边坡监测方案
边坡监测方案 环保自行监测方案

边坡监测方案–环保自行监测方案1. 引言边坡是指山体、土堆、挖掘坑面等在自然界或人类活动中形成的斜坡地形。
由于地质构造、降雨、地震等各种因素的影响,边坡的稳定性可能会受到威胁。
因此,对边坡进行监测和评估,既可以有效预防边坡灾害的发生,也是保护环境和人民生命财产的重要措施。
本文将介绍一种环保自行监测方案,用于边坡的实时监测,以帮助边坡管理者及时了解边坡变化情况,及时采取相应的防治措施。
2. 监测目标本监测方案的主要目标是实时监测边坡的稳定性和变化情况,以便及时采取相应的措施,防止边坡滑坡等灾害事件的发生。
具体监测目标包括:•边坡的变形情况:包括边坡的位移、沉降、裂缝等;•边坡所受到的地震、降雨等自然因素的影响情况;•定期巡视时发现的异常情况。
3. 监测方法3.1 传感器选择选择合适的传感器是进行边坡监测的关键。
常用的传感器包括测斜仪、位移传感器、压力传感器和地震传感器等。
•测斜仪:用于测量边坡的倾斜角度,以判断边坡是否发生变形。
•位移传感器:用于测量边坡的位移情况,可以选择激光位移传感器或电阻式位移传感器。
•压力传感器:用于测量边坡所受到的压力变化情况,可以选择静态压力传感器或动态压力传感器。
•地震传感器:用于监测边坡所受到的地震震动情况,以评估地震对边坡的影响。
3.2 数据采集与传输监测数据的采集和传输是边坡监测方案的重要组成部分。
传统的监测方法一般采用有线传输,但这种方式存在线路破损和安装维护成本高等问题。
因此,本方案采用无线传输技术,将传感器采集到的数据通过无线网络传输到中央监测平台。
可以选择使用Wi-Fi、LoRa、NB-IoT等无线通信技术,具体选择根据实际需求和条件确定。
3.3 数据处理与分析采集到的监测数据需要经过处理和分析,以获得有用的信息和结论。
常用的数据处理和分析方法包括:•数据预处理:包括数据清洗、数据缺失处理、异常数据处理等。
•数据质量评估:评估采集到的数据的质量,判断数据是否可靠。
基坑边坡监测方案

基坑边坡监测方案一、方案目的和背景随着城市建设的不断推进,地下基坑的开挖工程越来越多,而这些基坑的周围边坡稳定性的监测变得尤为重要。
边坡稳定性的监测可以及时发现并预测边坡变形、滑动等问题,从而采取相应措施进行修复或加固,确保基坑施工的安全性。
二、边坡监测内容1.边坡位移监测:通过安装位移传感器对边坡的位移进行实时监测,以判断边坡的稳定性。
2.边坡地质信息采集:对边坡的地质信息进行详细的调查和采集,包括岩土层厚度、坡度、坡面性质等。
3.边坡水文监测:对边坡的水文条件进行监测,包括降雨量、地下水位等参数的测定。
4.边坡监测设备的维护与管理:对边坡监测设备进行定期检查和维护,确保设备的正常运行。
三、边坡监测设备及方案1.位移传感器:在边坡的关键位置安装位移传感器,实时监测边坡的位移变化,以判断边坡的稳定性。
传感器可以选择激光位移传感器、测距毫米波雷达等。
2.区域监测系统:根据边坡的规模和形态,设计相应的监测系统。
可以采用无线传感器网络技术,将监测数据传输到控制中心,实现远程监测和数据管理。
3.水文监测设备:根据边坡的水文条件选择相应的水文监测设备,包括降雨量计、地下水位传感器等。
这些设备可以实时获取降雨和地下水位等信息,为边坡稳定性的评估提供依据。
四、边坡监测方案执行步骤1.边坡调查和设计:在基坑开挖之前,进行边坡的地质调查和设计,明确边坡的坡度、坡面性质等参数。
2.监测设备安装:根据调查和设计结果,在边坡关键位置安装监测设备,包括位移传感器、水文监测设备等。
3.监测数据采集和分析:定期对安装的监测设备进行数据采集,并进行分析和评估。
