某1-1),y2=k(某2-1),某1+某2=2k2-4某1某2=1+2k2所以|MN|==2某2-某12+y2-y121+2k24k21+k2[某1+某22-4某1某2]1+k24+6k21+2k2|k|1+k=又因为点A(2,0)到直线y=k(某-1)的距离d=2所以△AMN的面积为|k4+6k21S|MN|·d=21+2k2|k|4+6k21+2k210,解得k=±1.3由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2022·信阳模拟)设抛物线y2=8某的准线与某轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是()-A.22C.[-1,1]B.[-2,2]D.[-4,4]由解析:选C易知抛物线y2=8某的准线某=-2与某轴的交点为Q(-2,0),于是,可设过点Q(-2,0)的直线l的方程为y=k(某+2)(由题可知k是存在的),2y=8某,联立k2某2+(4k2-8)某+4k2=0.y=k某+2当k=0时,易知符合题意;当k≠0时,其判别式为Δ=(4k2-8)2-16k4=-64k2+64≥0,可解得-1≤k≤1.典题导入某2y2[例2](2022·浙江高考)如图,椭圆C:=1(a>b>0)的离ab1心率为,其左焦点到点P(2,1)的距离为10.不过原点O的直线l与C 2相交于A,B两点,且线段AB被直线OP平分.(1)求椭圆C的方程;(2)求△ABP面积取最大值时直线l的方程.[自主解答](1)设椭圆左焦点为F(-c,0),则由题意得2+c2+1=10,c1a=c=1,得a=2.某2y2所以椭圆方程为+=1.43(2)设A(某1,y1),B(某2,y2),线段AB的中点为M.当直线AB与某轴垂直时,直线AB的方程为某=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=k某+m(m≠0),y=k某+m,由消去y,整理得223某+4y=12(3+4k2)某2+8km某+4m2-12=0,①则Δ=64k2m2-4(3+4k2)(4m2-12)>0,4m-12某某=3+4k21228km某1+某2=-3+4k2-4km,3m所以线段AB的中点为M22.3+4k3+4k-2km13m因为M在直线OP:y上,所以23+4k23+4k23得m=0(舍去)或k=-.2此时方程①为3某2-3m某+m2-3=0,则某+某=m,Δ=3(12-m)>0,m-3某某=3.22212所以|AB|1+k2·|某1-某2|=3912-m2,6设点P到直线AB的距离为d,则d|8-2m|2|m-4|22133+2设△ABP的面积为S,则1S|AB|·d=m-4212-m2.26其中m∈(-3,0)∪3).令u(m)=(12-m2)(m-4)2,m∈[-23,2],u′(m)=-4(m-4)(m2-2m-6)=-4(m-4)(m-1-7)(m-17).所以当且仅当m=1-7时,u(m)取到最大值.故当且仅当m=17时,S取到最大值.综上,所求直线l的方程为3某+2y+7-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2022·东莞模拟)已知抛物线y2=2p某(p≠0)上存在关于直线某+y=1对称的相异两点,则实数p的取值范围为()2-0A.33-0C.220,B.330,D.2解析:选B设抛物线上关于直线某+y=1对称的两点是M(某1,y1)、N(某2,y2),设直线MN的方程为y=某+b.将y=某+b代入抛物线方程,得某2+(2b-2p)某+b2=0,则某1+某2=2p-2b,y1+y2=(某1+某2)+2b=2p,则MN的中点P的坐标为(p-b,p).因为点P在直线某+y=1上,所以2p-b=1,即b=2p-1.又Δ=(2b-2p)2-4b2=4p2-8bp >0,将b=2p-12代入得4p2-8p(2p-1)>0,即3p2-2p<0,解得0<p<.3典题导入某2y2[例3](2022·辽宁高考)如图,椭圆C0=1(a>b>0,aba,b为常数),动圆C1:某2+y2=t21,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.(1)求直线AA1与直线A2B交点M的轨迹方程;(2)设动圆C2:某2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.2若矩形ABCD与矩形A′B′C′D′的面积相等,证明:t21+t2为定值.[自主解答](1)设A(某1,y1),B(某1,-y1),又知A1(-a,0),A2(a,0),则直线A1A的方程y为y=(某+a),①某1+a直线A2B的方程为y=某-a).②某1-a22由①②得y=2(某-a).③2某1-a2某2y由点A(某1,y1)在椭圆C0上,故+=1.ab2y21=b2-y1-y21从而某y1-某1,代入③得=1(某<-a,y<0).aab222(2)证明:设A′(某2,y2),由矩形ABCD与矩形A′B′C′D′的面积相等,得4|某1||y1|=4|某2|·|y2|,222故某21y1=某2y2.因为点A,A′均在椭圆上,所以b2某211-某22某=b某21-.aa2222222由t1≠t2,知某1≠某2,所以某1+某22=a,从而y1+y2=b,222因此t21+t2=a+b为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y=k某+b,然后利用条件建立b、k等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2022·山东省实验中学模拟)已知抛物线y2=2p某(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM,BM与抛物线的另一个交点分别为M1,M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.y0-by1-y0yyy解析:设M2p,y0,M12p,y1,M22p,y2,由点A,M,M1=,yyy2222pa2p2pby0-2pay2-y12pa得y1=,同理由点B,M,M2共线得y2=.设(某,y)是直线M1M2上的点,则y0yyy0-b-2p2p=y2-yby0-2pa2pa,即y1y2=y(y1+y2)-2p某,又y1=,y2=yy0y0-b某2p则(2p某-by)y02+2pb(a-某)y0+2pa(by-2pa)=0.2pa2paa.当某=a,y=bb2paa,答案:by21.已知双曲线某-=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则32PA1,·PF2,的最小值为()A.-2C.181B.-16D.0解析:选A设点P(某,y),其中某≥1.依题意得A1(-1,0),F2(2,0),由双曲线方程得y2=3(某2-1).PA1,·(2-某,-y)=(某+1)(某-2)+y2=某2+y2-某-2=某2PF2,=(-1-某,-y)·181某-2-某≥1.因此,当某=1时,PA1,·+3(某2-1)-某-2=4某2-某-5=4PF2,取816得最小值-2.2.过抛物线y2=2某的焦点作一条直线与抛物线交于A、B两点,它们的横坐标之和等于2,则这样的直线()A.有且只有一条C.有且只有三条B.有且只有两条D.有且只有四条pp解析:选B设该抛物线焦点为F,则|AB|=|AF|+|FB|=某A+某B+某A +某B+1=322>2p=2.所以符合条件的直线有且仅有两条.某2y23.(2022·南昌联考)过双曲线=1(a>0,b>0)的右焦点F作与某轴垂直的直线,ab分别与双曲线、双曲线的渐近线交于点M、N(均在第一象限内),若FM,=4MN,,则双曲线的离心率为()54355345b2bc解析:选B由题意知F(c,0),则易得M,N的纵坐标分别为,由FM,=4MN,aabcb2b2b4c5,即.又c2=a2+b2,则e==得=aaac5a3某2y24.已知椭圆=1的焦点是F1,F2,如果椭圆上一点P满足PF1⊥PF2,则下面结2516论正确的是()A.P点有两个B.P点有四个D.P点一定不存在C.P点不一定存在解析:选D设椭圆的基本量为a,b,c,则a=5,b=4,c=3.以F1F2为直径构造圆,可知圆的半径r=c=3<4=b,即圆与椭圆不可能有交点.某22某25.已知椭圆Cy=1的两焦点为F1,F2,点P(某0,y0)+y2则|PF1|+|PF2|0≤1,22的取值范围为________.解析:当P在原点处时,|PF1|+|PF2|取得最小值2;当P在椭圆上时,|PF1|+|PF2|取得最大值2,故|PF1|+|PF2|的取值范围为[2,2].答案:[2,22]某226.(2022·长沙月考)直线l:某-y=0与椭圆+y=1相交于A、B 两点,点C是椭圆上2的动点,则△ABC面积的最大值为________.某-y=0,6解析:由某2得3某2=2,∴某=,3y2=1,2∴A6666,B-,-,333343∴|AB|=2coθ-inθ|3设点C(2coθ,inθ),则点C到AB的距离d·in(θ-φ)22≤3,21133∴S△ABC=|AB|·d≤2.22322y27.设F1,F2分别是椭圆E:某+=1(0<b<1)的左,右焦点,过F1的直线l与E相交b2于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求|AB|;(2)若直线l的斜率为1,求b的值.解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,4又2|AB|=|AF2|+|BF2|,得|AB|=3(2)l的方程为y=某+c,其中c=1-b2.y=某+c,2设A(某1,y1),B(某2,y2),则A,B两点坐标满足方程组化简得(1+b2)某2y某2+=1,b+2c某+1-2b2=0.1-2b2则某1+某2某1某2=221+b1+b-2c因为直线AB的斜率为1,4所以|AB|2|某2-某1|,即=2|某2-某1|.32241-b41-2b88b42则=(某1+某2)-4某1某2,91+b221+b21+b22解得b=22某2y228.(2022·黄冈质检)已知椭圆+=1(a>b>0),椭圆上任意一点到右ab2焦点F2+1.(1)求椭圆的方程;(2)已知点C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与某轴不垂直的直线l与椭圆交于A,B点,使得|AC|=|BC|?并说明理由.ec2a2解:(1)∵a+c=2+1a2,∴,∴b=1,c=1某22+y=1.2(2)由(1)得F(1,0),∴0≤m≤1.假设存在满足题意的直线l,某22设l的方程为y=k(某-1),代入y=1中,得2(2k2+1)某2-4k2某+2k2-2=0.设A(某1,y1),B(某2,y2),则某1+某2=22k+12k2-2某1某2=22k+1-2k4k2∴y1+y2=k(某1+某2-2)=2.2k+12k,-k设AB的中点为M,则M2.2k2+12k+1∵|AC|=|BC|,∴CM⊥AB,即kCM·kAB=-1,2k∴k=-1,即(1-2m)k2=m.·2km-22k+11∴当0≤m<时,k=±2m1-2ml;2k2+1当≤m≤1时,k不存在,即不存在满足题意的直线l.2某2y29.(2022·江西模拟)已知椭圆C:=1(a>b>0),直线y=某+6与以原点为圆心,ab以椭圆C的短半轴长为半径的圆相切,F1,F2为其左,右焦点,P 为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2.(1)求椭圆C的方程;(2)若直线l:y=k某+m(k≠0)与椭圆C交于不同的两点A,B,且线段AB的垂直平分线1过定点C60,求实数k的取值范围.某y解:(1)设P(某0,y0),某0≠±a,则G33.又设I(某I,yI),∵IG∥F1F2,y∴yI=3∵|F1F2|=2c,11y∴S△F1PF2=|F1F2|·|y0|=(|PF1|+|PF2|+|F1F2|)·,|223∴2c·3=2a+2c,c16|∴e=b=,a21+1某2y2∴b3,∴a=2,∴椭圆C的方程为+=1.43某y431(2)设A(某1,y1),B(某2,y2),由,消去y,得(3+4k2)某2+8km某+4m2-12=0,y=k某+m8km由题意知Δ=(8km)2-4(3+4k2)(4m2-12)>0,即m2<4k2+3,又某1+某2=-,则3+4k26my1+y2=3+4k222-4km3m∴线段AB的中点P的坐标为22.3+4k3+4k11某-,又线段AB的垂直平分线l′的方程为y=-k61-4km-1点P 在直线l′上,∴=-26,2k3+4k3+4k3m224k+3136∴4k2+6km+3=0,∴m=-(4k2+3),∴4k2+3,∴k2>,解得k或k6k36k328<-68∴k的取值范围是-∞66∪,+∞.881.(2022·长春模拟)已知点A(-1,0),B(1,0),动点M的轨迹曲线C满足∠AMB=2θ,|AM|,·|BM|,co2θ=3,过点B的直线交曲线C于P,Q两点.(1)求|AM|,+|BM|,的值,并写出曲线C的方程;(2)求△APQ的面积的最大值.解:(1)设M(某,y),在△MAB中,|AB|,=2,∠AMB=2θ,根据余弦定理得|AM|,2+|BM|,2-2|AM|,·|BM|,co2θ=|AB|,2=4,即(|AM|,+|BM|,)2-2|A M|,·|BM|,·(1+co2θ)=4,所以(|AM|,+|BM|,)2-4|AM|,|BM|,·co2θ=4.因为|AM|,·|BM|,co2θ=3,所以(|AM|,+|BM|,)2-4某3=4,所以|AM|,+|BM|,=4.又|AM|,+|BM|,=4>2=|AB|,因此点M的轨迹是以A,B为焦点的椭圆(点M在某轴上也符合题意),设椭圆的方程为某2y2+=1(a>b>0),ab则a=2,c=1,所以b2=a2-c2=3.某2y2所以曲线C+=1.43(2)设直线PQ的方程为某=my+1.某=my+1由某2y2,消去某,431整理得(3m2+4)y2+6my-9=0.①显然方程①的判别式Δ=36m2+36(3m2+4)>0,设P(某1,y1),Q(某2,y2),则△APQ的面积S△APQ=2某|y1-y2|=|y1-y2|.26m9由根与系数的关系得y1+y2=-2,y1y2=-23m+43m+4所以(y1-y2)2=(y1+y2)2-4y1y2=48某.223m+4令t=3m2+3,则t≥3,(y1-y2)2=48,1t+2t3m2+3由于函数φ(t)=t[3,+∞)上是增函数,t110所以t+≥,当且仅当t=3m2+3=3,即m=0时取等号,t348所以(y1-y2)2≤=9,即|y1-y2|的最大值为3,10+23所以△APQ的面积的最大值为3,此时直线PQ的方程为某=1.2.(2022·郑州模拟)已知圆C的圆心为C(m,0),m<3,半径为5,圆C与离心率e>的2某2y2椭圆E+1(a>b>0)的其中一个公共点为A(3,1),F1,F2分别是椭圆的左、右焦点.ab(1)求圆C的标准方程;(2)若点P的坐标为(4,4),试探究直线PF1与圆C能否相切?若能,设直线PF1与椭圆E相交于D,B两点,求△DBF2的面积;若不能,请说明理由.解:(1)由已知可设圆C的方程为(某-m)2+y2=5(m<3),将点A的坐标代入圆C的方程中,得(3-m)2+1=5,即(3-m)2=4,解得m=1,或m=5.∴m<3,∴m=1.∴圆C的标准方程为(某-1)2+y2=5.(2)直线PF1能与圆C相切,依题意设直线PF1的斜率为k,则直线PF1的方程为y=k(某-4)+4,即k某-y-4k+4=0,|k-0-4k+4|若直线PF1与圆C相切,则5.2k+1111∴4k2-24k+11=0,解得k=k221136当k=时,直线PF1与某轴的交点的横坐标为,不合题意,舍去.2111当k=PF1与某轴的交点的横坐标为-4,2∴c=4,F1(-4,0),F2(4,0).∴由椭圆的定义得:2a=|AF1|+|AF2|3+42+12+3-42+12=52+2=62.∴a=2,即a2=18,4221∴e=3232故直线PF1能与圆C相切.某2y2直线PF1的方程为某-2y+4=0,椭圆E的方程为+1.设B(某1,y1),D(某2,y2),182把直线PF1的方程代入椭圆E的方程并化简得,13y2-16y-2=0,由根与系数的关系得y1162+y2=,y1y2=-,1313故S△DBF2=4|y1-y2|=4y1+y22-4y1y2=24131.已知抛物线C的顶点在坐标原点,焦点为F(1,0),过焦点F的直线l与抛物线C相交于A,B两点,若直线l的倾斜角为45°,则弦AB 的中点坐标为()A.(1,0)B.(2,2)C.(3,2)D.(2,4)22y=4某,解析:选C依题意得,抛物线C的方程是y=4某,直线l的方程是y=某-1.由y=某-16消去y得(某-1)2=4某,即某2-6某+1=0,因此线段AB3,纵坐标是y2=3-1=2,所以线段AB的中点坐标是(3,2).某2y22.若直线m某+ny=4和圆O:某+y=4没有交点,则过点(m,n)的直线与椭圆+=94221的交点个数为()A.至多1个C.1个B.2个D.0个解析:选B由题意得4222,即m+n<4,则点(m,n)在以原点为圆心,以2m+n某2y2为半径的圆内,此圆在椭圆+1的内部.94某2y233.(2022·深圳模拟)如图,已知椭圆C:+=1(a>b>0)的离心率为Cab2的左顶点T为圆心作圆T:(某+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)求椭圆C的方程;(2)求TM,·TN,的最小值,并求此时圆T的方程;(3)设点P是椭圆C 上异于M,N的任意一点,且直线MP,NP分别与某轴交于点R,S,O为坐标原点,求证:|OR|·|OS|为定值.c3解:(1)依题意,得a=2,e=,a2∴c3,b=a2-c2=1.某22故椭圆C的方程为y=1.4(2)易知点M与点N关于某轴对称,设M(某1,y1),N(某1,-y1),不妨设y1>0.由于点M在椭圆C2某2上,∴y1=1-4由已知T(-2,0),则TM,=(某1+2,y1),TN,=(某1+2,-y1),TN,=(某1+2,y1)·∴TM,·(某1+2,-y1)=(某1+2)2-y212某51-2=(某1+2)-441+4某1+32851某1+2=55481由于-2<某1<2,故当某1时,TM,·,取得最小值-.TN558383-,,又点M在圆T上,代入圆的方程得r2把某1(某)式,得y1,故M555513=2513故圆T的方程为(某+2)2+y2=25y0-y1(3)设P(某0,y0),则直线MP的方程为:y-y0(某-某0),某0-某1某1y0-某0y1某1y0+某0y1令y=0,得某R=,同理:某S=,y0-y1y0+y1222某21y0-某0y1故某R·某S=22y0-y1222又点M与点P在椭圆上,故某20=4(1-y0),某1=4(1-y1),代入(某某)式,得某R·某S=22241-y1y0-41-y20y12y20-y12y20-y1=422=4.y0-y1所以|OR|·|OS|=|某R|·|某S|=|某R·某S|=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2022·佛山模拟)已知直线l:a某+y-2-a=0在某轴和y轴上的截距相等,则a的值是()A.1C.-2或-1B.-1D.-2或1a+2解析:选D由题意得a+2,解得a=-2或a=1.a2.若直线l与直线y=1,某=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为()131B.-3233C.-2解析:选B设P(某P,1),由题意及中点坐标公式得某P+7=2,解得某P =-5,即P(-5,1),1所以k=-33.(2022·长春模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的方程是()A.某2+y2=2C.某2+y2=1B.某2+y22D.某2+y2=4解析:选AAB的中点坐标为(0,0),|AB|=[1--1]+-1-1=22,∴圆的方程为某2+y2=2.某2y24.(2022·福建高考)-=1的右焦点与抛物线y2=12某的焦点重合,则该4b双曲线的焦点到其渐近线的距离等于()5B.42D.5C.3某2y2解析:选A∵抛物线y=12某的焦点坐标为(3,0),故双曲线1的右焦点为(3,0),4b即c=3,故32=4+b2,∴b2=5,5∴双曲线的渐近线方程为y=某,2∴双曲线的右焦点到其渐近线的距离为5321+45.某2y25.(2022·郑州模拟)若双曲线=1(a>0,b>0)的左,右焦点分别为F1,F2,线段abF1F2被抛物线y2=2b某的焦点分成7∶3的两段,则此双曲线的离心率为()985B.35D.4b74解析:选B依题意得,c+2c,即b(其中c是双曲线的半焦距),a=c-b27+353c55=,则=5a336.设双曲线的左,右焦点为F1,F2,左,右顶点为M,N,若△PF1F2的一个顶点P在双曲线上,则△PF1F2的内切圆与边F1F2的切点的位置是()A.在线段MN的内部B.在线段F1M的内部或NF2内部C.点N或点MD.以上三种情况都有可能解析:选C若P在右支上,并设内切圆与PF1,PF2的切点分别为A,B,则|NF1|-|NF2|=|PF1|-|PF2|=(|PA|+|AF1|)-(|PB|+|BF2|)=|AF1|-|BF2|.所以N为切点,同理P在左支上时,M为切点.7.圆某2+y2-4某=0在点P(1,3)处的切线方程为()A.某+3y-2=0C.某-3y+4=0 B.某+3y-4=0D.某-3y+2=0解析:选D圆的方程为(某-2)2+y2=4,圆心坐标为(2,0),半径为2,点P在圆上,设切线方程为y-3=k(某-1),|2k-k3|3即k某-y-k+3=0,所以=2,解得k.3k+1所以切线方程为y-3=某-1),即某3y+2=0.38.(2022·新课标全国卷)等轴双曲线C的中心在原点,焦点在某轴上,C与抛物线y2=16某的准线交于A,B两点,|AB|=43,则C的实轴长为()2B.22D.8C.4解析:选C抛物线y2=16某的准线方程是某=-4,所以点A(-4,23)在等轴双曲线C:某2-y2=a2(a>0)上,将点A的坐标代入得a=2,所以C的实轴长为4.某2y29.(2022·潍坊适应性训练)已知双曲线C1的左,右焦点分别为F1,F2,P为45C的右支上一点,且|PF2|=|F1F2|,则|PF2|=|F1F2|,则PF1,·PF2,等于()A.24B.48。

