D2.4函数微分
高等数学教材内容目录表

高等数学教材内容目录表1. 函数与极限1.1 函数的基本概念1.2 极限的定义与性质1.3 极限运算法则1.4 无穷小与无穷大1.5 函数的连续性2. 导数与微分2.1 导数的概念与计算2.2 导数的几何意义与物理意义2.3 高阶导数与导数的简单应用2.4 微分的概念与计算3. 微分中值定理与应用3.1 罗尔定理与拉格朗日中值定理3.2 函数的单调性与极值3.3 中值定理的应用3.4 泰勒公式与泰勒展开式3.5 参数方程与极坐标系4. 不定积分4.1 不定积分的定义与基本性质 4.2 基本积分公式与通积分法 4.3 分部积分与换元积分法4.4 定积分与定积分的计算5. 定积分与微积分基本定理5.1 定积分的定义与性质5.2 牛顿—莱布尼茨公式5.3 组合中的定积分5.4 广义积分与无穷级数6. 常微分方程6.1 一阶常微分方程6.2 高阶线性常微分方程6.3 非齐次线性微分方程6.4 变量可分离微分方程6.5 齐次线性微分方程6.6 常系数线性微分方程7. 多元函数微分学7.1 二元函数与二元函数的极限 7.2 二元函数偏导数与全微分7.3 隐函数与隐函数的偏导数7.4 多元函数的极值与条件极值8. 重积分8.1 二重积分的概念与性质8.2 三重积分的概念与性质8.3 球坐标与柱坐标下的积分计算8.4 重积分的应用9. 曲线积分与曲面积分9.1 曲线积分的定义与计算9.2 曲线积分的应用9.3 曲面积分的定义与计算9.4 曲面积分的应用10. 傅里叶级数10.1 傅里叶系数与傅里叶级数10.2 傅里叶级数的收敛性与展开性质10.3 定义域上的奇偶延拓与周期延拓11. 选修内容(根据学校及课程安排进行确定)。
高等数学教材二目录

高等数学教材二目录第一章:函数与极限1.1 函数的概念与性质1.2 极限的概念及基本性质1.3 极限的运算法则1.4 无穷小与无穷大1.5 一元函数的连续性第二章:导数与微分2.1 导数的定义与性质2.2 基本函数的导数2.3 高阶导数与隐函数求导2.4 微分的概念及其应用2.5 泰勒公式与应用第三章:函数的应用3.1 函数的单调性与极值3.2 函数的最值与最值问题3.3 简单的应用问题3.4 分类讨论与探究第四章:不定积分4.1 不定积分的概念与基本性质 4.2 基本积分公式与换元法4.3 牛顿-莱布尼茨公式与应用 4.4 微分方程的基本概念4.5 可降次的微分方程第五章:定积分与定义5.1 定积分的概念与性质5.2 积分中值定理与应用5.3 积分的换元法与分部积分 5.4 可积函数与不可积函数5.5 微元法与应用第六章:定积分的应用6.1 曲线下的面积与弧长6.2 旋转体的体积与侧面积6.3 质量、质心与转动惯量6.4 弹性势能与物体受力6.5 场景模拟与实际问题第七章:多元函数的偏导数与全微分 7.1 二元函数与偏导数7.2 偏导数的连续性与可导性7.3 二元函数的全微分与近似计算 7.4 复合函数的求导法则7.5 总微分与偏导数的几何意义第八章:多元函数的积分8.1 二重积分的概念与性质8.2 二重积分的计算方法8.3 三重积分与坐标变换8.4 曲线与曲面的面积8.5 曲线积分与曲面积分第九章:无穷级数9.1 数列及其极限9.2 级数的概念与性质9.3 正项级数的审敛法与上下界9.4 绝对收敛与条件收敛9.5 幂级数与函数展开第十章:常微分方程10.1 常微分方程的基本概念10.2 一阶线性微分方程10.3 高阶线性常微分方程10.4 非齐次线性微分方程10.5 高阶线性方程的振动与抽样总结:通过本教材的学习,读者将对高等数学的核心概念及其应用有深入的了解。