通过分析数据,判断边坡的稳定性,并做出相应的判断和预测。
4.监测数据报告:定期编制监测数据报告,对边坡的稳定性进行评价,并提出相应的处理建议。
报告要及时提交给相关部门和责任人,以便及时采取相应的措施。
5.应急处置:当监测数据发现边坡出现明显变形、滑动等问题时,及时组织应急处置工作,采取相应的加固和修复工程,确保基坑施工的安全运行。
边坡监测施工方案(五)

边坡监测施工方案一、实施背景边坡是指山体或道路等地形中的斜坡部分,由于地质条件、气候条件、人为因素等的影响,边坡容易发生滑坡、塌方等灾害,给人们的生命财产安全带来威胁。
因此,为了及时发现边坡的变形情况,采取相应的措施进行监测和预警是非常必要的。
二、工作原理边坡监测施工方案的工作原理主要是通过安装监测设备,对边坡进行实时监测。
监测设备可以包括测斜仪、位移传感器、倾角仪等,通过对边坡的位移、倾斜等参数进行测量,及时发现边坡的变形情况。
监测设备可以通过数据传输系统将监测数据传输到监测中心,由专业人员进行分析和判断,及时采取相应的措施。
三、实施计划步骤1.确定监测目标和监测点位:根据边坡的特点和需求,确定监测目标和监测点位。
2.选择合适的监测设备:根据边坡的情况和监测要求,选择合适的监测设备。
3.安装监测设备:按照监测点位的要求,进行监测设备的安装和调试。
4.建立数据传输系统:建立数据传输系统,将监测数据传输到监测中心。
5.数据分析和判断:对监测数据进行分析和判断,及时发现边坡的变形情况。
6.采取相应措施:根据监测数据的分析结果,采取相应的措施,确保边坡的安全稳定。
四、适用范围边坡监测施工方案适用于各类边坡的监测,包括山体边坡、道路边坡、建筑边坡等。
五、创新要点1.选择合适的监测设备:根据边坡的特点和监测要求,选择合适的监测设备,确保监测数据的准确性和可靠性。
2.建立数据传输系统:建立数据传输系统,实现监测数据的实时传输和分析,提高监测效率。
3.采取相应措施:根据监测数据的分析结果,及时采取相应的措施,防止边坡灾害的发生。
六、预期效果通过边坡监测施工方案的实施,可以及时发现边坡的变形情况,预警边坡灾害的发生,保护人们的生命财产安全。
七、达到收益1.保护人们的生命财产安全:通过边坡监测施工方案的实施,可以及时预警边坡灾害的发生,保护人们的生命财产安全。
2.减少灾害损失:及时采取相应的措施,可以减少边坡灾害带来的损失。
排土场边坡稳定监测方案

排土场边坡稳定监测方案一、监测目的排土场边坡稳定监测的目的是通过对边坡的位移、应力、含水率等参数进行实时监测,及时掌握边坡的稳定状态,预防边坡失稳事故的发生,为排土场的安全生产和环境保护提供有力保障。
二、监测方法1. 位移监测:采用全站仪、水准仪等测量仪器对边坡的表面位移进行监测,以了解边坡的变形情况。
2. 应力监测:采用土压力盒、钢筋应力计等设备对边坡内部的应力进行监测,以了解边坡的受力状态。
3. 含水率监测:采用土壤水分测定仪对边坡的含水率进行监测,以了解边坡的湿度情况。
4. 地表沉降监测:采用水准仪等测量仪器对排土场的地表沉降进行监测,以了解地表沉降情况。
三、监测点布设根据排土场的实际情况,合理布设监测点,确保监测数据的准确性和代表性。
监测点应尽量设置在边坡的关键部位,如变形较大、应力集中等位置。
同时,应考虑监测点的可维护性和长期性。
四、监测周期根据排土场的实际情况和边坡的稳定性,制定合理的监测周期。
一般情况下,应定期进行监测,如每周、每月或每季度一次。
在边坡失稳迹象出现时,应加强监测,缩短监测周期。
五、数据处理与分析对监测数据进行及时处理和分析,以了解边坡的稳定状态。