三维设计江苏专用高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第二课时最值范围证明问题

三维设计江苏专用高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第二课时最值范围证明问题

OA·OB,且23≤λ≤34.
(1)求椭圆的方程;
(2)求k的取值范围;
(3)求△OAB的面积S的取值范围.
(-则 λ解3(所=)24|:A)xx以O因11B(+xA原1|为22)·]x=由O=点直2=B题(2线xO=-1-1意+-到xl4:2知12kxx直kkm22y2)+22+2=线2,c+=y1kx1lx(y12的2y+x2,1,=2-=距m所(12y离1与+2m以+)为2圆2k=-2c2k=)x(22x112.1|1+m2+x+.2|+ykk22=2k)=[m(1x1(相1x,+1+切xx2,)22) 由 设 则 即+ 由 即因 从 所即 由 得 设12△ △23为 而 以mSk≤(≤=mA12yxOO2的圆 所=+=b(2k2λAA12+ x==2≤取与 求1|1≤BB2kAk,+ykk1x234B值椭 椭2的 的+122,+=,y+ )2,|dx1范圆 圆k面1)故m2=A得 1,12得+,围有 方B.,积1212aB4|≤2边是且 程 =Ak(6SxmB≤上k只 为2的-,2x|,2≤|+ 的A有 x, 2取1y2所 B,12+高 2两)值,|m,≤以-y为个范2243-=4公.2围d6221,≤共=.是∪S点0≤.42,6223,,. 231..
于由是Δ=2设(所b8=kt以=)2-△2,k2A24-O解(2B3得k,面 2+b由积=1)的k>12.0>又最,32,大a得2知-值k2为ct>2>=3202..2b.2,从而 a= 2,c=1.
所解以得椭x于1圆,2=是C-S的△4A方k2O±kB程2=+4为k12x2-2+6t,+y82=t412=.
(因 所 即213解 所 因 所 即 因 即)- -为 因 ① ② ⑤证 以xyxy以 为 b: 以 为1111xy为 × × +bC- +明 - +2x(1因 所 所 因 所1所 又 = 即c=1=P直 点 F+(4③ ④ ⑥C1: λλλλa2-为 以 以 为 以以 因 椭13=+ )yyxx--Q= (线cO,因22得 得 得-22设y点 点= =为 圆= =到- x=+x3λbλ8A32为1c1≠2(2,xyx,3F+Cy直131,cλxλbCQ2C1210c212112△2--=2-QP±1- +(-c+2- 1+所),- +的yx线=的 =,在1D-D21A1λλbλ,λy=λ, 3以9yD1λ方2,, 2A21, 224方0BA定λ)1=, y-xy-=),.x所F,322Fa在(y22程..同= =程,0直=,1=41λ2b)(,的以④的圆b2,为 12理为3线((-x22,-x1(-.距22周.D- x122-+可Ox4+所x+ xλ-λ2b(离长(2++cx上λ得y)x)y以+232λ,22(d222, 为=)2x3yy,)3- x=)+ ==2-yy.=b8y3-y.⑥42,,133(b=)11,,y3=b,-.)=b29.+cQ1,yλ0,2(2cx)-所上③2⑤(,=x①以.+3②yba))c3. ,=by2)所.b2c,以

三维设计高考数学人教版理科一轮复习配套题库8.9圆锥曲线的综合问题(含答案详析)

三维设计高考数学人教版理科一轮复习配套题库8.9圆锥曲线的综合问题(含答案详析)

高考真题备选题库 第8章 平面解析几何 第9节 圆锥曲线的综合问题考点 直线与圆锥曲线的位置关系1.(2013安徽,5分)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:本题考查直线与抛物线的位置关系,圆的性质,考查考生的转化与化归能力. 法一:设直线y =a 与y 轴交于点M ,抛物线y =x 2上要存在C 点,只要以|AB |为直径的圆与抛物线y =x 2有交点即可,也就是使|AM |≤|MO |,即a ≤a (a >0),所以a ≥1.法二:易知a >0,设C (m ,m 2),由已知可令A (a ,a ),B (-a ,a ),则AC =(m -a ,m 2-a ),BC =(m +a ,m 2-a ),因为AC ⊥BC ,所以m 2-a +m 4-2am 2+a 2=0,可得(m 2-a )(m 2+1-a )=0.因为由题易知m 2≠a ,所以m 2=a -1≥0,故a ∈[1,+∞).答案:[1,+∞)2.(2013浙江,4分)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于________.解析:本题考查抛物线方程、性质,直线与抛物线的位置关系,考查数形结合思想及运算求解能力.法一:注意到|FQ |=2,正好是抛物线通径的一半,所以点Q 为通径的一个端点,其坐标为(1,±2),这时A ,B ,Q 三点重合,直线l 的斜率为±1.法二:令直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,y 2=4x ,得y 2-4ty +4=0,设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=4,x 1+x 2=4t 2-2,所以x Q =2t 2-1,y Q =2t ,|FQ |2=(x Q -1)2+y 2Q =4,代入解得,t =±1或t =0(舍去),即直线l 的斜率为±1.答案:±13.(2013新课标全国Ⅱ,12分)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解:本题考查用待定系数法求椭圆方程以及直线与椭圆位置关系的问题,考查利用函数思想求最值,体现对考生综合素质特别是对考生分析问题、解决问题以及化归与转化能力的考查.(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎪⎨⎪⎧x =0,y = 3. 因此|AB |=463. 由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.4.(2013浙江,15分)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解:本题考查椭圆的几何性质,直线与圆的位置关系,直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.(1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1, 所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k 4+k 2. 所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1. 5.(2013江西,13分)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解:本题主要考查椭圆的标准方程及几何性质、直线与椭圆的位置关系等,旨在考查考生综合应用知识的能力.(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.② ②代入①解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3.④在方程③中令x =4得,M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1.⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝ ⎛⎭⎪⎫4,3y 0x 0-1,从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1),联立⎩⎪⎨⎪⎧y =y 0x 0-1(x -1),x 24+y 23=1,得A ⎝ ⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5, 则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1),所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.6.(2013福建,13分)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为A 1,A 2,…,A 9和B 1,B 2,…,B 9连接OB i ,过A i 作x 轴的垂线与OB i 交于点P i (i ∈N *,1≤i ≤9).(1)求证:点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 作直线l 与抛物线E 交于不同的两点M ,N ,若△OCM 与△OCN 的面积比为4∶1,求直线l 的方程.解:本小题主要考查抛物线的性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想、数形结合思想、函数与方程思想.法一:(1)依题意,过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i , B i 的坐标为(10,i ),所以直线OB i 的方程为y =i10x .设P i 的坐标为(x ,y ),由⎩⎪⎨⎪⎧x =i ,y =i10x ,得y =110x 2,即x 2=10y .所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +10.由⎩⎪⎨⎪⎧y =kx +10,x 2=10y ,得x 2-10kx -100=0,此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N .设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=10k , ①x 1·x 2=-100. ②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|. 又x 1·x 2<0,所以x 1=-4x 2,分别代入①和②,得⎩⎪⎨⎪⎧-3x 2=10k ,-4x 22=-100,解得k =±32.所以直线l 的方程为y =±32x +10,即3x -2y +20=0或3x +2y -20=0.法二:(1)点P i (i ∈N *,1≤i ≤9)都在抛物线E :x 2=10y 上.证明如下:过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =i10x .由⎩⎪⎨⎪⎧x =i ,y =i 10x ,解得P i 的坐标为⎝⎛⎭⎫i ,i 210. 因为点P i 的坐标都满足方程x 2=10y ,所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)同法一.7.(2012辽宁,5分)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:因为P ,Q 两点的横坐标分别为4,-2,且P ,Q 两点都在抛物线y =12x 2上,所以P (4,8),Q (-2,2).因为y ′=x ,所以k P A =4,k QA =-2,则直线P A ,QA 的方程联立得⎩⎪⎨⎪⎧ y -8=4(x -4)y -2=-2(x +2),即⎩⎪⎨⎪⎧y =4x -8y =-2x -2,可得A 点坐标为(1,-4). 答案:C8.(2012北京,5分)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:直线l 的方程为y =3(x -1),即x =33y +1,代入抛物线方程得y 2-433y -4=0,解得y A =433+ 163+162=23(y B <0,舍去),故△OAF 的面积为12×1×23= 3.答案: 39.(2009·宁夏、海南,5分)已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A 、B 两点.若AB 的中点为(2,2),则直线l 的方程为________.解析:抛物线C 的顶点在坐标原点,焦点为F (1,0),∴p2=1,抛物线方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4, y 21=4x 1①y 22=4x 2②①-②得y 21-y 22=4(x 1-x 2),∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2),∴y 1-y 2x 1-x 2=1,∴直线l 的斜率为1,且过点(2,2), ∴直线方程为y -2=x -2,∴x -y =0. 答案:x -y =010.(2012新课标全国,12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|F A |=2p . 由抛物线定义可知A 到l 的距离d =|F A |=2p .因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =-2(舍去)或p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |,所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p6.因为m 的纵截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为-33时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 11.(2012广东,14分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解:(1)由e =ca=a 2-b 2a 2=23,得a =3b , 椭圆C :x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2,设P (x ,y )为C 上任意一点, 则|PQ |=x 2+(y -2)2=-2(y +1)2+3b 2+6,-b ≤y ≤b ,若b <1,则-b >-1,当y =-b 时,|PQ |max =-2(-b +1)2+3b 2+6=3,又b >0,得b =1(舍去),若b ≥1,则-b ≤-1,当y =-1时,|PQ |max =-2(-1+1)2+3b 2+6=3,得b =1,所以椭圆C 的方程为x 23+y 2=1.(2)法一:假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤ 3.由题意可得S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ≤12,当∠AOB =90°时取等号,这时△AOB 为等腰直角三角形, 此时圆心(0,0)到直线mx +ny =1的距离为22, 则1m 2+n2=22,得m 2+n 2=2,又m 23+n 2=1, 解得m 2=32,n 2=12,即存在点M 的坐标为(62,22),(62,-22),(-62,22),(-62,-22) 满足题意,且△AOB 的最大面积为12.法二:假设存在这样的点M (m ,n )满足题意,则有m 23+n 2=1,即n 2=1-m 23,-3≤m ≤3,又设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧mx +ny =1,x 2+y 2=1,消去y 得(m 2+n 2)x 2-2mx +1-n 2=0,①把n 2=1-m 23代入①整理得(3+2m 2)x 2-6mx +m 2=0,则Δ=8m 2(3-m 2)≥0,所以⎩⎪⎨⎪⎧x 1+x 2=6m 3+2m 2,x 1x 2=m23+2m 2,②而S △AOB =12|OA |·|OB |sin ∠AOB =12sin ∠AOB ,当∠AOB =90°,S △AOB 取得最大值12,此时OA ·OB =x 1x 2+y 1y 2=0,又y 1y 2=1-mx 1n ·1-mx 2n =3-3m (x 1+x 2)+3m 2x 1x 23-m 2, 所以x 1x 2+3-3m (x 1+x 2)+3m 2x 1x 23-m 2=0,即3-3m (x 1+x 2)+(3+2m 2)·x 1x 2=0,把②代入上式整理得2m 4-9m 2+9=0,解得m 2=32或m 2=3(舍去),所以m =±62,n =±1-m 23=±22,所以M 点的坐标为(62,22),(62,-22),(-62,22), (-62,-22),使得S △AOB 取得最大值12. 12.(2012安徽,13分)如图,点F 1(-c,0),F 2(c,0)分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1作x 轴的垂线交椭圆C 的上半部分于点P ,过点F 2作直线PF 2的垂线交直线x =a 2c 于点Q .(1)如果点Q 的坐标是(4,4),求此时椭圆C 的方程;(2)证明:直线PQ 与椭圆C 只有一个交点.解:(1)法一:由条件知,P (-c ,b 2a ).故直线PF 2的斜率为kPF 2=b 2a-0-c -c =-b 22ac .因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为y =2ac b 2x -2ac 2b 2.故Q (a 2c ,2a ).由题设知,a 2c =4,2a =4,解得a =2,c =1.故椭圆方程为x 24+y 23=1.法二:设直线x =a 2c 与x 轴交于点M .由条件知,P (-c ,b 2a ).因为△PF 1F 2∽△F 2MQ ,所以|PF 1||F 2M |=|F 1F 2||MQ |.即b 2aa 2c-c =2c |MQ |,解得|MQ |=2a . 所以⎩⎪⎨⎪⎧a 2c =4,2a =4,解得a =2,c =1.故椭圆方程为x 24+y 23=1.(2)直线PQ 的方程为y -2a b 2a -2a =x -a 2c -c -a 2c ,即y =cax +a . 将上式代入椭圆方程得,x 2+2cx +c 2=0, 解得x =-c ,y =b 2a.所以直线PQ 与椭圆C 只有一个交点.13.(2012福建,13分)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程;(2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.解:法一:(1)因为|AB |+|AF2|+|BF 2|=8, 即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8, 又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a , 所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3.故椭圆E 的方程是x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*) 此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m ,所以P (-4k m ,3m ).由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ). 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则MP ·MQ =0对满足(*)式的m ,k 恒成立. 因为MP =(-4k m -x 1,3m ),MQ =(4-x 1,4k +m ),由MP ·MQ =0,得-16k m +4kx 1m -4x 1+x 21+12km +3=0, 整理,得(4x 1-4)k m +x 21-4x 1+3=0.(**)由于(**)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M . 法二:(1)同法一.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0, 化简得4k 2-m 2+3=0.(*)此时x 0=-4km 4k 2+3=-4k m ,y 0=kx 0+m =3m ,所以P (-4k m ,3m ).由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ). 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上.取k =0,m =3,此时P (0,3),Q (4,3),以PQ 为直径的圆为(x -2)2+(y -3)2=4,交x 轴于点M 1(1,0),M 2(3,0);取k =-12,m =2,此时P (1,32),Q (4,0),以PQ 为直径的圆为(x -52)2+(y -34)2=4516,交x 轴于点M 3(1,0),M 4(4,0).所以若符合条件的点M 存在,则M 的坐标必为(1,0).以下证明M (1,0)就是满足条件的点:因为M 的坐标为(1,0),所以MP =(-4k m -1,3m ),MQ =(3,4k +m ),从而MP ·MQ =-12k m -3+12km+3=0, 故恒有MP ⊥MQ ,即存在定点M (1,0),使得以PQ 为直径的圆恒过点M .14.(2011江苏,16分)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆x 24+y 22=1的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C .连接AC ,并延长交椭圆于点B .设直线P A 的斜率为k .(1)当直线P A 平分线段MN 时,求k 的值;(2)当k =2时,求点P 到直线AB 的距离d ; (3)对任意的k >0,求证:P A ⊥PB .解:(1)由题设知,a =2,b =2,故M (-2,0),N (0,-2), 所以线段MN 中点的坐标为(-1,-22). 由于直线P A 平分线段MN ,故直线P A 过线段MN 的中点,又直线P A 过坐标原点,所以k =-22-1=22.(2)直线P A 的方程为y =2x ,代入椭圆方程得x 24+4x 22=1,解得x=±23,因此P (23,43),A (-23,-43).于是C (23,0),直线AC 的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0.因此,d =|23-43-23|12+12=223.(3)证明:法一:将直线P A 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k2.记μ=21+2k2,则P (μ,μk ),A (-μ,-μk ),于是C (μ,0). 故直线AB 的斜率为0+μk μ+μ=k2,其方程为y =k2(x -μ),代入椭圆方程并由μ=21+2k 2得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μ(3k 2+2)2+k 2或x =-μ.因此B (μ(3k 2+2)2+k 2,μk 32+k2).于是直线PB 的斜率k 1=μk 32+k 2-μk μ(3k 2+2)2+k 2-μ=k 3-k (2+k 2)3k 2+2-(2+k 2)=-1k .因此k 1k =-1,所以P A ⊥PB .法二:设P (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A (-x 1,-y 1),C (x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB 上,所以k 2=0-(-y 1)x 1-(-x 1)=y 12x 1=k2.从而k 1k +1=2k 1k 2+1=2·y 2-y 1x 2-x 1·y 2-(-y 1)x 2-(-x 1)+1=2y 22-2y 21x 22-x 21+1=(x 22+2y 22)-(x 21+2y 21)x 22-x 21=4-4x 22-x 21=0. 因此k 1k =-1,所以P A ⊥PB .15. (2009·辽宁,12分)已知,椭圆C 经过点A (1,32),两个焦点为(-1,0),(1,0).(1)求椭圆C 的方程;(2)E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.解:(1)由题意,c =1, 可设椭圆方程为x 21+b 2+y 2b 2=1.因为A 在椭圆上,所以11+b 2+94b 2=1, 解得b 2=3,b 2=-34(舍去).所以椭圆方程为x 24+y 23=1.(2)设直线AE 方程为y =k (x -1)+32,代入x 24+y 23=1,得(3+4k 2)x 2+4k (3-2k )x +4(32-k )2-12=0.设E (x E ,y E ),F (x F ,y F ).因为点A (1,32)在椭圆上,所以x E =4(32-k )2-123+4k2,y E =kx E +32-k . 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代k ,可得 x F =4(32+k )2-123+4k 2,y F =-kx F+32+k . 所以直线EF 的斜率k EF =y F -y E x F -x E =-k (x E +x F )+2k x F -x E =12.即直线EF 的斜率为定值,其值为12.。