每个章节都涵盖了特定的数学内容,从函数与极限开始深入探讨到常微分方程的应用。
微积分(第四版)(大学本科经济应用数学基础特色教材系列)

者介绍
目录
02 内容摘要 04 目录分析 06 精彩摘录
思维导图
本书关键字分析思维导图
基础
理论
运算
基本概念
微积分
积分
方面
数学
书
方法 函数
经济
应用
习题
阶
法则
微积分
概念
极限
内容摘要
《微积分》(第四版)共分七章,介绍了经济工作所需要的一元微积分、二元微积分及无穷级数、一阶微分 方程等,书首列有预备知识初等数学小结。本书着重讲解基本概念、基本理论及基本方法,培养学生的熟练运算 能力及解决实际问题的能力。
读书笔记
我想尝试一件事,用徽分学解水流连续不断的问题,无论多远它们似乎都是连接的,但中间的外来或己生长 的杂物只能在一定条件下生存。
目录分析
1
§1.1函数的类 别与基本性质
§1.2几何与经 2
济方面函数关 系式
3 §1.3极限的概
念与基本运算 法则
4
§1.4无穷大量 与无穷小量
5
§1.5未定式极 限
感谢观看
习题四
§5.1定积分的概念 与基本运算法则
§5.2变上限定积分
§5.3牛顿-莱不尼兹 公式
§5.4定积分换元积 分法则
§5.5定积分分部积 分法则
§5.6广义积分
§5.7平面图形的面 积
习题五
§6.1二元函数的一 阶偏导数
§6.2二元函数的二 阶偏导数
§6.3二元函数的全 微分
§6.4二元函数的极 值
§3.5函数曲线的凹 向区间与拐点
§3.6经济方面函数 的边际与弹性
高等数学——微积分2.4 山东大学版

d tan x sec2 xdx ,
d sec x sec x tan xdx,
d csc x csc x cot xdx,
a
x
a ln a ,
x
e
x
e ,
x
d e e
x
d a x a x ln adx,
x
dx ,
7
log a x 1 , x ln a 1 ln , x 1 arcsinx , 1 x2 1 arccosx , 2 1 x arctan x 1 2 , 1 x
11
(2)因为 d (si n t ) costdt,
1 可见, cos tdt d sin t d si nt ,
1
1 即 ,d si nt costdt,
1 一般地,有: d si nt C costdt, (C为 任 意 常 数 )
等式两端除以 x , 得
y o( x ) A . x x
于是, 当 x 0时, 由上式就得到 ox y lim A lim A. f x0 x 0 x x 0 x 因此, 如果函数 f ( x ) 在点 x 0 可微,则 f ( x )在点 x 0也一定可导, 且
9
2 x 1), 求 dy. 例2 y sin(
解
把2x+1看成中间变量u ,则 dy d (sinu) cos udu cos(2 x 1)d ( 2 x 1)
cos(2 x 1) 2dx 2 cos(2 x 1)dx.