通过对位移、应力、含水率等参数的变化趋势进行分析,判断边坡的稳定性,预测可能出现的边坡失稳情况。
同时,应结合气象、地质等信息,对监测数据进行分析和处理。
六、预警与应急措施根据监测数据和分析结果,对可能出现的边坡失稳情况进行预警。
当发现边坡失稳迹象时,应立即采取应急措施,如疏散人员、停产停业、加强观测等,以避免事故的发生。
同时,应制定应急预案,明确应急响应流程和责任人。
七、人员培训与技术支持对参与边坡稳定监测的人员进行培训和技术支持,确保他们能够熟练掌握监测方法和数据分析技能。
同时,应与专业机构或专家保持联系,随时获取技术支持和帮助。
八、记录与报告对监测过程和结果进行详细记录,形成报告。
报告应包括监测目的、方法、结果、结论等基本信息,并提出相应的建议和措施。
边坡监测施工方案(六)

边坡监测施工方案边坡监测施工方案是为了保障边坡的稳定性和安全性,通过对边坡进行实时监测,及时发现并预防边坡滑坡、塌方等灾害事件的发生。
该方案的实施背景是边坡工程在建设过程中存在较大的风险,需要采取有效的监测手段来保障工程的安全进行。
工作原理是通过安装边坡监测设备,如倾角传感器、位移传感器、应变计等,对边坡的变形进行实时监测。
这些传感器将监测到的数据传输到监测中心,通过数据分析和处理,判断边坡的稳定性,并及时预警和采取措施。
实施计划步骤包括以下几个方面:1.选址:根据边坡的形态和地质条件,确定监测点的位置。
2.设计:根据边坡的特点和监测要求,设计监测方案和监测设备的布置。
3.施工:按照设计方案,进行监测设备的安装和连接,同时进行现场调试和校准。
4.运行:监测设备开始正常工作,实时采集数据,并传输到监测中心。
5.分析和预警:监测中心对采集到的数据进行分析和处理,判断边坡的稳定性,并及时发出预警信号。
6.采取措施:根据预警信号,采取相应的措施,如加固边坡、排除险情等。
适用范围包括各类边坡工程,如公路、铁路、水利、矿山等。
无论是土质边坡还是岩质边坡,都可以采用边坡监测施工方案进行监测。
创新要点是采用先进的监测设备和技术,如无线传输技术、云计算技术等,提高监测的精度和效率。
同时,结合地质勘探和数值模拟等手段,对边坡进行全面的分析和评估。
预期效果是能够及时发现边坡的变形和变化趋势,预警边坡滑坡、塌方等灾害事件的发生,有效保障边坡工程的安全进行。
达到收益是减少边坡工程的风险和损失,提高工程的质量和效益。
同时,通过对边坡的监测和分析,积累经验和数据,为今后的边坡工程提供参考和指导。
优点包括:1.及时预警:能够及时发现边坡的变形和变化趋势,预警边坡滑坡、塌方等灾害事件的发生。
2.高精度:采用先进的监测设备和技术,提高监测的精度和效率。
3.全面评估:结合地质勘探和数值模拟等手段,对边坡进行全面的分析和评估。
缺点包括:1.成本较高:边坡监测设备和技术的成本较高,需要较大的投资。
边坡监测实施方案

边坡监测实施方案一、概述。
边坡是指山体或河岸等地质体在重力和外力作用下,发生破坏或变形的现象,是造成山体滑坡、岩崩、泥石流等地质灾害的主要原因之一。
为了及时发现边坡的变形和病害,减少地质灾害的发生,必须对边坡进行监测。
本文档旨在制定边坡监测实施方案,确保边坡监测工作的科学性和有效性。
二、监测内容。
1. 边坡形变监测,包括边坡的位移、变形、裂缝等情况的监测,采用全站仪、GPS等设备进行实时监测。
2. 边坡地质灾害监测,通过地质雷达、地下水位监测等手段,对边坡的地质灾害风险进行监测和评估。
3. 边坡稳定性监测,采用倾斜仪、应变计等设备,对边坡的稳定性进行实时监测,及时发现边坡的不稳定因素。
