多元函数微分学知识点梳理
多元函数微分学知识点梳理

多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。
其中,偏导数和全微分也是重要的概念。
2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。
同时,偏导数存在和函数连续是可微的必要条件。
2)二元函数的极值必须满足必要条件和充分条件。
二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。
2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。
对于复杂的函数,可以使用链式法则,或者隐函数求导法。
3.高阶导数的计算需要注意记号表示和求导顺序。
二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。
2.一阶全微分形式不变性对于自变量和中间变量均成立。
三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。
1.无条件极值可以用必要条件和充分条件来求解。
2.条件极值可以使用Lagrange乘数法来求解。
3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。
多元微积分学

多元微积分学摘要:1.多元微积分学的基本概念2.多元函数的极限与连续3.偏导数4.全微分5.多元函数的泰勒公式6.隐函数定理与微分中值定理7.多元函数的极值与最值问题8.多元函数的曲线拟合与参数估计9.多元微积分学的应用正文:一、多元微积分学的基本概念多元微积分学是微积分学的一个重要分支,主要研究多元函数的极限、连续、微分、积分等性质。
在多元微积分学中,我们通常考虑两个或两个以上的变量,例如x, y, z 等。
多元微积分学的基本概念包括多元函数、多元函数的极限与连续、偏导数、全微分等。
二、多元函数的极限与连续在多元函数中,我们需要研究函数在某一点的极限与连续性。
多元函数的极限定义为函数在某一点的邻域内的函数值趋于某一值的趋势。
而连续性则表示函数在某一点的左右极限存在且相等。
三、偏导数偏导数是多元函数微分学的基础概念,用于研究多元函数在某一点的变化率。
偏导数可分为一阶偏导数和二阶偏导数。
一阶偏导数表示函数在某一点的沿某一方向的变化率,而二阶偏导数表示函数在某一点的沿某一方向的曲率。
四、全微分全微分是多元函数微分学的另一个重要概念,用于研究多元函数在某一点的整体变化率。
全微分可以用于求解多元函数的泰勒公式,以及多元函数在某一点的隐函数定理与微分中值定理。
五、多元函数的泰勒公式多元函数的泰勒公式是多元微积分学中的一种重要公式,用于表示多元函数在某一点的近似值。
泰勒公式可以将多元函数展开为一个无穷级数,从而便于研究函数的性质。
六、隐函数定理与微分中值定理隐函数定理是多元微积分学中的一个重要定理,用于研究多元函数的隐函数。
微分中值定理则表示多元函数在某一点的平均变化率等于函数在该区间内某一点处的瞬时变化率。
七、多元函数的极值与最值问题多元函数的极值与最值问题是多元微积分学中的一个重要问题,研究如何求解多元函数在某一区域内的最大值与最小值。
这个问题可以通过求解多元函数的偏导数方程组来解决。
八、多元函数的曲线拟合与参数估计多元函数的曲线拟合与参数估计是多元微积分学中的一个重要应用,用于研究如何用多元函数来表示一组数据。
多元函数微分知识点总结

多元函数微分知识点总结一、多元函数的梯度在多元函数微分学中,梯度是一个非常重要的概念。
梯度是一个向量,表示函数在某一点的变化率最快的方向。
对于一个二元函数f(x, y),梯度可以表示为:∇f = (∂f/∂x, ∂f/∂y)其中,∂f/∂x和∂f/∂y分别表示函数f对x和y的偏导数。
梯度的方向即为函数在该点变化率最快的方向,而梯度的模即为函数在该点的变化率。
因此,梯度可以帮助我们确定函数在某一点的最大变化率和变化的方向。
在实际应用中,梯度可以帮助我们求解多元函数的最值问题。
通过求解梯度为0的点,可以找到函数的极值点。
梯度的方向还可以告诉我们函数在某一点的最快下降方向,从而帮助我们优化函数的取值。
二、多元函数的链式法则链式法则是多元函数微分学中的一个重要概念。
链式法则是用来计算复合函数的导数的方法。
对于一个复合函数f(g(x)), 链式法则可以表示为:(d(f(g))/dx) = (dg/dx)*(df/dg)链式法则的应用十分广泛。
在实际问题中,我们经常会遇到复合函数,通过链式法则,我们可以求解复合函数的导数,从而解决实际问题。
三、多元函数的偏导数多元函数的偏导数是多元函数微分学中的一个基本概念。
对于一个二元函数f(x, y),其关于变量x的偏导数可以表示为∂f/∂x,而关于变量y的偏导数可以表示为∂f/∂y。
偏导数表示了函数在某一点的变化率。
通过偏导数,我们可以确定函数在某一点的变化率和变化的方向,从而帮助我们解决实际问题。
四、多元函数的泰勒展开泰勒展开是多元函数微分学中的一个重要概念。
泰勒展开可以将一个函数在某一点处展开为一个无穷级数。
对于一个n次可导的函数f(x),它在点a处的泰勒展开可以表示为:f(x) = f(a) + f'(a)*(x-a) + f''(a)*(x-a)^2/2! + ... + f^(n)(a)*(x-a)^n/n!泰勒展开的应用非常广泛。
通过泰勒展开,我们可以将一个函数在某一点处近似为一个多项式,从而方便我们进行数值计算和求解。
多元函数微积分复习概要