在求复合函数的微分时,也可以不写出中间变量。
微积分定理和公式

一、函数【定义 1.1】 设在某一变化过程中有两个变量x 和y ,若对非空集合D 中的每一点x ,都按照某一对应规则f ,有惟一确定的实数y 与之相对应,则称y 是x 的函数,记作.),(D x x f y ∈=x 称为自变量,y 称为因变量,D 称为函数的定义域,y 的取值范围即集合{}D x x f y y ∈=),(|称为函数的值域.xoy 平面上点的集合{}D x x f y y x ∈=),(|),(称为函数)(x f y =的图形.定义域D (或记f D )与对应法则f 是确定函数的两个要素.因此称两个函数相同是指它们的定义域与对应法则都相同.(二)函数的几何特性1.单调性(1)【定义1.2】 设函数)(x f 在实数集D 上有定义,对于D 内任意两点21,x x ,当 1x <2x 时,若总有)(1x f ≤)(2x f 成立,则称D x f 在)(内单调递增(或单增);若总有 )(1x f <)(2x f 成立,则称)(x f 在D 内严格单增,严格单增也是单增.当)(x f 在D 内单调递增时,又称D x f 是)(内的单调递增函数.单调递增或单调递减函数统称为单调函数.2.有界性【定义1.3】 设函数内有定义在集合D x f )(,若存在实数M >0,使得对任意D x ∈,都有|)(|x f ≤M ,则称)(x f 在D 内有界,或称)(x f 为D 内的有界函数.【定义 1.4】 设函数内有定义在集合D x f )(,若对任意的实数M >0,总可以找到一D x ∈,使得|)(|x f >M ,则称)(x f 在D 内无界,或称)(x f 为D 内的无界函数.【定义 1.5】 设函数)(x f 在一个关于原点对称的集合内有定义,若对任意D x ∈,都有))()()(()(x f x f x f x f =--=-或,则称)(x f 为D 内的奇(偶)函数.奇函数的图形关于原点对称,当)(x f 为连续的函数时,)(x f =0,即)(x f 的图形过原点.偶函数的图形关于y 轴对称.关于奇偶函数有如下的运算规律:设)()(21x f x f ±为奇函数,)(),(21y g x g 为偶函数,则)()(21x f x f ±为奇函数;)()(21x g x g ±为偶函数;)()(11x g x f ±非奇偶函数;)()(11x g x f ⋅为奇函数;)()(),()(2121x g x g x f x f ⋅⋅均为偶函数.常数C 是偶函数,因此,奇函数加非零常数后不再是奇函数了.利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助.4.周期性【定义 1.6】 设函数内有定义在集合D d x f )(,如果存在非零常数T,使得对任意D x ∈,恒有)()(x f T x f =+成立,则称)(x f 为周期函数.满足上式的最小正数T,称为)(x f 的基本周期,简称周期.我们熟知的三角函数为周期函数(考纲不要求),除此以外知之甚少.][x x y -=是以1为周期的周期函数.][x y =与][x x y -=的图形分别如图1-1(a)和图1-1(b)所示.(三)初等函数1.基本初等函数(1)常数函数 C y =,定义域为(-∞,+∞),图形为平行于x 轴的直线.在y 轴上的截距为c .(2)幂函数 αx y =,其定义域随着α的不同而变化.但不论α取何值,总在(1,+∞)内有定义,且图形过点(1,1).当α>0时,函数图形过原点(图1-2)(a ) (b )图1-2(3)指数函数 )1,0(≠=ααα xy ,其定义域为(-∞,+∞).当0<α<1时,函数严格单调递减.当α>1时,函数严格单调递增.子数图形过点(0,1).微积分中经常用到以e 为底的指数函数,即x e y =(图1-3)(4)对数函数 )1,0(log ≠=ααα x y ,其定义域为(1,+∞),它与x y α=互为反函数.微积分中常用到以e 为底的对数,记作nx y 1=,称为自然对数.对数函数的图形过点(1,0)(图1-4)(图1-3) (图1-4)另有两类基本初等函数:三角函数与反三角函数,不在考纲之内.对基本初等函数的特性和图形要熟练地掌握,这充分条件判断、导数和定积分应用中都很重要.例如,设f b a x b a x f ),,(,),()(∈对任意区间内二阶可导在″)(x <0.则 (1)f ′)(x 在),(b a 内严格单调减少;(2))(x f 在),1(b 上为凸弧,均不充分. 此题可以用举例的方法来说明(1)、(2)均不充分.由初等函数的图形可知,4x y -=为凸弧.y ′=34x -在(-∞,∞+)上严格单调递减,但y ″=-122x ≤0,因此(1),(2)均不充分,故选E.此题若把题干改成f ″)(x ≤0,则(1),(2)均充分,差别就在等于零与不等于零.