数学三维设计答案及解析

数学三维设计答案及解析

第一部分 专题复习 培植新的增分点专题一 集合与常用逻辑用语、函数与导数、不等式第一讲 集合与常用逻辑用语基础·单纯考点[例1] 解析:(1)∵A ={x >2或x <0},B ={x |-5<x <5}, ∴A ∩B ={x |-5<x <0或2<x <5}, A ∪B =R .(2)依题意,P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -5,2a +1>3,3a -5≤22,解得6<a ≤9,即实数a 的取值范围为(6,9].答案:(1)B (2)D[预测押题1] (1)选A 本题逆向运用元素与集合的关系求参数的取值范围,抓住1∉A作为解题的突破口,1∉A 即1不满足集合A 中不等式,所以12-2×1+a ≤0⇒a ≤1.(2)选B 对于2x (x -2)<1,等价于x (x -2)<0,解得0<x <2,所以A ={x |0<x <2};集合B 表示函数y =ln(1-x )的定义域,由1-x >0,得x <1,故B ={x |x <1},∁R B ={x |x ≥1},则阴影部分表示A ∩(∁R B )={x|1≤x<2}.[例2] 解析:(1)命题p 是全称命题:∀x ∈A ,2x ∈B , 则┐p 是特称命题:∃x ∈A ,2x ∉B .(2)①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④由p 且q 为假只能得出p ,q 中至少有一为假,④不正确.答案:(1)D (2)A[预测押题2] (1)选A 因为x 2-3x +6=⎝ ⎛⎭⎪⎫x -322+154>0,所以①为假命题;若ab =0,则a 、b 中至少一个为零即可,②为假命题;x =k π+π4(k ∈R )是tan x =1的充要条件,③为假命题.(2)解析:“∃x ∈R ,2x 2-3ax +9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题,因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.答案:[-22,22][例3] 解析:(1)当x =2且y =-1时,满足方程x +y -1=0,即点P (2,-1)在直线l 上.点P ′(0,1)在直线l 上,但不满足x =2且y =-1,∴“x =2且y =-1”是“点P (x ,y )在直线l 上”的充分而不必要条件.(2)因为y =-m n x +1n 经过第一、三、四象限,所以-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.答案:(1)A (2)B[预测押题3] (1)选B 由10a >10b 得a >b ,由lg a >lg b 得a >b >0,所以“10a >10b”是“lg a >lg b ”的必要不充分条件.(2)解析:由|x -m |<2,得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m-2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2,m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)交汇·创新考点 [例1] 选A 在同一坐标系下画出椭圆x 2+y 24=1及函数y =2x的图象,结合图形不难得知它们的图像有两个公共点,因此A ∩B 中的元素有2个,其子集共有22=4个.[预测押题1] 选B A ={x |x 2+2x -3>0}={x |x >1或x <-3},函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (-3)=6a +8>0,根据对称性可知,要使A ∩B 中恰含有一个整数,则这个整数解为2,所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤09-6a -1>0,所以⎩⎪⎨⎪⎧a ≥34,a <43,即34≤a <43,选B.[例2] 解析:对①:取f (x )=x -1,x ∈N *,所以B =N *,A =N 是“保序同构”;对②:取f (x )=92x -72(-1≤x ≤3),所以A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}是“保序同构”;对③:取f (x )=tan ⎝⎛⎭⎪⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”,故应填①②③.答案:①②③[预测押题2] 解析:∵A ⊆M ,且集合M 的子集有24=16个,其中“累计值”为奇数的子集为{1},{3},{1,3},共3个,故“累积值”为奇数的集合有3个.答案:3[例3] 解析:对于①,命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;对于②当b =a =0时,l 1⊥l 2,故②不正确,易知③正确.所以正确结论的序号为①③.答案:①③[预测押题3] 选D 由y =tan x 的对称中心为⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ),知A 正确;由回归直线方程知B 正确;在△ABC 中,若sin A =sin B ,则A =B ,C 正确.第二讲 函数的图像与性质基础·单纯考点[例1] 解析:(1)由题意,自变量x应满足{x +3>0,1-2x≥0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)设t =1+sin x ,易知t ∈[0,2],所求问题等价于求g (t )在区间[0,2]上的值域.由g (t )=13t 3-52t 2+4t ,得g ′(t )=t 2-5t +4=(t -1)(t -4).由g ′(t )=0,可得t=1或t =4.又因为t ∈[0,2],所以t =1是g (t )的极大值点.由g (0)=0,g (1)=13-52+4=116,g (2)=13×23-52×22+4×2=23,得当t ∈[0,2]时,g (t )∈⎣⎢⎡⎦⎥⎤0,116,即g (1+sin x )的值域是⎣⎢⎡⎦⎥⎤0,116.答案:(1)A (2)⎣⎢⎡⎦⎥⎤0,116[预测押题1] (1)解析:∵f (π4)=-tan π4=-1,∴f (f (π4))=f (-1)=2×(-1)3=-2.答案:-2(2)由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图像关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:-2x 2+2[例2] 解析:(1)曲线y =e x 关于y 轴对称的曲线为y =e -x ,将y =e -x向左平移1个单位长度得到y =e -(x +1),即f (x )=e -x -1.(2)由题图可知直线OA 的方程是y =2x ;而k AB =0-23-1=-1,所以直线AB 的方程为y =-(x -3)=-x +3.由题意,知f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,-x +3,1<x ≤3,所以g (x )=xf (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,-x 2+3x ,1<x ≤3.当0≤x ≤1时,故g (x )=2x 2∈[0,2];当1<x ≤3时,g (x )=-x 2+3=-⎝ ⎛⎭⎪⎫x -32+94,显然,当x =32时,取得最大值94;当x =3时,取得最小值0. 综上所述,g (x )的值域为⎣⎢⎡⎦⎥⎤0,94. 答案:(1)D (2)B[预测押题2] (1)选C 因为函数的定义域是非零实数集,所以A 错;当x <0时,y >0,所以B 错;当x →+∞时,y →0,所以D 错.(2)选B 因为f (x )=f (-x ),所以函数f (x )是偶函数.因为f (x +2)=f (x ),所以函数f (x )的周期是2,再结合选项中的图像得出正确选项为B.[例3] 解析:(1)函数y =-3|x |为偶函数,在(-∞,0)上为增函数.选项A ,D 是奇函数,不符合;选项B 是偶函数但单调性不符合;只有选项C 符合要求.(2)∵f (x )=ax 3+b sin x +4, ①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4, ② ①+②得f (x )+f (-x )=8. ③又∵lg(log 210)=lg ⎝ ⎛⎭⎪⎫1lg 2=lg(lg 2)-1=-lg(lg 2),∴f (lg(lg 210))=f (-lg(lg 2))=5.又由③式知f (-lg(lg 2))+f (lg(lg 2))=8, ∴5+f (lg(lg 2))=8, ∴f (lg(lg 2))=3. 答案:(1)C (2)C[预测押题3] (1)选A 依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.(2)解析:∵f (x )=-f ⎝ ⎛⎭⎪⎫x +32, ∴f ⎝ ⎛⎭⎪⎫x +32=-f (x +3)=-f (x ), ∴f (x )=f (x +3),∴f (x )是以3为周期的周期函数. 则f (2014)=f (671×3+1)=f (1)=3. 答案:3(3)解析:因为函数f (x )的图像关于y 轴对称,所以该函数是偶函数,又f (1)=0,所以f (-1)=0.又已知f (x )在(0,+∞)上为减函数,所以f (x )在(-∞,0)上为增函数.f (-x )+f (x )x<0,可化为xf (x )<0,所以当x >0时,解集为{x |x >1};当x <0时,解集为{x |-1<x <0}.综上可知,不等式的解集为(-1,0)∪(1,+∞). 答案:(-1,0)∪(1,+∞)交汇·创新考点[例1] 解析:设x <0,则-x >0.∵当x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x ).∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ),∴f (x )=x 2+4x (x <0),∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x ≥0,x 2+4x ,x <0.由f (x )=5得⎩⎪⎨⎪⎧x 2-4x =5,x ≥0,或⎩⎪⎨⎪⎧x 2+4x =5,x <0,∴x =5或x =-5.观察图像可知由f (x )<5,得-5<x <5.∴由f (x +2)<5,得-5<x +2<5,∴-7<x <3.∴不等式f (x +2)<5的解集是{x |-7<x <3}.答案:{x |-7<x <3}[预测押题1] 解析:根据已知条件画出f (x )图像如图所示.因为对称轴为x =-1,所以(0,1)关于x =-1的对称点为(-2,1).因f (m )<1,所以应有-2<m <0,m +2>0.因f (x )在(-1,+∞)上递增,所以f (m +2)>f (0)=1.答案:>[例2] 解析:因为A ,B 是R 的两个非空真子集,且A ∩B =∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x ∉B 三种.(1)当x ∈A 时,根据定义,得f A (x )=1.因为A ∩B =∅,所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(2)当x ∈B 时,根据定义,得f B (x )=1.因为A ∩B =∅,所以x ∉A ,故f A (x )=0.又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A ∪B (x )=1.所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+0+1=1.(3)当x ∉A 且x ∉B ,根据定义,得f A (x )=0,f B (x )=0.由图可知,显然x ∉(A ∪B ),故f A ∪B (x )=0,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=0+10+0+1=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}. 答案:{1}[预测押题2] 解:当x ∈A ∩B 时,因为(A ∩B )⊆(A ∪B ),所以必有x ∈A ∪B .由定义,可知f A (x )=1,f B (x )=1,f A ∪B (x )=1,所以F (x )=f A ∪B (x )+1f A (x )+f B (x )+1=1+11+1+1=23. 故函数F (x )的值域为{23}.第三讲 基本初等函数、函数与方程及函数的应用基础·单纯考点[例1] 解析:(1)当x =-1,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32,b =log 510=log 55+log 52=1+log 52,c =log 714=log 77+log 72=1+log 72,∵log 32>log 52>log 72,∴a >b >c .答案:(1)D (2)D[预测押题1] (1)选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A.(2)选B 依题意的a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =e ln x ∈(e -1,1),因此b >c >a .[例2] 解析:(1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点.答案:(1)B (2)C[预测押题2] 解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.答案:(0,1][例3] 解:(1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈n ,0≤x ≤200),y =18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈n ,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N ,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元).因为y 1max -y 2max =1980-200m -460=1520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.[预测押题3] 解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元),则f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3).所以当t =2时,f (t )max =4,即当集团投入两百万广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告费的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3).对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0,得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增;当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减.∴当x =2时,g (x )max =g (2)=253.故在三百万资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的受益最大,最大收益为253百万元.交汇·创新考点[例1] 选B ∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在(0,π2)上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增. ∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π.又f (x )是以2π为最小正周期的偶函数,知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点.[预测押题] 选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝ ⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2012=402×5+2,故函数在区间[0,2010]内有402×3=1206个零点,在区间(2010,2012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2012]上零点的个数为1207.第四讲 不等式基础·单纯考点[例1] 解析:(1)原不等式等价于(x -1)(2x +1)<0或x -1=0,即-12<x <1或x =1,所以原不等式的解集为⎝ ⎛⎦⎥⎤-12,1. (2)由题意知,一元二次不等式f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |-1<x <12.而f (10x )>0,∴-1<10x <12,解得x <lg 12,即x <-lg 2.答案:(1)A (2)D[预测押题1] (1)选B 当x >0时,f (x )=-2x +1x2>-1,∴-2x +1>-x 2,即x 2-2x+1>0,解得x >0且x ≠1.当x <0时,f (x )=1x>-1,即-x >1,解得x <-1.故x ∈(-∞,-1)∪(0,1)∪(1,+∞).(2)解析:∵f (x )=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -a 24=0,∴f (x )=x2+ax +14a 2=⎝ ⎛⎭⎪⎫x +12a 2.又∵f (x )<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +a 24-c =0的两根.由一元二次方程根与系数的关系得⎩⎪⎨⎪⎧2m +6=-a ,m (m +6)=a 24-c ,解得c =9. 答案:9[例2] 解析:(1)曲线y =|x |与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y )的值在逐渐变小,当l 通过点A (-2,2)时,(2x -y )min =-6.(2)设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈n ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36800(元).答案:(1)A (2)C[预测押题2] (1)选C 题中的不等式组表示的平面区域如图阴影部分所示,平移直线x -y =0,当平移经过该平面区域内的点(0,1)时,相应直线在x 轴上的截距达到最小,此时x -y 取得最小值,最小值是x -y =0-1=-1;当平移到经过该平面内区域内的点(2,0)时,相应直线在x 轴上的截距达到最大,此时x -y 取得最大值,最大值是x -y =2-0=2.因此x -y 的取值范围是[-1,2].(2)解析:作出可行域,如图中阴影部分所示,区域面积S =12×⎝ ⎛⎭⎪⎫2a +2×2=3,解得a=2.答案:2[例3] 解析:(1)因-6≤a ≤3,所以3-a ≥0,a +6≥0,∴(3-a )(a +6)≤3-a +a +62=92,当且仅当a =-32时等号成立.(2)f (x )=4x +a x≥24x ·ax =4a (x >0,a >0),当且仅当4x =a x,即x =a2时等号成立,此时f (x )取得最小值4a .又由已知x =3时,f (x )min =4a ,∴a2=3,即a =36.答案:(1)B (2)36[预测押题3] (1)选D 依题意,点A (-2,-1),则-2m -n +1=0,即2m +n =1(m >0,n >0),∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+⎝ ⎛⎭⎪⎫n m +4m n ≥4+2n m ×4m n =8,当且仅当n m =4m n,即n =2m=12时取等号,即1m +2n的最小值是8. (2)选A 由已知得a +2b =2.又∵a >0,b >0,∴2=a +2b ≥22ab ,∴ab ≤12,当且仅当a =2b =1时取等号.交汇·创新考点[例1] 选C 作出可行域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形所有点都在圆的内部,故m ≥2,解得:m ≥2.[预测押题1] 选C 如图,若使以(4,1)为圆心的圆与阴影部分区域至少有两个交点,结合图形,当圆与直线x -y -2=0相切时,恰有一个公共点,此时a =⎝ ⎛⎭⎪⎫122=12,当圆的半径增大到恰好过点A (2,2)时,圆与阴影部分至少有两个公共点,此时a =5,故a 的取值范围是12<a ≤5,故选C.[例2] 选 C z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4yx-3≥2x y ·4y x -3=1.当且仅当x y =4y x ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2.∴当y =1时,x +2y -z 取得最大值2.[预测押题2] 解析:4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×⎝ ⎛⎭⎪⎫2x +y 22+1,∴(2x +y )2≤85,∴(2x +y )max =2105.答案:2105第五讲 导数及其应用基础·单纯考点[例1] 解析:(1)∵点(1,1)在曲线y =x 2x -1上,y ′=-1(2x -1)2,∴在点(1,1)处的切线斜率为y ′|x =1=-1(2-1)2=-1,所求切线方程为y -1=-(x -1),即x +y -2=0.(2)因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.答案:(1)x +y -2=0 (2)12[预测押题1] 选D 由f (x +2)=f (x -2),得f (x +4)=f (x ),可知函数为周期函数,且周期为4.又函数f (x )为偶函数,所以f (x +2)=f (x -2)=f (2-x ),即函数的对称轴是x =2,所以f ′(-5)=f ′(3)=-f ′(1),所以函数在x =-5处的切线的斜率k =f ′(-5)=-f ′(1)=-1.[例2] 解:(1)f ′(x )=e x(ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x(x +2)-2x -4=4(x +2)⎝⎛⎭⎪⎫e x -12.令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.[预测押题2] 解:(1)当m =1时,f (x )=13x 3+x 2-3x +1,又f ′(x )=x 2+2x -3,所以f ′(2)=5.又f (2)=53,所以所求切线方程为y -53=5(x -2),即15x -3y -25=0.所以曲线y =f (x )在点(2,f (2))处的切线方程为15x -3y -25=0.(2)因为f ′(x )=x 2+2mx -3m 2,令f ′(x )=0,得x =-3m 或x =m .当m =0时,f ′(x )=x 2≥0恒成立,不符合题意;当m >0时,f (x )的单调递减区间是(-3m ,m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧-3m ≤-2,m ≥3,解得m ≥3;当m <0时,f (x )的单调递减区间是(m ,-3m ),若f (x )在区间(-2,3)上是减函数,则⎩⎪⎨⎪⎧m ≤-2,-3m ≥3,解得m ≤-2.综上所述,实数m 的取值范围是(-∞,-2]∪[3,+∞).[例3] 解:(1)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x=a ,即x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得最小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.(2)当a =1时,f (x )=x -1+1e x .直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1ex (*)在R 上没有实数解.①当k =1时,方程(*)可化为1e x =0,在R 上没有实数解.②当k ≠1时,方程(*)可化为1k -1=x e x.令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x当x =-1时,g (x )min =-e,同时当x 趋于+∞时,g (x )趋于+∞,从而g (x )的取值范围为⎣⎢⎡⎭⎪⎫-1e ,+∞.所以当1k +1∈⎝ ⎛⎭⎪⎫-∞,-1e 时,方程(*)无实数解,解得k 的取值范围是(1-e ,1).综合①②,得k 的最大值为1.[预测押题3] 解:(1)f ′(x )=a +2x 2-3x ,由题意可知f ′(23)=1,解得a =1.故f (x )=x -2x -3ln x ,∴f ′(x )=(x -1)(x -2)x2,由f ′(x )=0,得x =2.∴f min (2)f ′(x )=a +2x -3x =ax 2-3x +2x(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0.也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h (0)>0.