第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。
第五章多元函数微分学

第五章多元函数微分学知识点拔5.1 多元函数的概念一、二元函数的概念1、二元函数的定义设在某一变化过程中,有三个变量x, y和z,如果对于变量x, y在某一范围D内任取一对数值,按照一定的对应法则,总有一个确定的值z与它对应,则称变量z是变量x,y的二元函数,记作:z f (x, y)或z z(x, y),其中x, y称为自变量,z称为因变量或称为x, y的二元函数,变量x, y取值范围D称为该函数的定义域.2、二元函数的几何意义二元函数z f (x, y)在几何上一般表示空间直角坐标系中的一个曲面•二、二元函数的极限1、二元函数极限的定义设二元函数z f(x,y)在点P o(x o,y o)的某去心邻域内有定义,如果动点P(x,y)在该邻域内以任何方式无限地趋于点P0(x o,y。
)时,函数f (x,y)总是无限地趋于一个常数A,则称A是函数z f (x, y)在P(x, y)趋于P o(X o,y o)时的极限(也称二重极限) ,记作lim f (x, y) A或x X oy y o lim f (x, y) A,若记点P(x, y)与点P o(X o,y o)之间的距离为(x,y) (x o,y o)| PP) | .. (x X o)2(y y o)2,则有lim o f (x, y) A •注释:(1)极限的几何意义:当P(x,y)在P o(x o,y o)附近的某个范围内变化时,函数值f (x,y)与常数A的距离恒小于任意给定的正数;(2)二元函数极限存在是指:动点P必须以任意方式趋于点P o时,f (x, y)都无限趋于常数A,则二元函数的二重极限存在,但即使动点P沿过P o的无穷多条路径趋于P o时极限都等于例1求下限极限\17 1mooH X y2X os ( clim 2 x 0 x 2 y 0 x(3)lim0-^x L1 ~~r~ xlim 丄厂1;0xy(x y 2)(1)令r cosrsin,则0,0时,x 2lim^x 0 y 02y 2)1 (x cos(x 2y 2) 2…2)3/2 limr 0r 2(1 sin 2)(1 3 rcosr 2)r 2(1 .2sin limr 02 2)专 1lim 2 r 0r 3(1・2sin),因1sin 2 2,所以 lim r 3(1r 0.2sin0,故原极限 0.(2)由于2x y 2 2x y1 12x,而y 0 20,所以根据夹逼定理,得A ,也不能说明P P o 时,f(x,y) A(3)二元函数极限不存在的判定方法:如果当点P(x, y)以两种不同的方式趋于点F 0(x 0,y 0)时,函数f(x,y)分别趋于不同的常数,则可以断定函数2f(x,y) : 丫2,当动点沿无穷多条直线yx y2、二重极限不存在的判定方法当点P 沿两种不同的路径趋于定点 P 0时,极限存在但不相等或沿某条路径点P 趋于P 0点极限不存在时,则二重极限不存在3、求二元函数极限的常用方法求二元函数极限(即二重极限)的方法有:(1 )利用函数连续的定义及初等函数的连续性;(3)利用有界函数与无穷小量乘积的性质;o(0,0)时其二重极限不是0,因为当P 沿曲线yx 2趋于点 o(0,0)时,f(x, y)f(x, y)在点P °(X 0, y °)处的极限不存在。
多元函数微分学知识点