可见用初等函数图形来判断非常便捷.2.反函数【定义1.7】 设函数)(x f y =的定义域为D ,值域为R ,如果对于每一个R y ∈,都有惟一确定的D x ∈与之对应,且满足)(x f y =x 是一个定义在R 以y 为自变量的函数,记作 .),(1R y y f x ∈=-并称其为)(x f y =反函数. 习惯上用x 作自变量,y 作因变量,因此)(x f y =反函数常记为R x x fy ∈=-),(1. 函数)(x f y =与反函数)(1x f y -=的图形关于直线x y =对称.严格单调函数必有反函数,且函数与其反函数有相同的单调性.x y a y a x log ==与互为反函.∈=x x y ,2[0,+∞]的反函数为x y =,而∈=x x y ,2(-∞,0)的反函数为x y -=(图1-2(b )).3.复合函数【定义 1.8】 已知函数f f R y D u u f y ∈∈=,),(.又D x x u ∈=),(ϕϕ,u ≤R ϕ,若f f R D 非空,则称函数{}f D x x x x f y ∈∈=)(|)],([ϕϕ为函数)()(x u u f y ϕ==与的复合函数.其中y 称为因变量,x 称为自变量,u 称为中间变量.4.初等函数由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等函数,初等函数在其定义域内有统一的表达式.(四)隐函数若函数的因变量y 明显地表示成)(x f y =的形式,则称其为显然函数.1),13(1,222-=-==x y x n y x y 等.设自变量x 与因变量y 之间的对应法则用一个方程式0),(=y x F 表示,如果存在函数)(x f y =(不论这个函数是否能表示成显函数),将其代入所设方程,使方程变为恒等式:f D x x f x F ∈=,0))(,(其中f D 为非空实数集.则称函数)(x f y =由方程0),(=y x F 所确定的一个隐函数. 如方程1=+y x 可以确定一个定义在[0,1]上的隐函数.此隐函数也可以表示成显函数的形式,即 ]1,0[,)1()(2∈-==x x x f ye n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (5)单调有界数列必有极限 设数列{}n x 有界,且存在正整数0N ,使得对任意0N n ≥都有n n x x ≤+1(或n n x x ≥+1),则数列{}n x 的极限一定存在.利用此定理可以证明重要极限e n n n =⎪⎭⎫ ⎝⎛+∞→11lim (e = 2.718,是一个无理数). (二)函数的极限1.∞→x 时的极限【定义1.10】 设函数)(x f 在)0(||>≥a a x 上有定义,当∞→x 时,函数)(x f 无限接近常数A ,则称)(x f 当∞→x 时以A 为极限,记作.)(lim A x f n =∞→当+∞→x 或-∞→x 时的极限当x 沿数轴正(负)方向趋于无穷大,简记+∞→x (-∞→x )时,)(x f 无限接近常数A ,则称)(x f 当+∞→x (-∞→x )时以A 为极限,记作.)(lim )(lim )(lim ).)(lim ()(lim A x f A x f A x f A x f A x f n n n n n ===⇔===+∞→+∞→∞→-∞→+∞→3.0x x →时的极限【定义 1.11】 设函数)(x f 在0x 附近(可以不包括0x 点)有定义,当x 无限接近)(00x x x ≠时,函数)(x f 无限接近常数A ,则称当0x x →时,)(x f 以A 为极限,记作.)(lim 0A x f x x =→4.左、右极限若当x 从0x 的左侧(0x x <)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的左极限,记作.)(lim 0A x f x x =-→ 或 A x f =-)0(0若当x 从0x 的左侧(0x x >)趋于0x 时,)(x f 无限接近一个常数A ,则称A 为0x x →时)(x f 的右极限,记作.)(lim 0A x f x x =+→ 或 A x f =+)0(0.)(lim )(lim )(lim 000A x f A x f A x f x x x x x x ===⇔=-+→→→(三)函数极限的性质1.惟一性若,B x f A x f x x x x ==→→)(lim ,)(lim 00则A=B .2.局部有界性若A x f x x =→)(lim 0.则在0x 的某邻域内(点0x 可以除外),)(x f 是有界的.3.局部保号性若A x f x x =→)(lim 0.且A >0(或A <0=,则存在0x 的某邻域(点0x 可以除外),在该邻 域内有)(x f >0(或)(x f <0=。