三、监测方法。
1. 定点监测,选择边坡上、中、下部位点进行监测,建立监测点位,对边坡进行定点监测。
2. 定时监测,按照监测计划,定期对边坡进行监测,确保监测数据的准确性和连续性。
3. 实时监测,利用现代化监测设备,对边坡进行实时监测,及时发现边坡变形和病害。
四、监测设备。
1. 全站仪,用于测量边坡的位移、变形等数据。
2. GPS,用于实时监测边坡的位置和变形情况。
3. 地质雷达,用于探测边坡内部的地质构造和裂缝情况。
4. 倾斜仪,用于监测边坡的倾斜情况。
5. 应变计,用于监测边坡的应变情况。
五、监测数据处理。
1. 监测数据采集,对监测设备采集的数据进行及时整理和归档,确保数据的完整性和准确性。
2. 监测数据分析,对监测数据进行分析和评估,及时发现边坡的变形和病害,提出处理建议。
3. 监测报告编制,根据监测数据,编制监测报告,对边坡的监测情况进行总结和分析。
六、监测责任。
1. 监测单位,负责对边坡进行监测工作,确保监测设备的正常运行和数据的准确性。
2. 监测人员,负责对边坡进行监测,及时发现边坡的变形和病害,提出处理建议。
七、监测成果应用。
监测成果应用于边坡的管理和防治工作,为地质灾害防治提供科学依据,减少地质灾害的发生,保障人民生命财产安全。
边坡监测方案

边坡监测方案边坡监测方案边坡是指山体边缘陡峭的地段,由于重力及其他地质因素的作用,容易发生滑坡、坍塌等不稳定现象。
为确保边坡的安全稳定,需进行边坡监测,及时发现潜在的危险隐患,并采取相应的措施。
以下是一份边坡监测方案。
一、监测目标1. 监测边坡的稳定性,了解边坡的变形情况,及时发现滑坡、坍塌等危险隐患。
2. 监测附近地下水位,判断水位对边坡稳定的影响。
3. 监测降雨情况,分析降雨对边坡稳定的影响。
二、监测设备1. 倾角仪:用于测量边坡的倾斜角度,判断边坡的变形情况。
2. 测压计:用于监测边坡内部的地下水位变化,及时发现水位上升对边坡稳定的威胁。
3. 雨量计:用于记录降雨情况,分析降雨对边坡稳定的影响。
4. 摄像机:安装在关键位置,用于实时监测边坡的变形情况。
5. 自动化数据采集系统:用于实时采集和记录各项监测指标,并将数据传输到监测中心。
三、监测方法1. 定点测量法:通过在边坡上设置固定的监测点,定期测量其倾角,判断边坡的变形情况。
2. 定时测量法:每隔一段时间对边坡进行倾斜角度的测量,以及地下水位和降雨情况的监测,并将监测数据记录下来,以便分析和比对。
3. 实时监测法:通过在关键位置安装摄像机和数据采集系统,实时监测边坡的变化情况,并实时传输监测数据到监测中心,进行分析和评估。
四、监测频率1. 倾角测量:根据边坡的特征和变形情况,确定倾角测量的频率,一般为每月或每季度进行一次。
2. 地下水位测量:根据降雨情况和地下水位变化的特点,确定地下水位测量的频率,一般为每周或每十天进行一次。
3. 降雨监测:根据当地降雨情况和降雨对边坡稳定的影响程度,确定降雨监测的频率,一般为每天或每两天进行一次。
五、监测报告1. 根据监测数据,制作监测报告,详细记录边坡的变形情况、地下水位变化和降雨情况,分析评估边坡的稳定状况。
2. 根据监测报告,提出相应的建议和措施,指导边坡的修复和治理工作。
3. 定期向相关部门和单位汇报监测结果,得到及时的支持和指导。
边坡监测方案

边坡监测方案引言边坡监测是指对土地边坡进行实时监测和预警,以保障边坡的稳定性和安全性。
随着城市化进程的加快以及土地开发利用的不断扩大,如何有效监测和预警边坡变形及灾害风险成为了一项重要工作。
本文将介绍一种边坡监测方案,旨在提供一套系统化的方法和工具,实现对边坡的实时监测和预警,以保障边坡稳定及降低地质灾害风险。