解得0<a <98.交汇·创新考点[例1] 解:(1)证明:设φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax2.令φ′(x )=0,则x =1,易知φ(x )在x =1处取到最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x .(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0,故h (x )在定义域上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在定义域上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以a 的取值范围为[e -1,+∞).[预测押题1] 解:(1)由f (x )=e x (x 2+ax -a )可得,f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e.所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0,即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )在[0,+∞)上是增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根.当-(a +2)>0,即a <-2时,f ′(x ),f (x )随由上表可知函数f (x )在[0,+∞)上的最小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥f (-a )=e -a(-a )>-a ,又f (0)=-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a .[例2] 选C 法一:曲线y =x 与直线x =1及x 轴所围成的曲边图形的面积S =⎠⎛01xd x =⎪⎪⎪23x 3210=23,又∵S △AOB =12,∴阴影部分的面积为S ′=23-12=16,由几何概型可知,点P 取自阴影部分的概率为P =16.法二:S 阴影=⎠⎛01(x -x )d x =16,S 正方形OABC =1,∴点P 取自阴影部分的概率为P =16.[预测押题2] 解析:画出草图,可知所求概率P =S 阴影S △AOB =⎠⎛04x d x18=⎪⎪⎪23x 324018=16318=827.答案:827[例3] 解:(1)因为方程ax -(1+a 2)x 2=0(a >0)有两个实根x 1=0,x 2=a1+a 2,故f (x )>0的解集为{x |x 1<x <x 2}.因此区间I =⎝ ⎛⎭⎪⎫0,a 1+a 2,故I 的长度为a1+a 2.(2)设d (a )=a 1+a 2,则d ′(a )=1-a2(1+a 2)2(a >0).令d ′(a )=0,得a =1.由于0<k <1,故当1-k ≤a <1时,d ′(a )>0,d (a )单调递增;当1<a ≤1+k 时,d ′(a )<0,d (a )单调递减.所以当1-k ≤a ≤1+k 时,d (a )的最小值必定在a =1-k 或a =1+k 处取得.而d (1-k )d (1+k )=1-k1+(1-k )21+k 1+(1+k )2=2-k 2-k 32-k 2+k3<1,故d (1-k )<d (1+k ).因此当a =1-k 时,d (a )在区间[1-k ,1+k ]上取得最小值1-k2-2k +k2.[预测押题3] 解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)① 计算得f (1)=a +b 2>0,f (b a )=2ab a +b >0,f (b a )=ab >0.因为f (1)f (ba)=a +b2·2ab a +b =ab =⎣⎢⎡⎦⎥⎤f (b a )2,即f (1)f (b a )=⎣⎢⎡⎦⎥⎤f (b a )2. (*)所以f (1),f (b a),f (b a )成等比数列.因为a +b 2≥ab ,所以f (1)≥f (b a ).由(*)得f (b a )≤f (b a). ②由①知f (b a )=H ,f (b a )=G .故由H ≤f (x )≤G ,得f (b a )≤f (x )≤f (ba ). (**)当a =b 时,(b a )=f (x )=f (b a )=a .这时,x 的取值范围为(0,+∞);当a >b 时,0<ba<1,从而b a <b a ,由f (x )在(0,+∞)上单调递增(**)式,得b a ≤x ≤b a,即x 的取值范围为⎣⎢⎡⎦⎥⎤ba ,b a ;当a <b 时,b a >1,从而b a >b a ,由f (x )在(0,+∞)上单调递减与(**)式,得b a≤x ≤b a ,即x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .综上,当a =b 时,x 的取值范围为(0,+∞);当a >b时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a ;当a <b 时,x 的取值范围为⎣⎢⎡⎦⎥⎤b a ,b a .专题二 三角函数、解三角形、平面向量第一讲 三角函数的图像与性质基础·单纯考点 [例1] 解析:(1)1-2sin (π+θ)sin ⎝⎛⎭⎪⎫3π2-θ=1-2sin θcos θ=|sin θ-cos θ|,又θ∈⎝ ⎛⎭⎪⎫π2,π,∴sin θ-cos θ>0,故原式=sin θ-cos θ.(2)由已知得|OP |=2,由三角函数定义可知sin α=12,cos α=32,即α=2k π+π6(k ∈Z ).所以2sin2α-3tan α=2sin ⎝ ⎛⎭⎪⎫4k π+π3-3tan ⎝ ⎛⎭⎪⎫2k π+π6=2sin π3-3tan π6=2×32-3×33=0. 答案:(1)A (2)D[预测押题1] (1)选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.(2)解析:由A 点的纵坐标为35及点A 在第二象限,得点A 的横坐标为-45,所以sin α=35,cos α=-45,tan α=-34.故tan2α=2tan α1-tan 2α=-247. 答案:35 -247[例2] 解析:(1)∵34T =512π-⎝ ⎛⎭⎪⎫-π3=34π,∴T =π,∴2πω=π(ω>0),∴ω=2.由图像知当x =512π时,2×512π+φ=2k π+π2(k ∈Z ),即φ=2k π-π3(k∈Z ).∵-π2<φ<π2,∴φ=-π3.(2)y =cos(2x +φ)的图像向右平移π2个单位后得到y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π2+φ的图像,整理得y =cos(2x -π+φ).∵其图像与y =sin ⎝⎛⎭⎪⎫2x +π3的图像重合,∴φ-π=π3-π2+2k π,∴φ=π3+π-π2+2k π,即φ=5π6+2k π.又∵-π≤φ<π∴φ=5π6.答案:(1)A (2)5π6[预测押题2] (1)选C 将y =sin ⎝⎛⎭⎪⎫2x +π4的图像向左平移π4个单位,再向上平移2个单位得y =sin ⎝⎛⎭⎪⎫2x +3π4+2的图像,其对称中心的横坐标满足2x +3π4=k π,即x =k π2-3π8,k ∈Z ,取k =1,得x =π8. (2)选C 根据已知可得,f (x )=2sin π4x ,若f (x )在[m ,n ]上单调,则n -m 取最小值.又当x =2时,y =2;当x =-1时,y =-2,故(n -m )min =2-(-1)=3.[例3] 解:(1)f (x )4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx ·cos2ωx )+2=2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0,从而由2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎪⎫2x +π4+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π5,即π8≤x ≤π2时,f (x )单调递减;综上可知,f (x )在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.[预测押题3] 解:(1)因为f (x )=32sin 2x +1+cos 2x 2+a =sin(2x +π6)+a +12,所以T =π.由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x≤2π3+k π,k∈Z .故函数f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ). (2)因为-π6≤x ≤π3,所以-π6≤2x +π6≤5π6,-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.因为函数f (x )在⎣⎢⎡⎦⎥⎤-π6,π3上的最大值与最小值的和为⎝⎛⎭⎪⎫1+a +12+⎝ ⎛⎭⎪⎫-12+a +12=32,所以a =0.交汇·创新考点[例1] 解:(1)f (x )=1+cos (2ωx -π3)2-1-cos2ωx 2=12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2ωx -π3+cos2ωx =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12cos2ωx +32sin2ωx +cos2ωx =12⎝ ⎛⎭⎪⎫32sin2ωx +32cos2ωx =32⎝ ⎛⎭⎪⎫12sin2ωx +32cos2ωx =32sin ⎝ ⎛⎭⎪⎫2ωx +π3.由题意可知,f (x )的最小正周期T =π,∴2π|2ω|=π.又∵ω>0,∴ω=1,∴f (π12)=32sin ⎝ ⎛⎭⎪⎫2×π12+π3=32sin π2=32.(2)|f (x )-m |≤1,即f (x )-1≤m ≤f (x )+1.∵对∀x ∈⎣⎢⎡⎦⎥⎤-7π12,0,都有|f (x )-m |≤1,∴m ≥f (x )max -1且m ≤f (x )min +1.∵-7π12≤x ≤0,∴-5π6≤2x +π3≤π3,∴-1≤sin ⎝ ⎛⎭⎪⎫2x +π3≤32,∴-32≤32sin ⎝ ⎛⎭⎪⎫2x +π3≤34,即f (x )max =34,f (x )min =-32,∴-14≤m ≤1-32.故m 的取值范围为⎣⎢⎡⎦⎥⎤-14,1-32.[预测押题1] 解:(1)f (2π3)=cos 2π3·cos π3=-cos π3·cos π3=-⎝ ⎛⎭⎪⎫122=-14.(2)f (x )=cos x ·cos ⎝ ⎛⎭⎪⎫x -π3=cos x ·⎝ ⎛⎭⎪⎫12cos x + 32sin x =12cos 2x +32sin x cos x =14(1+cos2x )+34sin2x =12cos ⎝ ⎛⎭⎪⎫2x -π3+14.f (x )<14等价于12cos ⎝ ⎛⎭⎪⎫2x -π3+14<14,即cos ⎝⎛⎭⎪⎫2x -π3<0.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为⎩⎨⎧⎭⎬⎫x |k π+5π12<x <k π+11π12,k ∈Z .[例2] 解析:因为圆心由(0,1)平移到了(2,1,),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切与点B ,过C 作PA 的垂线,垂足为D ,则∠PCD =2-π2,|PD |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,|CD |=cos ⎝⎛⎭⎪⎫2-π2=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP →的坐标为(2-sin2,1-cos2).答案:(2-sin2,1-cos2)[预测押题2] 选A 画出草图,可知点Q 点落在第三象限,则可排除B 、D ;代入A ,cos∠QOP =6×(-72)+8×(-2)62+82=-502100=-22,所以∠QOP =3π4.代入C ,cos ∠QOP =6×(-46)+8×(-2)62+82=-246-16100≠-22.第二讲 三角恒等变换与解三角形基础·单纯考点[例1] 解:(1)因为f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,所以f (-π6)=2cos ⎝ ⎛⎭⎪⎫-π6-π12=2cos ⎝ ⎛⎭⎪⎫-π4=2cos π4=2×22=1. (2)因为θ∈⎝ ⎛⎭⎪⎫3π2,2π,cos θ=35,所以sin θ=1-cos 2θ=-1-⎝ ⎛⎭⎪⎫352=-45,cos2θ=2cos 2θ-1=2×(35)2-1=-275,sin 2θ=2sin θcos θ =2×35×⎝ ⎛⎭⎪⎫-45=-2425.所以f (2θ+π3)=2cos ⎝ ⎛⎭⎪⎫2θ+π3-π12=2cos ⎝ ⎛⎭⎪⎫2θ+π4=2×⎝ ⎛⎭⎪⎫22cos2θ-22sin2θ=cos2θ-sin2θ=-725-⎝ ⎛⎭⎪⎫-2425=1725.[预测押题1] 解:(1)由已知可得f (x )=3cos ωx +3sin ωx =23sin ⎝ ⎛⎭⎪⎫ωx +π3.所以函数f (x )的值域为[-23,23].又由于正三角形ABC 的高为23,则BC =4,所以函数f (x )的周期T =4×2=8,即2πω=8,解得ω=π4.(2)因为f (x 0)=835,由(1)得f (x 0)=23sin ⎝ ⎛⎭⎪⎫πx 04+π3=835,即sin ⎝⎛⎭⎪⎫πx 04+π3=45.由x 0∈⎝ ⎛⎭⎪⎫-103,23得πx 04+π3∈⎝ ⎛⎭⎪⎫-π2,π2.所以cos ⎝ ⎛⎭⎪⎫πx 04+π3=1-⎝ ⎛⎭⎪⎫452=35,故f (x 0+1)=23sin ⎝ ⎛⎭⎪⎫πx 04+π4+π3=23sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫πx 04+π3+π4 =23⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫πx 04+π3cos π4+cos ⎝ ⎛⎭⎪⎫πx 04+π3sin π4=23⎝ ⎛⎭⎪⎫45×22+35×22=765.[例2] 解:(1)由已知得,∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=3+14-2×3×12cos30°=74.故PA =72. (2)设∠PBA =α,由已知得PB =sin α.在△PBA 中,由正弦定理得3sin150°=sin αsin (30°-α),化简得3sin α=4sin α.则tan α=34,即tan ∠PBA =34.[预测押题2] 解:(1)由正弦定理得2sin B cos C =2sin A -sin C .∵在△ABC 中,sin A =sin(B +C )=sin B cos C +sin C cos B ,∴sin C (2cos B -1)=0.又0<C <π,sin C >0,∴cos B =12,注意到0<B <π,∴B =π3.(2)∵S △ABC =12ac sin B =3,∴ac =4,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac =4,当且仅当a =c =2时,等号成立,∴b 的取值范围为[2,+∞).交汇·创新考点[例1] 解:(1)∵f (x )=cos ⎝ ⎛⎭⎪⎫2x -4π3+2cos 2x =cos ⎝⎛⎭⎪⎫2x +π3+1,∴f (x )的最大值为2.f (x )取最大值时,cos ⎝⎛⎭⎪⎫2x +π3=1,2x +π3=2k π(k ∈Z ),故x 的集合为{x |x =k π-π6,k ∈Z }.(2)由f (B +C )=cos ⎣⎢⎡⎦⎥⎤2(B +C )+π3+1=32,可得cos ⎝⎛⎭⎪⎫2A -π3=12,由A ∈(0,π),可得A =π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,由b +c =2,知bc ≤⎝ ⎛⎭⎪⎫b +c 22=1,当b =c =1时,bc 取最大值,此时a 取最小值1.[预测押题1] 解:(1)由已知得AB →·AC →=bc cos θ=8,b 2+c 2-2bc cos θ=42,故b 2+c 2=32.又b 2+c 2≥2bc ,所以bc ≤16,(当且仅当b =c =4时等号成立),即bc 的最大值为16.即8cos θ≤16,所以cos θ≥12.又0<θ<π,所以0<θ≤π3,即θ的取值范围是(0,π3].(2)f (θ)=3sin2θ+cos2θ+1=2sin ⎝⎛⎭⎪⎫2θ+π6+1.因为0<θ≤π3,所以π6<2θ+π6≤5π6,12≤sin ⎝⎛⎭⎪⎫2θ+π6≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2;当2θ+π6=π2,即θ=π3时,f (θ)max =2×1+1=3.[例2] 解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C =12606365×45=1040(m).所以索道AB 的长为1040m. (2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+5t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已经走了50×(2+8+1)=550(m),还需要走710m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度控制在⎣⎢⎡⎦⎥⎤125043,62514(单位:m/min)范围内.[预测押题2] 解:(1)因为点C 的坐标为⎝ ⎛⎭⎪⎫35,45,根据三角函数的定义,得sin ∠COA =45,cos ∠COA =35.因为△AOB 为正三角形,所以∠AOB =60°.所以cos ∠BOC =cos (∠COA +60°)=cos ∠COA cos60°-sin ∠COA sin60°=35×12-45×32=3-4310.(2)因为∠AOC =θ⎝⎛⎭⎪⎫0<θ<π2,所以∠BOC =π3+θ.在△BOC 中,|OB |=|OC |=1,由余弦定理,可得f (θ)=|BC |2=|OC |2+|OB |2-2|OC |·|OB |·cos ∠COB =12+12-2×1×1×cos ⎝ ⎛⎭⎪⎫θ+π3=2-2cos ⎝⎛⎭⎪⎫θ+π3.因为0<θ<π2,所以π3<θ+π3<5π6.所以-32<cos ⎝ ⎛⎭⎪⎫θ+π3<12.所以1<2-2cos ⎝ ⎛⎭⎪⎫θ+π3<2+ 3.所以函数f (θ)的值域为(1,2+3).第三讲 平面向量基础·单纯考点[例1] 解析:以向量:a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λa +μb ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4[预测押题1] (1)选A 由已知,得AB →=(3,-4),所以|AB →|=5,因此与AB →同方向的单位向量是15AB →=⎝ ⎛⎭⎪⎫35,-45.(2)选C 如图,连接BP ,则AP →=AC →+CP →=b +PR →,① AP →=AB →+BP →=a +RP →-RB →,②①+②,得2AP →=a +b -RB →.③ 又RB →=12QB →=12(AB →-AQ →)=12⎝ ⎛⎭⎪⎫a -12AP →,④将④代入③,得2AP →=a +b -12⎝⎛⎭⎪⎫a -12AP →,解得AP →=27a +47b .[例2] 解析:(1)由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322.(2)设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE →=(AB→+AD →)·(AD →-12AB →)=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:(1)A (2)12[预测押题2] (1)选D a ⊥(a +b)⇒a ·(a +b )=a 2+a·b =|a |2+|a ||b |cos<a ,b >=0,故cos<a ,b >=-963=-32,故所求夹角为5π6.(2)选C 设BC 的中点为M ,则AG →=23AM →.又M 为BC 中点,∴AM →=12(AB →+AC →),∴AG →=23AM →=13(AB →+AC →),∴|AG →|=13AB →2+AC →2+2AB →·AC →=13AB →2+AC →2-4.又∵AB →·AC →=-2,∠A =120°,∴|AB →||AC →|=4.∵|AG →|=13AB →2+AC →2-4≥132|AB →||AC →|-4=23,当且仅当|AB →|=|AC→|时取等号,∴|AG →|的最小值为23.交汇·创新考点[例1] 解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2).由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1.∴⎩⎪⎨⎪⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0,x -2y -3=0之间的距离d =35,故平面区域D 的面积为S =5×25=3.答案:3[预测押题1] 选D 如图作可行域,z =OA →·OP →=x +2y ,显然在B (0,1)处z max =2.故选D.[例2] 解:(1)∵g (x )=sin(π2+x )+2cos(π2-x )=2sin x +cos x ,∴OM →=(2,1),∴|OM →|=22+12= 5.(2)由已知可得h (x )=sin x +3cos x =2sin(x +π3),∵0≤x ≤π2,∴π3≤x +π3≤5π6,∴h (x )∈[1,2].∵当x +π3∈[π3,π2]时,即x ∈[0,π6]时,函数h (x )单调递增,且h (x )∈[3,2];当x +π3∈(π2,5π6]时,即x ∈(π6,π2]时,函数h (x )单调递减,且h (x )∈[1,2).∴使得关于x 的方程h (x )-t =0在[0,π2]内恒有两个不相等实数解的实数t 的取值范围为[3,2).[预测押题2] 解:(1)由题设,可得(a +b )·(a -b )=0,即|a |2-|b |2=0.代入a ,b的坐标,可得cos 2α+(λ-1)2sin 2α-cos 2β-sin 2β=0,所以(λ-1)2sin 2α-sin 2α=0.因为0<α<π2,故sin 2α≠0,所以(λ-1)2-1=0,解得λ=2或λ=0(舍去,因为λ>0).故λ=2.(2)由(1)及题设条件,知a·b =cos αcos β+sin αsin β=cos(α-β)=45.因为0<α<β<π2,所以-π2<α<β<0.所以sin(α-β)=-35,tan(α-β)=-34.所以tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=-34+431-(-34)×43=724.所以tan α=724.[例3] 选D a ∘b =a·b b 2=|a||b||b|2cos θ=|a||b|cos θ,b ∘a =|a||b|cos θ,因为|a |>0,|b |>0,0<cos θ<22,且a ∘b 、b ∘a ∈⎩⎨⎧⎭⎬⎫n 2|n ∈Z ,所以|a||b|cos θ=n 2,|a||b|cos θ=m 2,其中m ,n ∈N *,两式相乘,得m ·n 2=cos 2θ.因为0<cos θ<22,所以0<cos 2θ<12,得0<m ·n <2,故m=n =1,即a ∘b =12.[预测押题3] 选D 依题意,MF 1→=(-1-x ,-y )=(-1-x )e 1-y e 2,MF 2→=(1-x ,-y )=(1-x )e 1-y e 2,由|MF 1→|=|MF 2→|,得MF 1→2=MF 2→2,∴[(-1-x )e 1-y e 2]2=[(1-x )e 1-y e 2]2,∴4x +4y e 1·e 2=0.∵∠xOy =45°,∴e 1·e 2=22,故2x +2y =0,即2x +y =0.专题三 数列第一讲 等差数列、等比数列基础·单纯考点[例1] 解析:(1)∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m=-2+(m -1)·1=2,∴m =5.(2)设等比数列{a n }的首项为a 1,公比为q ,则:由a 2+a 4=20得a 1q (1+q 2)=20,①,由a 3+a 5=40得a 1q 2(1+q 2)=40.②由①②解得q =2,a 1=2.故S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.答案:(1)C (2)2 2n +1-2[预测押题1] 解:(1)设等差数列的公差为d ,d >0.由题意得,(2+d )2=2+3d +8,d 2+d -6=(d +3)(d -2)=0,得d =2.故a n =a 1+(n -1)·d =2+(n -1)·2=2n ,故a n =2n .(2)b n =a n +2a n =2n +22n .S n =b 1+b 2+…+b n =(2+22)+(4+24)+…+(2n +22n)=(2+4+6+...+2n )+(22+24+ (22))=(2+2n )·n 2+4·(1-4n )1-4=n 2+n +4n +1-43.[例2] 解:(1)设数列{a n }的公比为q (q ≠0,q ≠1),由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4,即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),。