数学分析 拟微分中值定理

数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:微分中值定理;内容提要:微分中值定理; 拟微分中值定理.问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为σ(t)=x1(t),···,x n(t),t∈(a,b).设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f◦σ在t0处可导,且f◦σ(t0)=∇f(x0)·σ (t0),(1)其中σ (t0)=x1(t0),···,x n(t0).问题:一元函数的微分中值定理非常有用,多元函数有没有对应的结果呢?设σ:(a,b)→R n为向量值函数,写成分量的形式为σ(t)=x1(t),···,x n(t),t∈(a,b).设σ(t)的每一个分量都在t0处可导,且多元函数f在x0=σ(t0)处可微,则复合函数f◦σ在t0处可导,且f◦σ(t0)=∇f(x0)·σ (t0),(1)其中σ (t0)=x1(t0),···,x n(t0).证明.这是链式法则的直接推论.(微分中值定理)设D⊂R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在θ∈(0,1),使得f(x)−f(y)=∇f(ξ)·(x−y),ξ=θx+(1−θ)y.(2)(微分中值定理)设D⊂R n为凸域,函数f:D→R在D中处处可微.则任给x,y∈D,存在θ∈(0,1),使得f(x)−f(y)=∇f(ξ)·(x−y),ξ=θx+(1−θ)y.(2)证明.令σ(t)=tx+(1−t)y,由D为凸域可知当t∈[0,1]时σ(t)∈D.对一元函数ϕ(t)=f◦σ(t)用微分中值定理可知存在θ∈(0,1),使得ϕ(1)−ϕ(0)=ϕ (θ).由(1)式可得ϕ(1)−ϕ(0)=∇f(ξ)·σ (θ)=∇f(ξ)·(x−y),其中ξ=σ(θ)=θx+(1−θ)y.由f(x)=ϕ(1),f(y)=ϕ(0)可知欲证结论成立.向量值函数的微分中值定理问题:微分中值定理能否推广到向量值函数?问题:微分中值定理能否推广到向量值函数?设D⊂R n为凸域,f:D→R m为向量值的多元函数.设x,y∈D.对f的每一个分量f i应用微分中值定理可得ξi∈D,使得f i(x)−f i(y)=∇f i(ξi)·(x−y).问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得f i (x )−f i (y )=∇f i (ξi )·(x −y ).注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得f i (x )−f i (y )=∇f i (ξi )·(x −y ).注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.此例表明,一般地我们不能指望f (x )−f (y )=Jf (ξ)(x −y )对某个ξ成立.问题:微分中值定理能否推广到向量值函数? 设D ⊂R n 为凸域,f :D →R m 为向量值的多元函数.设x ,y ∈D .对f 的每一个分量f i 应用微分中值定理可得ξi ∈D ,使得f i (x )−f i (y )=∇f i (ξi )·(x −y ).注意:这些ξi 未必相同.例如,考虑函数f :R →R 2,f (t )=(t 2,t 3).取x =1,y =0,简单的计算表明ξ1=1/2,ξ2=±1/√3,因此ξ1=ξ2.此例表明,一般地我们不能指望f (x )−f (y )=Jf (ξ)(x −y )对某个ξ成立. 不过,我们有(拟微分中值定理)设D⊂R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得f(x)−f(y) ≤ Jf(ξ) · x−y .(拟微分中值定理)设D⊂R n为凸域,f:D→R m在D中处处可微.则任给x,y∈D,存在ξ∈D,使得f(x)−f(y) ≤ Jf(ξ) · x−y .证明.基本的想法是对f的分量的线性组合应用微分中值定理.为此,不妨设f(x)=f(y).任意取定R m中的单位向量u=(u1,···,u m),记g=u·f=mi=1u i f i,则g为D中可微函数.根据微分中值定理,存在ξ∈D,使得g(x)−g(y)=∇g(ξ)·(x−y).证明(续).注意到∇g(ξ)=mi=1u i∇f i(ξ).利用Cauchy-Schwarz不等式可得 ∇g(ξ) ≤mi=1|u i|· ∇f i(ξ)≤ u ·mi=1∇f i(ξ) 21/2= Jf(ξ) .由g(x)−g(y)=u·[f(x)−f(y)]可得u·[f(x)−f(y)]≤ ∇g(ξ) · x−y ≤ Jf(ξ) · x−y .在上式中取u=[f(x)−f(y)]/ f(x)−f(y) 就完成了定理的证明.。