一、边坡监测方案的目标边坡监测方案的核心目标是实现对边坡的及时监测、变形监测和灾害风险预警,以最大程度地减少灾害造成的损失和危害。
具体而言,边坡监测方案的目标包括:1. 实时监测:通过传感器和监测设备实现对边坡的24小时实时监测,及时掌握边坡的变形情况和发展趋势。
2. 变形监测:通过精确的测量和数据记录,准确掌握边坡的变形情况,包括水平位移、垂直位移、倾斜等参数的监测。
3. 风险预警:通过数据分析和模型预测,判断边坡的稳定性和潜在灾害风险,并及时发出预警信号,以便采取相应的应急措施。
4. 数据共享:实现边坡监测数据的共享和交流,提供给相关部门和决策者参考,以便及时做出决策和采取应对措施。
二、边坡监测方案的关键技术和手段为了实现边坡监测方案的目标,需采用一系列的关键技术和手段。
以下是几种常用的技术和手段:1. 传感器技术:通过安装压力传感器、位移传感器、倾角传感器等各类传感器,实现对边坡的实时监测。
传感器可以记录并传输数据,监测边坡的各项指标,并及时发出报警。
2. 摄像头监测技术:通过安装摄像头对边坡进行视频监测,实时记录边坡的变化情况。
这种技术具有直观性和可视化的优势,便于后期分析和处理。
3. 遥感技术:利用遥感技术,通过卫星或无人机获取边坡的影像和数据。
遥感技术可以实现对大范围边坡的监测,快速获取数据,并进行分析和处理。
4. 数据分析与模型预测:通过对边坡监测数据的分析和建立数学模型,预测边坡的稳定性和变形趋势,并根据预测结果进行风险评估和预警。
三、边坡监测方案的操作流程边坡监测方案的操作流程主要包括以下几个步骤:1. 方案制定:制定边坡监测方案,确定监测的范围、参数和周期,并确定所需的监测设备和传感器类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5 边坡监测的目的和意义
支护结构的设计,虽然根据地质勘探资料和使用要求进行了较详细的计算,但由于土层的复杂性和离散性,勘探提供的数据常难以代表土层的总体情况,土层取样时的扰动和试验误差亦会产生偏差;荷载和设计计算中的假定和简化会造成误差;挖土和支撑装拆等施工条件的改变,突发和偶然情况等随机困难等亦会造成误差。为此,支护结构设计计算的内力值与结构的实际工作状况往往难以准确的一致。所以,在基坑开挖与支护结构使用期间,对较重要的支护结构需要进行监测。通过对支护结构和周围环境的监测,能随时掌握土层和支护结构内力的变化情况,以及邻近建筑物、地下管线和道路的变形情况,将观测值与设计计算值进行对比和分析,随时采取必要的技术措施,以保证在不造成危害的条件下安全地进行施工。
建筑物和地下管线等监测涉及到工程外部关系,应由具有测量资质的第三方承担,以使监测数据可靠而公正。测量的技术依据应遵循中华人民共和国现行的《城市测量规范》(CJJ73-2010)、《工程测量规范》(GB50026-2013)等。
3.3.1坑外地层变形
基坑工程对周围环境的影响范围大约有1-2倍的基坑开挖深度,因此监测测点就考虑在这个范围内进行布置。对地层变形监测的项目有:地表沉降、土层分层沉降和土体测斜以及地下水位变化等。
3.2 支护结构监测常用仪器及其应用
支护结构的监测,主要分为应力监测与变形监测。应力监测主要用机械系统和电气系统的仪器;变形监测主要用机械系统、电气系统和光学系统的仪器。
(1)变形监测仪器
变形监测仪器除常用的经纬仪、水准仪外,主要是测斜仪。