【三维设计】2016届(新课标)高考数学(理)大一轮复习精讲课件:第八章几何第八节曲线与方程

【三维设计】2016届(新课标)高考数学(理)大一轮复习精讲课件:第八章几何第八节曲线与方程

“课后演练提能”见“课时跟踪检测(五十七)” (单击进入电子文档)
谢谢观看
4.已知圆的方程为 x2+y2=4,若抛物线过点 A(-1,0),B(1,0)且以圆 的切线为准线,则抛物线的焦点轨迹方程是_x4_2_+__y3_2=__1_(_y_≠__0_)_. 解析:设抛物线焦点为 F,过 A,B,O 作准线的垂线 AA1,BB1, OO1,则|AA1|+|BB1|=2|OO1|=4,由抛物线定义得|AA1|+|BB1| =|FA|+|FB|,∴|FA|+|FB|=4,故 F 点的轨迹是以 A,B 为焦
解:(1)由题知|CA|+|CB|=|CP|+|CQ|+|AP|+|BQ|=2|CP|+|AB| =4>|AB|, 所以曲线 M 是以 A,B 为焦点,长轴长为 4 的椭圆(挖去与 x 轴的 交点). 设曲线 M:xa22+by22=1(a>b>0,y≠0),
则 a2=4,b2=a2-|A2B|2=3, 所以曲线 M:x42+y32=1(y≠0)为所求. (2)如图,由题意知直线 BC 的斜率不为 0,且 过定点 B(1,0), 设 lBC:x=my+1,C(x1,y1),D(x2,y2),
2.用相关点法求轨迹方程的关键是寻求关系式:x′= f(x,y),y′=g(x,y),然后代入已知曲线方程.求对称曲线 (轴对称、中心对称等)方程实质上也是用代入法(相关点法)解题.
[典题例析]
(2015·广州模拟)在圆x2+y2=4上任取一点P,设点P在x轴上的正投 影为点D.当点P在圆上运动时,动点M满足 PD =2 MD ,动点M形成 的轨迹为曲线C. (1)求曲线C的方程; (2)已知点E(1,0),若A,B是曲线C上的两个动点,且满足EA⊥EB, 求 EA·BA的取值范围. 解:(1)法一:由 PD=2 MD知点M为线段PD的中点. 设点M的坐标是(x,y),则点P的坐标是(x,2y). 因为点P在圆x2+y2=4上,