高等数学d类教材目录

高等数学d类教材目录第一章:函数与极限1.1 实数与数集1.2 函数的概念1.3 函数的性质与运算1.4 映射与反函数1.5 极限的概念1.6 极限的运算法则1.7 无穷小与无穷大1.8 无穷大的比较与等价1.9 极限存在准则第二章:导数与微分2.1 切线与割线2.2 导数的定义与性质2.3 基本导数公式2.4 高阶导数与函数的近似2.5 隐函数与参数方程的导数2.6 微分的概念与计算2.7 导数在几何与物理中的应用2.8 铺垫篇:练习与思考第三章:微分中值定理3.1 极值与最值3.2 高阶导数与函数的凹凸性3.3 Rolle定理3.4 中值定理与拉格朗日中值定理3.5 洛必达法则与高阶导数的应用3.6 弧长与曲率3.7 泰勒公式与展开式3.8 微分中值定理的证明与扩展3.9 铺垫篇:练习与思考第四章:不定积分4.1 原函数与不定积分4.2 不定积分的基本性质4.3 简单的不定积分法4.4 第一类换元法4.5 第二类换元法4.6 分部积分法4.7 有理函数的积分4.8 特殊函数的积分4.9 定积分与无穷积分第五章:定积分与其应用5.1 定积分的概念与性质5.2 可积性与测度零函数5.3 函数的求积与积分区间5.4 牛顿-莱布尼兹公式5.5 定积分中值定理与平均值定理5.6 积分的应用:几何与物理5.7 主体思想解决问题5.8 微积分的历史渊源与思考第六章:多元函数微分学6.1 二元函数的概念与性质6.2 偏导数与全微分6.3 多元函数的链式法则6.4 隐函数与方程组的求导6.5 方向导数与梯度6.6 多元函数的极值与条件极值6.7 多元函数的二阶导数与Taylor公式第七章:重积分与曲线积分7.1 二重积分的概念与计算7.2 二重积分的性质7.3 二重积分的应用7.4 三重积分的概念与计算7.5 三重积分的性质7.6 三重积分的应用7.7 曲线积分的概念与计算7.8 曲线积分的应用7.9 广义积分的问题与思考第八章:曲面积分与散度定理8.1 曲面积分的概念与计算8.2 曲面积分的性质8.3 曲面积分的应用8.4 散度的概念与计算8.5 散度定理的推导与应用8.6 高斯定理的特殊情况8.7 广义积分的问题与思考第九章:曲线积分与环量定理9.1 曲线积分的概念与计算9.2 曲线积分的性质9.3 Green公式的推导与应用9.4 环量的概念与计算9.5 环量定理与Green公式的关系9.6 有向曲线积分的计算与应用9.7 广义积分的问题与思考第十章:无穷级数与幂级数10.1 数项级数的概念与性质10.2 正项级数的审敛法10.3 一般级数的审敛法10.4 绝对收敛与条件收敛10.5 幂级数的概念与性质10.6 幂级数的收敛半径10.7 幂级数的求和与展开10.8 项项可求和级数的特点10.9 广义积分的问题与思考结束语:本教材力求将高等数学的知识条理清晰地呈现给读者。
导数与微分-- 函数的微分

本讲学习目标: 1、复述函数在一点可微的概念,并指出何为函数的微分。 2、能够指出导数与微分的关系,并能利用这个关系计算函数的微分。 3、能够默写或复述微分的基本公式和基本法则。 4、指出微分的几何意义,能利用微分做简单的近似计算。
2.4.1 微分的定义
定义2.4.1 设函数y=f(x)在点 x0 的某邻域内有定义,若相对于自变量x的微小增量∆x,相 应的函数增量 y f (x0 x) f (x0 ) 可表示为
dy x2 y x2 x 120.01 0.12
2.5.3 微分基本公式和基本法则
dy f (x)x
dx (x) x x
dy f (x)dx
dy f (x) dx
“微商”
1)微分基本公式:(常、幂、指、对、三角、反三角)
(sin x) cosx d(sin x) cosxdx
y ( y) dy dx
dy f (x)x
【例2.5.2】求函数 y x3 当x从 x0 2 变到x=2.01时的函数增量与函数微分。
解: 函数增量
又因为 所以
y f (x) f (x0 ) f (2.01) f (2) (2.01)3 23 8.12068 0.1206
y 3x2, y x2 3x2 12, x x x0 0.01
【例2.5.5】设函数 y ln(x x2 1) ,求dy 。
解: dy
1
d (x x2 1)
1
[dx d ( x 2 1)]
x x2 1
x x2 1
1
[dx 1 d (x2 1)]
1 [dx 2x dx]
x x2 1
2 x2 1
x x2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
当 x 很小时, 在点M的附近,
切线段 MP可近似代替曲线段MN .