测斜仪是一种测量仪器轴线与沿垂线之间夹角的变化量,进行测量围护墙或土层各点水平位移的仪器(图3-2)。使用时,沿挡墙或土层深度方向埋设测斜管(导管),让测斜仪在测斜管内一定位置上滑动,就能测得该位置处的倾角,沿深度各个位置上滑动,就能测得围护墙或土层各标高位置处的水平位移。
第一章 编制依据
1.1施工组织设计
文 件 名 称
编 号
日 期
1#住宅楼(限价商品房)及1#地下车库A区等6项(顺义区后沙峪镇后沙峪村SY-0019-076、079地块二类居住、医院用地(配建“限价商品住房)项目)工程施工组织设计
001
2016-9-30
1.2施工图
序号
图纸名称
图纸编号
出图日期
1
建筑施工图
200KPa
基底标高
-10.3m
2.3基槽土方开挖的主要数据
开挖深度
-10.3m
地下水位
-12.64m~-16.18m
边坡坡度
1:0.4
有无支护
土钉墙、护坡桩
2.4土质分布情况
人工堆积层(Q4ml)
①粉土素填土:褐黄色,稍湿,密实度呈松散状态,主要由粉土、粉质黏土组成,含少量植物根系等,场地地表大部分有分布,回填年限短。
序号
类别
名称
工程编号
1
北京市顺义区后沙峪镇后沙峪村SY-0019-076R2二类居住用地、SY-0019-079A51医院用地(配建“限价商品住房”)岩土工程勘察报告
1883-16-121
第二章工程概况
本工程场地位于北京市顺义区后沙峪镇,东侧为聚通嘉园住宅区 ,南侧为后沙峪村中心街,西侧为荒野空地,北侧为双裕路。施工现场平整,根据建设单位提供资料和现场勘察,本工程地下无任何管道和电力,弱电线路,地上原有树木及线路已经由建设单位组织移走。
③1黏质粉土:灰色,很湿,密实,中压缩性,含少量云母及氧化铁结核,摇震反应中等,无光泽反应,干强度低,韧性低,土质不均,局部相变为砂质粉土,层位分布不稳定、局部有缺失。标贯击数实测值N=12~18击,平均值14.8击。
④细砂:灰色,密实,饱和,颗粒呈次棱角状,主要矿物成分为石英、长石,含少量云母,层位分布稳定。标贯击数实测值N=43~88击,平均值71.5击。
图3-4 测斜管断面
1-导向槽;2-管壁
测斜管的埋设视测试目的而定。测试土层位移时,是在土层中预钻φ139的孔,再利用钻机向钻孔内逐节加长测斜管,直至所需深度,然后,在测斜管与钻孔之间的空隙中回填水泥和膨润土拌合的灰浆;测试支护结构挡墙的位移时,则需与围护墙紧贴固定。
3.3 周围环境监测
受基坑挖土等施工的影响,基坑周围的地层会发生不同程度的变形。如工程位于中心地区,基坑周围密布有建筑物、各种地下管线以及公共道路等市政设施,尤其是工程处在软弱复杂的地层时,因基坑挖土和地下结构施工而引起的地层变形,会对周围环境(建筑物、地下管线等)产生不利影响。因此在进行基坑支护结构监测的同时,还必须对周围的环境进行监测。监测的内容主要有:坑外地形的变形;临近建筑物的沉降和倾斜;地下管线的沉降和位移等。
BC-10
尺寸参数
连杆直径(mm)
36
36
标距(mm)
500
500
总长(mm)
650
650
量程
±5°
±10°
输出灵敏度(1/μν)
≈±1000
≈±1000
率定常数(1/με)
≈9"
≈18"
线性误差(FS)
≤±1%
≤±1%
绝缘电阻(mΩ)
≥100
≥100
测斜管可用工程塑料、聚乙烯塑料或铝质圆管。内壁有两个对互成90°的导槽,如图3-4所示。
建施-01-建施23
2016年9月
2
结构施工图
结施101-结施104
结防-1-01-结防-3-01
2016年9月
1.3主要规范、规程
类别
名称
编号
规范
国家
建筑地基基础工程质量验收规范
GB50202-2013
建筑地基处理技术规范
JGJ79-2012
工程测量规范
GB50026-213
规程
地方