2016新课标三维人教A版数学选修2-1 复习课(二) 圆锥曲线与方程

2016新课标三维人教A版数学选修2-1  复习课(二)     圆锥曲线与方程

复习课(二) 圆锥曲线与方程圆锥曲线的定义及标准方程在高考中主要以选择题或填空题的形式进行考查,标准方程在解答题中也会涉及,是高考解析几何的必考内容.[考点精要]椭圆、双曲线、抛物线的定义及标准方程 [典例] (1)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=1(2)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________________.[解析] (1)右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为ca =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D . (2)由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.[答案] (1)D (2)x 2-y 23=1[类题通法]求圆锥曲线方程的一般步骤一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. (1)定形——指的是二次曲线的焦点位置与对称轴的位置.(2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).(3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小.[题组训练]1.(天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A .x 221-y 228=1B .x 228-y 221=1C .x 23-y 24=1D .x 24-y 23=1解析:选D 由双曲线的渐近线y =ba x 过点(2,3),可得3=ba×2.①由双曲线的焦点(-a 2+b 2,0)在抛物线y 2=47x 的准线x =-7上,可得 a 2+b 2=7.②由①②解得a =2,b =3, 所以双曲线的方程为x 24-y 23=1.2.(全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 答案:⎝⎛⎭⎫x -322+y 2=2543.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4;④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是________(写出所有正确命题的序号).解析:显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线;而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故③④为真命题.答案:③④圆锥曲线的几何性质是圆锥曲线的核心内容,高考非常重视对圆锥曲线几何性质的考查,试卷中一般以选择题或者填空题的形式考查圆锥曲线的几何性质(主要是椭圆和双曲线的离心率),在解答题中与圆锥曲线方程的其他知识一起进行综合考查.[考点精要]椭圆、双曲线、抛物线的几何性质[典例] (1)(山东高考)已知双曲线E :x a 2-y b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________.[解析] (1)如图,由题意知|AB |=2b 2a ,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去). (2)设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a .因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝⎛⎭⎫b a 4=14,∴b a =22. 故双曲线的渐近线方程为y =±b a x =±22x ,即x ±2y =0.[答案] (1)2 (2)x ±2y =0 [类题通法]求解离心率三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =ca ,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.[题组训练]1.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.其四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D .62解析:选D 焦点F 1(-3,0),F 2(3,0), 在Rt △AF 1F 2中,|AF 1|+|AF 2|=4, |AF 1|2+|AF 2|2=12,所以可解得|AF 2|-|AF 1|=22, 故a =2,所以双曲线的离心率e =32=62,选D . 2.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 解析:不妨设A 在x 轴上方,由于AB 过F 2且垂直于x 轴,因此可得A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a ,由OD ∥F 2B ,O 为F 1F 2的中点可得D ⎝⎛⎭⎫0,-b 22a ,所以AD =⎝⎛⎭⎫-c ,-3b 22a ,F B 1 =⎝⎛⎭⎫2c ,-b 2a ,又AD ⊥F 1B ,所以AD ·F B 1 =-2c 2+3b 42a 2=0,即3b 4=4a 2c 2,又b 2=a 2-c 2,所以可得3(a 2-c 2)=2ac ,两边同时除以a 2,得3e 2+2e -3=0,解得e =33或-3,又e ∈(0,1),故椭圆C 的离心率为33. 答案:333.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为________.解析:c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎫c ,-p 2,即c 2a 2-p24b 2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④ 将④代入②,得c 2a2=2.∴a 2+b 2a2=2,即ba =1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 答案:x ±y =0高考试题中解析几何的解答题一般不会单纯考查圆锥曲线,试题中一般都有直线问题参与,这使得解析几何试题具有广泛的命题背景,当直线与圆锥曲线问题综合时就产生了如:直线与圆锥曲线的位置关系(相交、相切、相离),直线与曲线交汇产生的一些几何量的范围和最值,动直线(或曲线)过定点等一系列热点问题,这些热点问题都是高考所重视的.[考点精要]直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,则有:Δ>0⇔直线与圆锥曲线相交于两点;Δ=0⇔直线与圆锥曲线相切于一点;Δ<0⇔直线与圆锥曲线无交点.(2)直线l 截圆锥曲线所得的弦长|AB |=(1+k 2)(x 1-x 2)2或⎝⎛⎭⎫1+1k 2(y 1-y 2)2,其中k是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.[典例] 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a 2+y 2=1(a >1),则右焦点F (a 2-1,0), 由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1, 得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N 2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1, 所以k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k ,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2, 由②得k 2=2m -13>0, 解得m >12,故所求m 的取值范围是⎝⎛⎭⎫12,2. [类题通法]有关直线与圆锥曲线综合问题的求解方法(1)将直线方程与圆锥曲线方程联立,化简后得到关于x (或y )的一元二次方程,则直线与圆锥曲线的位置关系有三种情况:①相交:Δ>0⇔直线与椭圆相交;Δ>0⇒直线与双曲线相交,但直线与双曲线相交不一定有Δ>0,如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ>0是直线与双曲线相交的充分不必要条件;Δ>0⇒直线与抛物线相交,但直线与抛物线相交不一定有Δ>0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故Δ>0也仅是直线与抛物线相交的充分条件,而不是必要条件.②相切:Δ=0⇔直线与椭圆相切;Δ=0⇔直线与双曲线相切;Δ=0⇔直线与抛物线相切.③相离:Δ<0⇔直线与椭圆相离;Δ<0⇔直线与双曲线相离;Δ<0⇔直线与抛物线相离. (2)直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等.[题组训练]1.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.解析:设机器人所在位置为A (x ,y ),依题意得点A 在以F (1,0)为焦点,x =-1为准线的抛物线上,该抛物线的标准方程为y 2=4x .过点P (-1,0),斜率为k 的直线为y =k (x +1).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k得ky 2-4y +4k =0. 当k =0时,显然不符合题意;当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞). 答案:(-∞,-1)∪(1,+∞)2.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463. 由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线互相垂直,则该双曲线的离心率是( )A .2B . 3C . 2D .32解析:选C 由题可知y =b a x 与y =-b a x 互相垂直,可得-b a ·ba =-1,则a =b .由离心率的计算公式,可得e 2=c 2a 2=a 2+b2a2=2,e =2.2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线的焦点坐标为⎝⎛⎭⎫a4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得点A 的坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12×|a |4×|a |2=4,得a =±8,故抛物线的方程为y 2=±8x .3.已知一动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,则动圆的圆心P 的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .圆解析:选A 由题意,知圆C 的标准方程为(x -3)2+y 2=1,则圆C 与圆O 相离,设动圆P 的半径为R .∵圆P 与圆O 外切而与圆C 内切,∴R >1,且|PO |=R +1,|PC |=R -1.又|OC |=3,∴|PO |-|PC |=2<|OC |,即点P 在以O ,C 为焦点的双曲线的右支上.4.我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0),如图所示,其中点F 0,F 1,F 2是相应椭圆的焦点.若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为( )A .72,1 B .3,1 C .5,3D .5,4解析:选A ∵|OF 2|=b 2-c 2=12,|OF 0|=c =3|OF 2|=32,∴b =1,∴a 2=b 2+c 2=1+34=74,得a =72.5.已知抛物线的方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为( )A .522+2B .522+1 C .522-2D .522-1 解析:选D 因为抛物线的方程为y 2=4x ,所以焦点坐标为F (1,0),准线方程为x =-1.因为点P 到y 轴的距离为d 1,所以到准线的距离为d 1+1.又d 1+1=|PF |,所以d 1+d 2=d 1+1+d 2-1=|PF |+d 2-1.焦点F 到直线l 的距离记为d ,则d =|1-0+4|2=52=522,而|PF |+d 2≥d =522,所以d 1+d 2=|PF |+d 2-1≥522-1,即d 1+d 2的最小值为522-1.6.双曲线与椭圆4x 2+y 2=64有公共焦点,它们的离心率互为倒数,则双曲线方程为( )A .y 2-3x 2=36B .x 2-3y 2=36C .3y 2-x 2=36D .3x 2-y 2=36解析:选A 由4x 2+y 2=64得x 216+y 264=1,c 2=64-16=48, ∴c =43,e =438=32.∴双曲线中,c ′=43,e ′=23=c ′a ′. ∴a ′=32c ′=6,b ′2=48-36=12. ∴双曲线方程为y 236-x 212=1,即y 2-3x 2=36. 7.已知椭圆x 2a 2+y 2b2=1(a >b >0),其上一点P (3,y )到两焦点的距离分别是6.5和3.5,则该椭圆的标准方程为________.解析:由椭圆的定义,知2a =6.5+3.5=10,a =5.又⎩⎪⎨⎪⎧(3+c )2+y 2=6.52,(3-c )2+y 2=3.52,解得c =52, 从而b 2=a 2-c 2=754, 所以椭圆的标准方程为x 225+4y 275=1. 答案:x 225+4y 275=1 8.已知直线l 与抛物线y 2=4x 交于A ,B 两点,O 为坐标原点,若OA ·OB =-4,则直线l 恒过的定点M 的坐标是________.解析:设A (x 1,y 1),B (x 2,y 2),则x 1x 2+y 1y 2=-4.当直线l 的斜率不存在时,设其方程为x =x 0(x 0>0),则x 20-4x 0=-4,解得x 0=2;当直线l 的斜率存在时,设直线l 的方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b =0,得y 1y 2=4b k ,则x 1x 2=y 21y 2216=b 2k 2,得b 2k 2+4b k =-4,∴b k=-2,有b =-2k ,直线y =kx -2k =k (x -2)恒过定点(2,0).又直线x =2也恒过定点(2,0),得点M 的坐标为(2,0).答案:(2,0)9.已知A (0,-4),B (3,2),抛物线y 2=x 上的点到直线AB 的最短距离为________.解析:直线AB 为2x -y -4=0,设抛物线y 2=x 上的点P (t ,t 2),d =|2t -t 2-4|5=t 2-2t +45=(t -1)2+35≥35=355. 答案:35510.如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长、短轴端点分别为A ,B ,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB 与OM 是共线向量.(1)求椭圆的离心率e ; (2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解:(1)∵F 1(-c,0),则x M =-c ,y M =b 2a, ∴k OM =-b 2ac. 由题意,知k AB =-b a, ∵OM 与AB 是共线向量,∴-b 2ac =-b a, ∴b =c ,得e =22. (2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,∴r 1+r 2=2a .又|F 1F 2|=2c ,由余弦定理,得cos θ=r 21+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2⎝⎛⎭⎫r 1+r 222-1=0, 当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈⎝⎛⎦⎤0,π2.11.如图,焦距为2的椭圆E 的两个顶点分别为A ,B ,且AB 与n =(2,-1)共线.(1)求椭圆E 的标准方程;(2)若直线y =kx +m 与椭圆E 有两个不同的交点P 和Q ,且原点O 总在以PQ 为直径的圆的内部,求实数m 的取值范围.解:(1)因为2c =2,所以c =1,又AB =(-a ,b ),且AB ∥n ,所以2b =a ,所以2b 2=b 2+1,所以b 2=1,a 2=2,所以椭圆E 的标准方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),把直线方程y =kx +m 代入椭圆方程x 22+y 2=1, 消去y ,得(2k 2+1)x 2+4kmx +2m 2-2=0,所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1, Δ=16k 2-8m 2+8>0,即m 2<2k 2+1,(*)因为原点O 总在以PQ 为直径的圆的内部,所以OP ·OQ <0,即x 1x 2+y 1y 2<0,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-2k 22k 2+1, 由2m 2-22k 2+1+m 2-2k 22k 2+1<0得m 2<23k 2+23, 依题意且满足(*)得m 2<23, 故实数m 的取值范围是⎝⎛⎭⎫-63,63. 12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且OA ·OB =4,求y 0的值. 解:(1)由e =c a =32,得3a 2=4c 2. 再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1. 所以椭圆的方程为x 24+y 2=1. (2)由(1)可知A (-2,0).设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0.由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2. 从而y 1=4k 1+4k 2.设线段AB 的中点为M ,则M 的坐标为⎝⎛⎭⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况: ①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是OA =(-2,-y 0),OB =(2,-y 0).由OA ·OB =4,得y 0=±22. ②当k ≠0时,线段AB 的垂直平分线方程为y -2k 1+4k 2=-1k ⎝⎛⎭⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k 2. 由OA =(-2,-y 0),OB =(x 1,y 1-y 0).OA ·OB =-2x 1-y 0(y 1-y 0)=-2×(2-8k 2)1+4k 2+6k 1+4k 2⎝⎛⎭⎫4k 1+4k 2+6k 1+4k 2 =4×(16k 4+15k 2-1)(1+4k 2)2=4, 整理得7k 2=2,故k =±147.所以y 0=±2145. 综上,y 0=±22或y 0=±2145.。