多元函数微分学知识点多元函数微分学是微积分的重要内容,它研究的是在多变量条件下函数的导数和微分的性质。
在实际应用中,多元函数微分学为我们解决各种问题时提供了有效的数学工具。
本文将介绍一些多元函数微分学的基本知识点,包括偏导数、全微分和梯度。
多元函数微分学的第一个知识点是偏导数。
在一元函数中,导数表示函数在某一点上的变化率。
而在多元函数中,我们需要引入偏导数的概念。
偏导数表示函数在某一点上沿着一个坐标轴的变化率。
对于一个两个自变量的函数f(x, y),偏导数可以用∂f/∂x和∂f/∂y表示。
它们分别表示函数沿x轴和y轴的变化率。
偏导数可以帮助我们理解函数的局部变化情况,并在解决最优化问题时提供重要的线索。
第二个知识点是全微分。
全微分是多元函数微分学中的一个重要概念,它表示函数在某一点上的微小变化量。
全微分可以用df表示,其中df = ∂f/∂x*dx + ∂f/∂y*dy。
全微分可以帮助我们推导函数的逼近值和误差,从而得出函数在某一点的性质和特点。
例如,在工程学中,通过对一个物理过程的全微分分析,我们可以推导出近似解,并估计误差。
最后一个知识点是梯度。
梯度是多元函数微分学中的一个重要工具,它表示函数在某一点的最大变化方向。
对于一个函数f(x, y),梯度可以用∇f = (∂f/∂x, ∂f/∂y)表示。
梯度的方向是函数变化最快的方向,它的模长表示函数的变化速率。
通过研究梯度,我们可以找到函数的极大值、极小值和鞍点,并解决最优化问题。
多元函数微分学是高级数学中的一个重要分支,它在各个学科领域都有广泛的应用。
在物理学中,我们可以通过多元函数微分学的方法推导出物理方程,并解决各种动力学问题。
在经济学中,多元函数微分学可以帮助我们分析供求关系,推导出边际效应,并解决最优决策问题。
在金融学中,多元函数微分学可以帮助我们研究金融风险和资产定价。
综上所述,多元函数微分学是微积分的重要内容之一,它研究的是多变量条件下函数的导数和微分的性质。
第九章多元函数微分学(方向导数在前)总结

E
若存在点 P 的某邻域 U(P) E ,
则称 P 为 E 的内点;
若存在点 P 的某邻域 U(P)∩ E = ,
则称 P 为 E 的外点 ; 若对点 P 的任一邻域 U(P) 既含 E中的内点也含 E 的外点 , 则称 P 为 E 的边界点 . 显然, E 的内点必属于 E , E 的外点必不属于 E , E 的 边界点可能属于 E, 也可能不属于 E .
(2) 聚点
若对任意给定的 , 点P 的去心 邻域
E
内总有E 中的点 , 则
称 P 是 E 的聚点. 聚点可以属于 E , 也可以不属于 E (因为聚点可以为 E 的边界点 ) 所有聚点所成的点集成为 E 的导集 .
(3) 开区域及闭区域
若点集 E 的点都是内点,则称 E 为开集;
E 的边界点的全体称为 E 的边界, 记作E ;
当函数在此点可微时那末函数在该点沿任意方向l的方向导数都存在且有coscoscos设方向l的方向角为定义设函数内具有一阶连续偏导数则对于每一点最快沿哪一方向增加的速度函数在点问题sincossincos上的单位向量由方向导数公式知函数在某点的梯度是这样一个向量它的方向与取得最大方向导数的方向一致而它的模为方向导数的最大值
x
y
图形为
空间中的超曲面.
三、多元函数的极限
定义2. 设 n 元函数 f ( P), P D R n , P0 是 D 的聚 点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一 切 P D U ( P0 ,δ ) , 都有
则称 A 为函数
记作
P P0
lim f ( P) A (也称为 n 重极限)
(完整word版)多元函数微分学及其应用归纳总结,推荐文档

第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。
✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。
例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。
✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 多元函数微分学
内容复习
一、基本概念
1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分.
2、重要定理
(1)二元函数中,可导、连续、可微三者的关系
偏导数连续⇒可微⎧⎨⎩函数偏导数存在
⇒连续
(2)(二元函数)极值的必要、充分条件
二、基本计算
(一) 偏导数的计算
1、 偏导数值的计算(计算),(00y x f x ')
(1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d =
(2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==')
(3)定义法(),(00y x f x '=x
y x f y x x f x ∆-∆+→∆),(),(lim
00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ')
(1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导
(2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式)
(3) 隐函数求导
求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y
∂∂∂∂ ,,,(),,y x z z F F z z x y z x F y F x y x y z ''⎧∂∂=-=-⎪''∂∂⎨⎪⎩
公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。
3、高阶导数的计算
注意记号表示,以及求导顺序
(二) 全微分的计算
1、 叠加原理
),(y x f z =, dy y z
dx x z dz ∂∂
+∂∂=——dy dx ,勿丢
2、一阶全微分形式不变性
dy y z
dx x z
dz ∂∂+∂∂= 对y x ,是自变量或是中间变量均成立。
三、偏导数的应用
优化方面——多元函数的极值和最值
1、 无条件极值——利用必要条件求驻点,利用充分条件判断是否为极值点
2、 条件极值——Lagrange 乘数法
求0),(..)
,(min(max )==y x t s y x f z ϕ
),(),(),,(y x y x f y x L λϕλ+=(有几个约束条件,引进相应个数Lagrange 乘子)
3、 最值——比较区域内部驻点处函数值与区域边界上最值的大小,从而确定最值。