12
目录
上页
下页
返回
三、基本初等函数的微分公式与法则
dy f ( x)dx
先计算函数的导数, 再乘以自变量的微分.
1 基本初等函数的微分公式
d(C) 0
d ( x ) x1dx
d(sin x) cos xdx
d(cos x) sin xdx
微分形式的不变性
15
目录
上页
下页
返回
例3:若y sin(2x 1), 求dy.
例4:若y e13x cos x,求dy.
例5:在下列等式左端的括号中填入适当的函数,
使等式成立:
(1) d( ) xdx;
(2) d( ) cos tdt( 0).
16
目录
上页
下页
返回
四、 微分在近似计算中的应用
(4) 在(3)式中取 x0 0 ,且x 接近0,于是得
f ( x) f (0) f (0)x
17
目录
上页
下页
返回
使用原则 1) f (x0 ), f (x0 ) 好算 ; 2) x 与x0 靠近.
常用近似公式: ( x 很小)
1x
x
x (6) n 1 x 1 1 x
n
1 x x
例6 求
x (x)2
x
x0x x0
4
目录
上页
下页
返回
极限设与无y=穷f(x小) 的在关x0系可,导有,即lixm0
y x
f
(x0 )存在,按
y x
f (x0 )
(当x 0时 0)
y f (x0 )x x f (x0 )x o(x)
线性主部
f (x0 )x
y
x 的高阶无穷小 o(x)
记 dy f (x0 )x
目录
上页
下页
返回
3 复合函数的微分法则
设函数 y f ( x)有导数 f ( x),
(1) 若x是自变量时, dy f ( x)dx;
(2) 若x是中间变量时, 即另一变量t 的可
微函数 x (t), 则 dy f ( x)(t)dt
(t)dt dx,
dy f ( x)dx.
结论:无论 x是自变量还是中间变量, 函数 y f ( x)的微分形式总是 dy f ( x)dx
的近似值.
解 设 f (x) sin x ,
取
则 dx
180
sin 29 sin 29 sin cos ( )
180
6
6 180
1 3 (0.0175) 22
19
目录
上页
下页
返回
内容小结
1. 微分概念
• 微分的定义及几何意义
• 可导
可微
2. 微分运算法则
微分形式不变性 : d f (u) f (u) d u
lim
x x0
f ( x0 )( x
x0 )
0.
2. 从几何意义上来看, f ( x0 ) 是曲线 y f ( x) 在
点 ( x0 , f ( x0 )) 处切线的斜率,而微分 dy f ( x0 )
( x x0 )是曲线 y f ( x) 在点 ( x0 , f ( x0 )) 处的切 线方程在点 x0 的纵坐标增量.