《三维设计》2016级数学一轮复习基础讲解空间向量与空间角

《三维设计》2016级数学一轮复习基础讲解空间向量与空间角

空间向量与空间角[知识能否忆起]利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a||b |(其中φ为异面直线a ,b 所成的角).2.直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.3.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).[小题能否全取]1.(教材习题改编)已知向量m ,n 分别是直线l 和平面α的方向向量、法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A .30°B .60°C .120°D .150°解析:选A 由于cos 〈m ,n 〉=-12,∴〈m ,n 〉=120°.所以直线l 与α所成的角为30°.2.(教材习题改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为( )A .45°B .135°C .45°或135°D .90°解析:选C cos 〈m ,n 〉=m ·n |m ||n |=11×2=22, 即〈m ,n 〉=45°,其补角为135°, ∴两平面所成的二面角为45°或135°.3.在如图所示的正方体A1B 1C 1D 1-ABCD 中,E 是C 1D 1的中点,则异面直线DE 与AC 夹角的余弦值为( )A .-1010B .-120C.120D.1010解析:选D 如图建立直角坐标系D -xyz ,设DA =1,A (1,0,0),C (0,1,0),E ⎝⎛⎭⎫0,12,1.则AC =(-1,1,0),DE =⎝⎛⎭⎫0,12,1,若异面直线DE 与AC 所成的角为θ,cos θ=|cos 〈AC ,DE 〉|=1010. 4.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.解析:如图,建立直角坐标系D -xyz ,设DA =1由已知条件A (1,0,0), E ⎝⎛⎭⎫1,1,13,F ⎝⎛⎭⎫0,1,23, AE =⎝⎛⎭⎫0,1,13,AF =⎝⎛⎭⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),面AEF 与面ABC 所成的二面角为θ,由⎩⎪⎨⎪⎧n ·AE =0,n ·AF =0,得⎩⎨⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3).设平面ABC 的法向量为m =(0,0,-1), 则cos θ=cos 〈n ,m 〉=311,tan θ=23.答案:235.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.解析:建立如图所示直角坐标系,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),1A B =(0,4,-3),1B C =(-4,0,-3).设异面直线A 1B 与B 1C 所成角为θ, 则cos θ=|cos 〈1A B ,1B C 〉|=925. 答案:925(1)利用向量求空间角,一定要注意将向量夹角与所求角区别开来,在将向量夹角转化为各空间角时注意空间各角的取值范围,异面直线所成角的范围是⎝⎛⎦⎤0,π2,直线与平面所成角的范围是⎣⎡⎦⎤0,π2,二面角的范围是[0,π]. (2)利用平面的法向量求二面角的大小时,当求出两半平面α、β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补,这是利用向量求二面角的难点、易错点.典题导入[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35[自主解答] 不妨令CB =1,则CA =CC 1=2.可得 O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴1BC =(0,2,-1),1AB =(-2,2,1),∴cos 〈1BC ,1AB 〉=1BC ·1AB |1BC ||1AB |=4-15×9=15=55>0.∴1BC 与1AB 的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. [答案] A本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13?若存在,求出M 点;不存在,说明理由.解:不妨令CB =1,CA =CC 1=2, 建系如本例题图,假设存在符合条件的点M ,设M (0,0,a ), 则1C M =(0,-2,a ),又1AB =(-2,2,1), ∴|cos 〈1C M ,1AB 〉|=|a -4|4+a 2·9=13. ∴|a -4|=4+a 2,∴a 2-8a +16=a 2+4.∴8a =12,∴a =32.又CB =1,∴a =32>1.故不存在符合条件的点M .由题悟法利用直线的方向向量的夹角求异面直线的夹角时,注意区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.以题试法1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33. (2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ),∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0,∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.典题导入[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.[自主解答] (1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz ,则C (22,0,0).设D (2,b,0),其中b >0,则 P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0).于是PC =(22,0,-2), BE =⎝⎛⎭⎫23,b ,23,DE =⎝⎛⎭⎫23,-b ,23,从而PC ·BE =0,PC ·DE =0, 故PC ⊥BE ,PC ⊥DE . 又BE ∩DE =E , 所以PC ⊥平面BED .(2) AP =(0,0,2),AB =(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则 m ·AP =0,m ·AB =0, 即2z =0且2x -by =0, 令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0, 即22p -2r =0且2p 3+bq +23r =0, 令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b ,2. 因为二面角A -PB -C 为90°,所以面P AB ⊥面PBC ,故m ·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP =(-2,-2,2), 所以cos 〈n ,DP 〉=n ·DP |n ||DP |=12,所以〈n ,DP 〉=60°.因为PD 与平面PBC 所成角和〈n ,DP 〉互余, 故PD 与平面PBC 所成的角为30°.由题悟法利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角(如例2).以题试法2.(2012·宝鸡模拟)如图,已知P A ⊥平面ABC ,且P A =2,等腰直角三角形ABC 中,AB =BC =1,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E .(1)求证:PC ⊥平面ADE ;(2)求直线AB 与平面ADE 所成角的大小. 解:(1)证明:因为P A ⊥平面ABC , 所以P A ⊥BC ,又AB ⊥BC ,且P A ∩AB =A , 所以BC ⊥平面P AB ,从而BC ⊥AD . 又AD ⊥PB ,BC ∩PB =B , 所以AD ⊥平面PBC , 得PC ⊥AD ,又PC ⊥AE ,AE ∩AD =A , 所以PC ⊥平面ADE .(2)如图所示,建立空间直角坐标系B -xyz . 则A (1,0,0),C (0,1,0), P (1,0,2), 因为PC ⊥平面ADE ,所以PC =(-1,1,-2)是平面ADE 的一个法向量. 设直线AB 与平面ADE 所成的角为θ, 则sin θ=|PC ·AB ||PC ||AB |=(-1,1,-2)·(-1,0,0)2=12,则直线AB 与平面ADE 所成的角为30°.典题导入[例3] (2012·江西高考)在三棱柱ABC -A 1B 1C 1中,已知AB=AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长;(2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.[自主解答] (1)证明:连接AO ,在△AOA 1中,作OE ⊥AA 1于点E ,因为AA 1∥BB 1,得OE ⊥BB 1,因为A 1O ⊥平面ABC ,所以A 1O ⊥BC .因为AB =AC ,OB =OC ,得AO ⊥BC ,所以BC ⊥平面AA 1O ,所以BC ⊥OE , 所以OE ⊥平面BB 1C 1C . 又AO =AB 2-BO 2=1,AA 1=5,得AE =AO 2AA 1=55.(2)如图,分别以OA ,OB ,OA1所在直线为x ,y ,z 轴,建立空间直角坐标系,则A (1,0,0),B (0,2,0),C (0,-2,0),A 1(0,0,2),B 1(-1,2,2),由AE =151AA 得点E 的坐标是⎝⎛⎭⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE =⎝⎛⎭⎫45,0,25, 设平面A 1B 1C 的法向量n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·11A B =0,n ·1A C =0,得⎩⎪⎨⎪⎧-x +2y =0,y +z =0.令y =1,得x =2,z =-1,即n =(2,1,-1), 所以cos 〈OE ,n 〉=OE ·n | OE |·|n |=3010,即平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值是3010.由题悟法求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.以题试法3.(2012·山西模拟)如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC ⊥BE ; (2)若二面角C -AE -D 的大小为60°,求λ的值.解:(1)证明:如图,建立空间直角坐标系D -xyz ,则A (a,0,0,),B (a ,a,0),C (0,a,0),D (0,0,0),E (0,0,λa ),∴AC =(-a ,a,0),BE =(-a ,-a ,λa ),∴AC ·BE =0对任意λ∈(0,1]都成立,即对任意的λ∈(0,1],都有AC ⊥BE .(2)显然n =(0,1,0)是平面ADE 的一个法向量, 设平面ACE 的法向量为m =(x ,y ,z ), ∵AC =(-a ,a,0),AE =(-a,0,λa ),∴⎩⎪⎨⎪⎧ m ·AC =0,m ·AE =0.即⎩⎪⎨⎪⎧ -ax +ay =0,-ax +λaz =0,∴⎩⎪⎨⎪⎧x -y =0,x -λz =0.取z =1,则x =y =λ,∴m =(λ,λ,1), ∵二面角C -AE -D 的大小为60°, ∴|cos 〈n ,m 〉|=|n ·m ||n ||m |=λ1+2λ2=12, ∵λ∈(0,1], ∴λ=22.1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC=AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.解析:建立如图所示的空间直角坐标系. 设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1), 则EF =(0,-1,1),1BC =(2,0,2), ∴EF ·1BC =2, ∴cos 〈EF ,1BC 〉=22×22=12,∴EF 和BC 1所成角为60°. 答案:60°2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2).设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的一个法向量为m =(x ,y ,z ).则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0x +az =0,令z =-1,得m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0), 则由cos 60°=|m·n ||m ||n |,得1a 2+2=12,即a =2, 故AD = 2. 答案: 23.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.解析:如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a ,则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a2. 则CA =(2a,0,0),AP =⎝⎛⎭⎫-a ,-a 2,a2,CB =(a ,a,0). 设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB ,n 〉=CB ·n | CB ||n |=a 2a 2·2=12. ∴〈CB ,n 〉=60°,∴直线BC 与平面P AC 的夹角为90°-60°=30°. 答案:30°4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.解:(1)证明:由题可知,AP 、AD 、AB 两两垂直,则分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP =(0,0,3),AC =(23,6,0),BD =(-23,2,0), ∴BD ·AP =0,BD ·AC =0.∴BD ⊥AP ,BD ⊥AC . 又P A ∩AC =A ,∴BD ⊥平面P AC .(2)显然平面ABD 的一个法向量为m =(0,0,1),设平面PBD 的法向量为n =(x ,y ,z ),则n ·BD =0,n ·BP =0. 由(1)知,BP =(-23,0,3),∴⎩⎪⎨⎪⎧-23x +2y =0,-23x +3z =0,整理得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2), ∴cos 〈m ,n 〉=m ·n |m ||n |=12.∴结合图形可知二面角P -BD -A 的大小为60°.5.(2012·辽宁高考)如图,直三棱柱ABC -A ′B ′C ′,∠BAC=90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.解:(1)法一:证明:如图,连接AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱,所以M 为AB ′中点.又因为N 为B ′C ′的中点, 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′,A ′C ⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.法二:证明:取A ′B ′ 中点P ,连接MP ,NP ,而M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,因此平面MPN ∥平面A ′ACC ′.而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,如图所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1), B ′(λ,0,1),C ′(0,λ,1), 所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A M '=0,m ·MN =0,得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC =0,n ·MN =0,得⎩⎨⎧-λ2x 2+λ2y 2-z 2=0,λ2y 2+12z 2=0,可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m·n =0, 即-3+(-1)×(-1)+λ2=0,解得λ=2(负值舍去).6.如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. 解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC . 所以DE ⊥A 1C . 又因为A 1C ⊥CD . 所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·1A B =0,n ·BE =0.又1A B (3,0-= (-1,2,0),所以⎩⎪⎨⎪⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3. 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.因为CM =所以sin θ=|cos 〈n , CM 〉|=|n ·CM |n ||CM ||=48×4=22.所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·1A D =0,m ·DP =0. 又1A D =(0,2,-23),DP =(p ,-2,0),所以⎩⎪⎨⎪⎧2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.1.(2013·湖北模拟)如图所示,四棱锥P -ABCD 中,底面ABCD为正方形,PD ⊥平面ABCD ,PD =AB =2,E 、F 、G 分别为PC 、PD 、BC 的中点.(1)求证:P A ⊥EF ;(2)求二面角D -FG -E 的余弦值.解:以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),A (0,2,0),C (-2,0,0),P (0,0,2),E (-1,0,1),F (0,0,1),G (-2,1,0).(1)证明:由于PA =(0,2,-2),EF =(1,0,0),则PA ·EF =1×0+0×2+(-2)×0=0,∴P A ⊥EF .(2)易知DF =(0,0,1),EF =(1,0,0),FG =(-2,1,-1),设平面DFG 的法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·DF =0,m ·FG =0,解得⎩⎪⎨⎪⎧z 1=0,-2x 1+y 1-z 1=0.令x 1=1,得m =(1,2,0)是平面DFG 的一个法向量. 设平面EFG 的法向量n =(x 2,y 2,z 2), 同理可得n =(0,1,1)是平面EFG 的一个法向量. ∵cos 〈m ,n 〉=m ·n |m |·|n |=25·2=210=105,设二面角D -FG -E 的平面角为θ,由图可知θ=π-〈m ,n 〉, ∴cos θ=-105, ∴二面角D -FG -E 的余弦值为-105. 2.(2012·北京西城模拟)如图,在直三棱柱ABC -A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.解:(1)证明:连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1, 所以A 1B ∥平面ADC 1.(2)由ABC -A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直. 以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B -xyz . 设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0),所以AD =(1,-2,0),1AC =(2,-2,1).设平面ADC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AD =0,n ·1AC =0.所以⎩⎪⎨⎪⎧x -2y =0,2x -2y +z =0.取y =1,得n =(2,1,-2).易知平面ADC 的一个法向量为v =(0,0,1). 所以cos 〈n ,v 〉=n ·v |n |·|v |=-23.因为二面角C 1-AD -C 是锐二面角, 所以二面角C 1-AD -C 的余弦值为23.(3)假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2. 所以AE =(0,λ-2,1),1DC =(1,0,1). 因为AE 与DC 1成60°角,所以|cos 〈AE ,1DC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪AE ·1DC |AE |·|1DC |=12. 即⎪⎪⎪⎪⎪⎪1(λ-2)2+1·2=12,解得λ=1或λ=3(舍去). 所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.1.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.解:(1)证明:如图,以D 为坐标原点,DA 、DP 、DC 所在的直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系D -xyz .设DA =1,则有D (0,0,0),Q (1,1,0),C (0,0,1),P (0,2,0),所以DQ =(1,1,0),DC =(0,0,1),PQ =(1,-1,0), 所以PQ ·DQ =0,PQ ·DC =0,即PQ ⊥DQ ,PQ ⊥DC . 又DQ ⊂平面DCQ ,DC ⊂平面DCQ ,且DQ ∩DC =D , 所以PQ ⊥平面DCQ .又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)由(1)易知B (1,0,1),CB =(1,0,0),BP =(-1,2,-1).设n =(x ,y ,z )是平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·CB =0,n ·BP =0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0,可取n =(0,-1,-2). 设m =(x 1,y 1,z 1)是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP =0,m ·PQ =0,即⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,x 1-y 1=0,可取m =(1,1,1). 所以cos 〈m ,n 〉=-155, 故二面角Q -BP -C 的余弦值为-155. 2.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.解:如图,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛-12,⎭⎫12,0,P (0,0,2).(1)证明:易得PC =(0,1,-2),AD =(2,0,0),于是PC ·AD =0,所以PC ⊥AD .(2) PC =(0,1,-2),CD =(2,-1,0). 设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·PC =0,n ·CD =0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1,可得n =(1,2,1).可取平面P AC 的法向量m =(1,0,0). 于是cos 〈m ,n 〉=m·n|m |·|n |=16=66,从而sin 〈m ,n 〉=306. 所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE =⎝⎛⎭⎫12,-12,h .由CD =(2,-1,0),故cos 〈BE ,CD 〉=BE ·CD|BE |·|CD |=3212+h 2×5=310+20h2,所以310+20h 2=cos 30°=32,解得h =1010, 即AE =1010. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2.(1)证明:当点E 在棱AB 上移动时,D 1E ⊥A1D ; (2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6?若存在,求出AE 的长;若不存在,请说明理由.解:以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,y 0,0)(0≤y 0≤2).(1)证明:∵1D E =(1,y 0,-1),1A D =(-1,0,-1), 则1D E ·1A D =(1,y 0,-1)·(-1,0,-1)=0, ∴1D E ⊥1A D ,即D 1E ⊥A 1D . (2)当AE =2-33时,二面角D 1-EC -D 的平面角为π6. ∵EC =(-1,2-y 0,0),1D C =(0,2,-1),设平面D 1EC 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·EC =0,n 1·1D C =0⇒⎩⎪⎨⎪⎧-x +y (2-y 0)=0,2y -z =0.取y =1,则n 1=(2-y 0,1,2)是平面D 1EC 的一个法向量.而平面ECD 的一个法向量为n 2=1DD =(0,0,1),要使二面角D 1-EC -D 的平面角为π6,则cos π6=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=2(2-y 0)2+12+22=32,解得y 0=2-33(0≤y 0≤2). ∴当AE =2-33时,二面角D 1-EC -D 的平面角为π6. 4.(2012·湖北模拟)在直三棱柱ABC -A 1B 1C 1中,AB =AC =1,∠BAC =90°.(1)若异面直线A 1B 与B 1C 1所成的角为60°,求棱柱的高; (2)设D 是BB 1的中点,DC 1与平面A 1BC 1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.解:建立如图所示的空间直角坐标系A -xyz ,设AA 1=h (h >0),则有B (1,0,0),B 1(1,0,h ),C 1(0,1,h ),A 1(0,0,h ),11B C =(-1,1,0),11A C =(0,1,0),1A B =(1,0,-h ).(1)因为异面直线A 1B 与B 1C 1所成的角为60°,所以cos60°=|11B C ·1A B ||11B C |·|1A B |, 即12·h 2+1=12,得1+h 2=2,解得h =1.(2)由D 是BB 1的中点,得D ⎝⎛⎭⎫1,0,h 2, 于是1DC =⎝⎛⎭⎫-1,1,h 2. 设平面A 1BC 1的法向量为n =(x ,y ,z ),于是由n ⊥1A B ,n ⊥11A C 可得 ⎩⎪⎨⎪⎧ n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧ x -hz =0,y =0,可取n =(h,0,1), 故sin θ=|cos 〈1DC ,n 〉|,而|cos 〈1DC ,n 〉|=|1DC ·n ||1DC |·|n |=⎪⎪⎪⎪-h +h 214h 2+2·h 2+1=h h 4+9h 2+8. 令f (h )=h h 4+9h 2+8=1h 2+8h2+9, 因为h 2+8h 2+9≥28+9,当且仅当h 2=8h 2,即h =48时,等号成立. 所以f (h )≤19+28=18+1=22-17, 故当h =48时,sin θ的最大值为22-17.立 体 几 何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·重庆模拟)若两条直线和一个平面相交成等角,则这两条直线的位置关系是( )A .平行B .异面C .相交D .平行、异面或相交解析:选D 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现.2.(2012·福建高考)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA=OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同.3.(2012·安徽模拟)在空间,下列命题正确的是( )A .若三条直线两两相交,则这三条直线确定一个平面B .若直线m 与平面α内的一条直线平行,则m ∥αC .若平面α⊥β,且α∩β=l ,则过α内一点P 与l 垂直的直线垂直于平面βD .若直线a ∥b ,且直线l ⊥a ,则l ⊥b解析:选D 三条直线两两相交,可确定一个平面或三个平面,故A 错;m 与平面α内一条直线平行,m 也可在α内,故B 错;若平面α⊥β,且α∩β=l ,当P ∈l 时,过P 点与l 垂直的直线可在β外,也可在β内,故C 错.由等角定理知D 正确.4.(2012·新课标全国卷)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6πB .43πC .46πD .63π 解析:选B 设球的半径为R ,由球的截面性质得R =(2)2+12=3,所以球的体积V =43πR 3=43π. 5.(2012·北京海淀二模)某几何体的正视图与俯视图如图所示,侧视图与正视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A.203B.43 C .6 D .4解析:选A 由三视图知,该几何体是正方体挖去一个以正方体的中心为顶点、以正方体的上底面为底面的四棱锥后的剩余部分,其体积是23-13×22×1=203. 6.(2013·安徽模拟)沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为( )解析:选B 由三视图的相关知识易知选B.7.正方体ABCD -A 1B 1C 1D 1中,与体对角线AC 1异面的棱有( )A .3条B .4条C .6条D .8条解析:选C 从定义出发,同时考虑到正方体的体对角线AC 1与正方体的6条棱有公共点A 和C 1,而正方体有12条棱,所以与AC 1异面的棱有6条.8.(2012·衡阳模拟)如图,一个空间几何体的正视图和侧视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积为( )A.π4B.π2C.2π2D.2π4 解析:选B 此几何体是底面半径为12,母线长为1的圆锥,其侧面积S =πrl =π×12×1=π2. 9.如图,在正方体ABCD -A1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直C .MN 与BD 平行D .MN 与A 1B 1平行解析:选D 由于C 1D 1与A 1B 1平行,MN 与C 1D 1是异面直线,所以MN 与A 1B 1是异面直线,故选项D 错误.10.(2012·皖南八校三联)某几何体的三视图如图所示(单位:cm),则此几何体的体积为( )A .18 cm 3B .15 cm 3C .12 cm 3D .9 cm 3解析:选B 由三视图可知,该几何体是一个上下均为长方体的组合体.如图所示,由图中数据可得该几何体体积为3×3×1+1×2×3=15(cm 3).11.在正四面体A -BCD 中,棱长为4,M 是BC 的中点,P 在线段AM 上运动(P 不与A 、M 重合),过点P 作直线l ⊥平面ABC ,l 与平面BCD 交于点Q ,给出下列命题:①BC ⊥面AMD ;②Q 点一定在直线DM 上;③V C -AMD =4 2.其中正确的是( )A .①②B .①③C .②③D .①②③解析:选A ∵A -BCD 是正四面体,M 为BC 中点,∴AM ⊥BC ,DM ⊥BC ,且AM ∩DM =M ,∴BC ⊥面AMD .∴①正确.V C -AMD =13S △AMD ·CM (∵BC ⊥面AMD ,∴CM 为四面体C -AMD 的高). 如图,在△AMD 中,AM =DM =AB 2-BM 2=42-22=23,MN =AM 2-AN 2=12-22=22,∴S △AMD =12AD ·MN =12×4×22=42, ∴V C -AMD =13×42×2=823,故③不正确.由排除法知选A. 12.(2012·浙江高考)已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 解析:选B 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .二、填空题(本题共4小题,每小题5分,共20分)13.(2012·肇庆二模)已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为________,________.解析:由三视图可知,该几何体的下部是一底边长为2,高为4的长方体,上部为一球,球的直径等于正方形的边长.所以长方体的表面积为S 1=2×2×2+4×2×4=40,长方体的体积为V 1=2×2×4=16,球的表面积和体积分别为S 2=4×π×12=4π,V 2=43×π×13=4π3, 故该几何体的表面积为S =S 1+S 2=40+4π,该几何体的体积为V =V 1+V 2=16+4π3. 答案:40+4π 16+4π314. (2012·北京怀柔模拟)P 为△ABC 所在平面外一点,且P A 、PB 、PC 两两垂直,则下列命题:①P A ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________.解析:如图所示.∵P A ⊥PC ,P A ⊥PB ,PC ∩PB =P ,∴P A ⊥平面PBC .又∵BC ⊂平面PBC ,∴P A ⊥BC .同理PB ⊥AC ,PC ⊥AB .但AB 不一定垂直于BC .共3个.答案:315.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.解析:如图,三棱柱的外接球球心为O ,其中D 为上底面三角形外接圆的圆心,其中AD =33×6=23,又OD =3,故在Rt △OAD 中可得R =|OA |=(23)2+32=21,故球的表面积为4π(21)2=84π.答案:84π16.(2012·长春名校联考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确;过M 、N 分别作MR ⊥A 1B 1、NS ⊥B 1C 1于点R 、S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M 、N 分别是AB 1、BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③对.综上所述,其中正确命题的序号是①③.答案:①③三、解答题(本大题有6小题,共70分)17.(本小题满分10分)(2012·陕西高考)在直三棱柱ABC -A 1B 1C 1中,AB =AA 1,∠CAB =π2. (1)证明:CB 1⊥BA 1;(2)已知AB =2,BC =5,求三棱锥C 1-ABA 1的体积.解:(1)证明:如图所示,连接AB 1,∵ABC -A 1B 1C 1是直三棱柱,∠CAB =π2, ∴AC ⊥平面ABB 1A 1,故AC ⊥BA 1.又∵AB =AA 1,∴四边形ABB 1A 1是正方形,∴BA 1⊥AB 1,又CA ∩AB 1=A ,∴BA 1⊥平面CAB 1,故CB 1⊥BA 1.(2)∵AB =AA 1=2,BC =5,∴AC =A 1C 1=1,由(1)知,A 1C 1⊥平面ABA 1,∴VC 1-ABA 1=13S △ABA 1·A 1C 1=13×2×1=23. 18.(本小题满分12分) (12分)如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解:在平面PCD 内,过E 作EG ∥CD 交PD 于G ,连接AG ,在AB上取点F ,使AF =EG ,则F 即为所求作的点.∵EG ∥CD ∥AF ,EG =AF ,∴四边形FEGA 为平行四边形,∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD ,∴EF ∥平面P AD .又在Rt △BCE 中, CE =BC 2-BE 2 = a 2-23a 2=33a . 在Rt △PBC 中,BC 2=CE ·CP ,∴CP =a 23a3=3a , 又EG CD =PE PC, ∴EG =PE PC ·CD =23a , ∴AF =EG =23a . ∴点F 为AB 靠近点B 的一个三等分点.19.(本小题满分12分) (12分)(2012·新课标全国卷)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.解:(1)证明:由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC .又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.20.(本小题满分12分) (12分)(2012·安徽高考)如图,长方体ABCD -A 1B 1C 1D 1中,底面A 1B 1C 1D 1是正方形,O 是BD 的中点,E 是棱AA 1上任意一点.(1)证明:BD ⊥EC 1;(2)如果AB =2,AE =2,OE ⊥EC 1,求AA 1的长.解:(1)证明:连接AC ,A 1C 1.由底面是正方形知,BD ⊥AC .因为AA 1⊥平面ABCD ,BD ⊂平面ABCD ,所以AA 1⊥BD .又AA 1∩AC =A ,所以BD ⊥平面AA 1C 1C .由EC 1⊂平面AA 1C 1C 知,BD ⊥EC 1.(2)法一:设AA1的长为h,连接OC1.在Rt△OAE中,AE=2,AO=2,故OE2=(2)2+(2)2=4.故Rt△EA1C1中,A1E=h-2,A1C1=22,故EC21=(h-2)2+(22)2.在Rt△OCC1中,OC=2,CC1=h,OC21=h2+(2)2. 因为OE⊥EC1,所以OE2+EC21=OC21,即4+(h-2)2+(22)2=h2+(2)2,解得h=32,所以AA1的长为3 2.法二:∵OE⊥EC1,∴∠AEO+∠A1EC1=90°.又∵∠A1C1E+∠A1EC1=90°,∴∠AEO=∠A1C1E.又∵∠OAE=∠C1A1E=90°,∴△OAE∽△EA1C1,∴AEA1C1=AOA1E,即222=2A1E,∴A1E=22,∴AA1=AE+A1E=3 2.21.(本小题满分12分) (12分)(2012·郑州一模)如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.解:(1)证明:∵平面SAD⊥平面ABCD且平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD.∵BE⊂平面ABCD,∴SE⊥BE.∵AB ⊥AD ,AB ∥CD ,CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°.∴∠BEC =90°,即BE ⊥CE .又SE ∩CE =E ,,∴BE ⊥平面SEC ,∵BE ⊂平面SBE ,∴平面SBE ⊥平面SEC .(2)如图,过点E 作EF ⊥BC 于点F ,连接SF .由(1)知SE ⊥平面ABCD ,而BC ⊂平面ABCD ,∴BC ⊥SE ,又SE ∩EF =E ,∴BC ⊥平面SEF ,∵BC ⊂平面SBC ,∴平面SEF ⊥平面SBC .过点E 作EG ⊥SF 于点G ,则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由(1)易知,BE =2,CE =23,则BC =4,EF = 3.在Rt △SEF 中,SE =1,SF =SE 2+EF 2=2,则EG =ES ·EF SF =32, ∴三棱锥E -SBC 的高为32. 22.(本小题满分12分) (14分)(2012·北京昌平二模)在正四棱柱ABCD -A 1B 1C 1D 1中,E 为AD 的中点,F 为B 1C 1的中点.(1)求证:A 1F ∥平面ECC 1;(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论;若不存在,请说明理由.解:(1)证明:在正四棱柱ABCD-A1B1C1D1中,取BC的中点M,连接AM,FM.∴B1F∥BM且B1F=BM.∴四边形B1FMB是平行四边形.∴FM∥B1B且FM=B1B.∴FM∥A1A且FM=A1A,∴四边形AA1FM是平行四边形.∴F A1∥AM.∵E为AD的中点,∴AE∥MC且AE=MC.∴四边形AMCE是平行四边形.∴CE∥AM.∴CE∥A1F.∵A1F⊄平面ECC1,EC⊂平面ECC1,∴A1F∥平面ECC1.(2)在CD上存在一点G,使BG⊥平面ECC1.取CD的中点G,连接BG.在正方形ABCD中,DE=GC,CD=BC,∠ADC=∠BCD,∴△CDE≌△BCG.∴∠ECD=∠GBC.∵∠CGB+∠GBC=90°,∴∠CGB+∠DCE=90°.∴BG⊥EC.∵CC1⊥平面ABCD,BG⊂平面ABCD,∴CC1⊥BG,又EC∩CC1=C,∴BG⊥平面ECC1.故在CD上存在中点G,使得BG⊥平面ECC1.。