建筑工程资料管理规程
②1黏质粉土:褐黄色,湿,密实,中高压缩性,含少量云母及氧化铁结核,摇震反应中等,无光泽反应,干强度低,韧性低,土质不均,局部相变为砂质粉土,层位分布不稳定、局部有缺失。标贯击数实测值N=11~15击,平均值12.5击。
③粉质黏土:灰色,可塑,中高压缩性,含少量氧化铁、云母,摇震反应无,切面稍有光滑,干强度中等,韧性中等,土质不均,夹黏质粉土薄层,层位分布较稳定。
2)沉降观测点标志和埋设
①钢筋混凝土柱或砌体墙用钢凿在柱子±0.000标高以上100-500mm处凿洞,将直径20mm以上的钢筋或铆钉,制成弯钩形,平向插入洞内,再以1:2水泥砂浆填实。
②钢柱将角钢的一端切成使脊背与柱面成50°-60°的倾斜角,将此端焊在钢柱上;或者将铆钉弯成钩形,将其一端焊在钢柱上。
DB11/T695-2015
建筑基坑支护技术规程
JGJ120-2012
建筑安装分项工程施工工艺规程
DBJ/T01-26-2003
1.4主要标准
类别
名称
编号
国家
建筑工程施工质量验收统一标准
GB50300-1
施工方案编制标准
QB-JS03-2011
1.5其他
④1粉质黏土:灰色,可塑,中低压缩性,含少量氧化铁、云母,摇震反应无,切面稍有光滑,干强度中等,韧性中等,局部相变为砂质粉土,层位分布不稳定、局部有缺失。
⑤粉质黏土:灰色,可塑,中低压缩性,含少量氧化铁、云母,摇震反应无,切面稍有光滑,干强度中等,韧性中等,层位分布稳定。
⑥细砂:灰色,密实,饱和,颗粒呈次棱角状,主要矿物成分为石英、长石,含少量云母,层位分布较稳定。标贯击数实测值N=83~92击,平均值88.3击。
每次量测提供各测点本次沉降和累计沉降报表,并绘制纵向和横向的沉降曲线,必要时对沉降变化量大而快的测点绘制沉降速率曲线。
3.3.2 建筑物沉降监测
1)根据周围建筑物的调查情况,确定测点布置部位和数量。房屋沉降量测点应布置在墙角、柱身(特别是代表独立基础及条形基础差异沉降的柱身)、外形突出部位和高低相差较多部位的两侧,测点间距的确定,要尽可能充分反映建筑物各部分的不均匀沉降。
图3-2 测斜仪
1-敏感部件;2-壳体;3-导向轮;4-引出电缆
测斜仪最常用者为伺服加速度式和电阻应变片式。伺服加速度式测斜仪精度较高,但造价亦高;电阻应变片式测斜仪造价较低,精度亦能满足工程的实际需要。BC型电阻应变片式测斜仪的性能如表3-3所示。
BC型电阻应变片式测斜仪的性能 表3-3
规格
BC-5
(1)地表沉降
地表沉降监测虽然不是直接对建筑物和地下管线进行测量,但它的测试方法简便,可以根据理论预估的沉降分布规律和经验,较全面地进行测点布置,以全面地了解基坑周围地层的变形情况。有利于建筑物和地下管线等进行监测分析。
监测测点的埋设要求是,测点需穿过路面硬层,伸入原状土300mm左右,测点顶部做好保护,避免外力产生人为沉降。图3-5为地表沉降测点埋设示意图。量测仪器采用精密水准仪,以二等水准作为沉降观测的首级控制,高程系可联测城市或地区的高程系,也可以用假设的高程系。基准点应设在通视好,不受施工及其他外界因素影响的地方。基坑开挖前设点,并记录初读数。各测点观测应为闭合或附合路线,水准每站观测高差中误差M0为0.5mm,闭合差FW为 mm(N为测站数)。
监测项目
监测方法
备注
支护结构
围护墙
侧压力、弯曲应力、变形
土压力计、孔隙水压力计、测斜仪、应变计、钢筋计、水准仪等
验证计算的荷载、内力、变形时需监测的项目
支撑(锚杆)
轴力、弯曲应力
应变计、钢筋计、传感器
验证计算的内力
腰梁(围檩)
轴力、弯曲应力
应变计、钢筋计、传感器
验证计算的内力
立柱
沉降、抬起