23
目录
上页
下页
返回
5
目录
上页
下页
返回
微分的定义
函数 y=f(x) 在点 x0 的导数 f (x0 ) 与自变
量的增量 x 之积 f (x0 )x 称为函数 y=f(x) 在点 x0 的微分,记为
dy df (x)
x x0
x x0
即 dy f (x0 )x
6
目录
上页
下页
返回
如果函数 y=f(x) 在点 x 有微分,便称 f(x) 在点 x 可微。当 f(x) 在某区间内的每一点 x 都可微时,就说f(x) 在该区间内可微,这 时称函数 f(x) 在任意点 x 的微分为函数的 微分,记作 dy 或df(x),即
d(tan x) sec2 xdx d(cot x) csc2 xdx
d(sec x) sec x tan xdx d(csc x) csc x cot xdx
13
目录
上页
下页
返回
d(a x ) a x ln adx
d(e x ) e xdx
d (loga
x)
1 x lna
dx
d(arcsin x) 1 dx 1 x2
第五节 函数的微分
一、微分的定义 二、微分的几何意义 三、微分公式与法则 四、微分在近似计算中的应用
1
目录
上页
下页
返回
一、微分的定义
问题: 当自变量 x 有一个微小增量x 时,
函数 y=f(x) 的增量 y 是多少?
要求:(1)计算简便; (2)精确度高。
2
目录
上页
下页
返回
(一)举例 边长为 x 的正方形铁片,加热 后边长增加了 x,问铁片的面积约增加了 多少?
1. 函数的近似计算 ( x 很小时)
(1) 计算增量 y dy f ( x0 )x
即 y f ( x0 x) f ( x0 ) f ( x0 )x
(2) 计算增量的函数值
f ( x0 x) f ( x0 ) f ( x0 )x
(3) 计算 x0 附近的函数值
f ( x) f ( x0 ) f ( x0 )( x x0 )
dy f (x)x
7
目录
上页
下页
返回
微分 dy 与增量 y 的关系
(1) dy是自变量的改变量x的线性函数;
(2) y dy o(x)是x的高阶无穷小;
(3) 当 f (x) 0时, dy与y是x 0时的 等价无穷小; y 1 o(x) 1 (x 0). dy f (x) x
(4) 当x 很小时, y dy (线性主部).
( u 是自变量或中间变量 )
3. 微分的应用---近似计算.
20
目录
上页
下页
返回
★ 导数与微分的区别:
1. 函数 f ( x) 在点x0处的导数是一个定数 f ( x0 ), 而微分 dy f ( x0 )( x x0 ) 是x x0的线性函数,它
的定义域是R,实际上,它是无穷小.
lim dy x x0
d
(arctan
x
)
1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d (arc
cot
x)
1
1 x2
dx
2 函数和、差、积、商的微分法则
d(u v) du dv d(uv) vdu udv
d(Cu) Cdu
d(u) v
vdu udv v2
14
21
目录
上页
下页
返回
思考
因为一元函数 y f ( x)在 x0的可微性与
可导性是等价的,所以有人说“微分就是导 数,导数就是微分”,这说法对吗?
22
目录
上页
下页
返回
思考题解答
说法不对.
从概念上讲,微分是从求函数增量引 出线性主部而得到的,导数是从函数变化 率问题归纳出函数增量与自变量增量之比 的极限,它们是完全不同的概念.
解 y f (x x) f (x) f (2.01) f (2) 0.120601
dy x2 3x2x x2 0.12
x0.01
x0.01
11
目录
上页下页返回 Nhomakorabea二、微分的几何意义
y
y:曲线的纵坐标
增量
dy:切线纵坐标对
应的增量.
o
y f (x)
)
T
N
P
o(x)
M
dy y
x Q
x0 x0 x
8
目录
上页
下页
返回
注1. 函数 y x 的微分为 dy dx 1x, 即dx x.
dy f (x)dx. dy f ( x).
dx
注2 导数与微分的区别
导数 函数的变化率问题
微分 函数的增量问题
9
目录
上页
下页
返回
10
目录
上页
下页
返回
例2 求函数y x3在x 2,x 0.01时的微分
(x)2
x x
3
目录
上页
下页
返回
正方形铁片受热后面积的改变量.
设边长由x0变到x0 x,
x0
正方形面积 A x02 ,
x0x
A ( x0 x)2 x02
2x0 x (x)2 .
(1)
(2)
A x02
(1) : x的线性函数,且为A的主要部分;
(2) : x的高阶无穷小,当x 很小时可忽略.