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的综合问题(文视情况[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|. [小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝⎛⎭⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63. 答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2(x 2+x 1)y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2, x 1x 2=2k 2-41+2k 2,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎡⎦⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k (x +2)⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1.典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧ (2+c )2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎨⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km 3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎨⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则 d =|8-2m |32+22=2|m-4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·(m -4)2(12-m 2). 其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7). 所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝⎛⎭⎫-23,0 B.⎝⎛⎭⎫0,23 C.⎝⎛⎭⎫-32,0D.⎝⎛⎭⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2012·辽宁高考)如图,椭圆C0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).②由①②得y 2=-y 21x 21-a 2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0).(2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝⎛⎭⎫y 202p ,y 0,M 1⎝⎛⎭⎫y 212p ,y 1,M 2⎝⎛⎭⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pay 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pab 时上式恒成立,即定点为⎝⎛⎭⎫a ,2pa b . 答案:⎝⎛⎭⎫a ,2pab1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝⎛⎭⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54B.53C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a ,bca ,由FM ,=4MN ,得b 2a =4·⎝⎛⎭⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53. 4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,2 2 ].答案:[2,2 2 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63,∴A ⎝⎛⎭⎫63,63,B ⎝⎛⎭⎫-63,-63, ∴|AB |=433. 设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32, ∴S △ABC =12|AB |·d ≤12×433×32= 2.答案: 27.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c1+b 2,x 1x 2=1-2b 21+b2. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2, 解得b =22. 8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =c a =22a +c =2+1,∴⎩⎪⎨⎪⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1.∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m . ∴当0≤m <12时,k =±m 1-2m,即存在满足题意的直线l ;当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝⎛⎭⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝⎛⎭⎫x 03,y 03. 又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| , ∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km3+4k 2,则y 1+y 2=6m3+4k 2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.又线段AB 的垂直平分线l ′的方程为y =-1k ⎝⎛⎭⎫x -16, 点P 在直线l ′上,∴3m3+4k2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k (4k 2+3),∴(4k 2+3)236k 2<4k 2+3,∴k 2>332,解得k >68或k <-68, ∴k 的取值范围是⎝⎛⎭⎫-∞,-68∪⎝⎛⎭⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4, 所以(|AM |,+|BM |,)2-4|AM |,| BM |,·cos 2θ=4. 因为|AM |,·|BM |,cos 2θ=3, 所以(|AM |,+|BM |,)2-4×3=4, 所以|AM |,+|BM |,=4. 又|AM |,+|BM |,=4>2=|AB |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1.由⎩⎪⎨⎪⎧x =my +1x 24+y 23=1,消去x , 整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P (x 1,y 1),Q (x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+3(3m 2+4)2. 令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t +2, 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x 2a 2+y 2b2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5.∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=(3+4)2+12+(3-4)2+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4(y 1+y 2)2-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y=3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个解析:选B 由题意得4m 2+n2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =c a =32,∴c =3,b =a 2-c 2=1.故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1),∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝⎛⎭⎫1-x 214=54x 21+4x 1+3=54⎝⎛⎭⎫x 1+852-15. 由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15. 把x 1=-85代入(*)式,得y 1=35,故M ⎝⎛⎭⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325. 故圆T 的方程为(x +2)2+y 2=1325.(3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式, 得x R ·x S =4(1-y 21)y 20-4(1-y 20)y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1-(-1)]2+(-1-1)2=22, ∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5B .4 2C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|P A |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点. 7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0. 8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B .2 2C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50. 10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1 B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314, ∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC ) =sin 60°cos ∠BAC -cos 60°sin ∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2±3B .2+ 3 C.3±1D.3-1解析:选A 依题意得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 212p ,y 1,Q ⎝⎛⎭⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝⎛⎭⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3. 12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立,消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m =16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎨⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15, 故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a ,故直线OP 的斜率为-b a ,直线OP 的方程为y =-ba x .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a +c =10+5,故 2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为2 6.答案:2 616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0,∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎨⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2)由题意知,直线P A 和直线PB 的斜率存在,且互为相反数,故可设P A :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝⎛⎭⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝⎛⎭⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1,消去y 0并整理得 x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a1+k2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.20.(12分)(2012·河南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值; (2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知c a =22,b =1.由a 2=b 2+c 2可得c =b =1,a =2, ∴椭圆的方程为x 22+y 2=1.由⎩⎨⎧y =kx -13,x22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝⎛⎭⎫-169=16k 2+649>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 3(2k 2+1),x 1x 2=-169(2k 2+1). ∴|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=4(1+k 2)(9k 2+4)3(2k 2+1)=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0, 解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1),∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1), =(1+k 2)x 1x 2-43k (x 1+x 2)+169=-16(1+k 2)9(2k 2+1)-16k 29(2k 2+1)+169 =0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值. 解:(1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1.(2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,)=(-NF ,-NP ,)·(NF ,-NP ,) =NP ,2-NF ,2 =NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 202=1,即x 20=6-3y 20. 因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12.因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12. 所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52.(1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|= 2|CF 2|,求△CF 1F 2的面积. 解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝⎛⎭⎫722,(x -c )2+y 2=⎝⎛⎫522,两式相减得xc =32. 由抛物线的定义可知|AF 2|=x +c =52,则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝⎛⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎫0≤x ≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|= 2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°,所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。

相关文档
最新文档