2017年西北师范大学620数学分析考研大纲硕士研究生入学考试大纲

合集下载

考研数学考试大纲

考研数学考试大纲

考研数学(二)考试大纲(原文)2017数学二考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。

三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

西北师范大学620数学分析2020年考研专业初试大纲

西北师范大学620数学分析2020年考研专业初试大纲
数的积分;重点掌握定积分的概念,Darboux 和概念等;掌握可积的充要条件,可积函数类,定积分的 性质,微积分基本定理和求面积、弧长、体积和侧面积,了解微元法及其应用。
第二节 反常积分
掌握反常积分敛散性的定义,奇点,了解 Cauchy 主值和反常积分收敛的关系,掌握一些重要的反常 积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念并能用反常积分的 Cauchy 收敛原理、 非负函数反常积分的比较判别法、Cauchy 判别法,以及一般函数反常积分的 Abel、Dirichlet 判别法判 别基本的反常积分,熟练应用积分第二中值定理。
Taylor 多项式和其余项之和,能综合使用 L' Hospital 法则及 Taylor 公式求函数及数列的极限。能综合应
用函数的凸性、单调性(利用导数)及中值定理分析和解决问题。 第三章 一元函数积分学 第一节 积分的计算、性质及应用 综合应用各种方法,(包括定义、基本公式、线性性质、换元积分法、分部积分法)能计算出一般函
第一章 极限 第一节 实数集与函数 考核不等式、集合、映射、函数、初等函数、领域、上确界、下确界的定义,会进行集合运算和函 数的各种表示,能分析函数的有界性、奇偶性、单调性和周期性,熟悉确界原理。 第二节 数列极限
考核数列、数列极限的定义、无穷小数列,收敛数列的性质,数列极限的四则运算,单调数列及单 调有界定理,Cauchy 列及收敛准则。
二、考核评价目标
数学分析课程重点考核学生对理论基础知识掌握的情况及分析解决某些实际问题能力。通过考核, 选拔出具有较好的数学功底的学生来攻读数学学科的硕士研究生。考核评价目标应使录取的研究生具有 较扎实与系统的从事基础数学、应用数学以及计算数学等的进一步学习及科研工作所需的数学分析知识。

西北师范大学2017年硕士研究生入学考试试题(333 教育综合)

西北师范大学2017年硕士研究生入学考试试题(333 教育综合)

西北师范大学2017年硕士研究生入学考试试题(333 教育综合)
一、名词解释
1.鸿门都学
2.教育
3.分支型学制
4.罗森塔尔效应
5.公学
6.要素教育
7.思维定势
二、简答
1为什么教育在人的发展过程中起主导作用
2简述学习动机对学习效率的影响
3简述实施道德教育的途径
4简述教师劳动的特点
5简述促进学习迁移的措施
6简述晏阳初的乡村教育思想
7简述南京国民政府时期的教育宗旨和教育方针
三、论述
1教育对经济的作用和经济对教育的制约2比较分析斯巴达教育和雅典教育的特征。

2017年考研数学大纲最新解读及重要考点解析--证明题(郭媛)

2017年考研数学大纲最新解读及重要考点解析--证明题(郭媛)

2017年考研数学大纲最新解读及重要考点解析—证明题
年考研数学中,数学三的19题考查的导数定义证明。

可以说出乎了很多人的意料之外,但又在情理中,然而从证明思路来说,还是很简单的。

2014和2015
年都没有涉及到中值定理的考查,这为2017年考查方式做了铺垫。

2017年很有可能回到考查微分中值定理。

针对近几年对证明题的考查方式,经过对2017年考纲的分析同学们在
中应该注意下面问题:
注意考纲要求
年的考纲在中值定理这块没有太大变化。

考试对数学一,数学二,数学三的要求也是不一样的。

数学一和数学二要求理解泰勒定理。

这意味着在微分中值定理的考查中,有可能单独考查泰勒中值定理。

而数学三方面只是了解,所以数学三的重点还是应该放到罗尔定理和拉格朗日中值定理上面。

二.考纲的题型分析
年考纲的分析,我们发现有关微分中值定理的考查一般都是以解答题的形式
三.考纲要求的复习方法
年考纲的分析,同学们要完成证明题是需要明晰知识体系的。

要掌握极限的保号性,介值定理及费马引理;然后,掌握核心的三大中值定理以及数学一要重点掌握的泰勒定理;最后,掌握积分中值定理。

同学们在清楚了微分中值定理所需要掌握的知识体系后,再通过做题总结,我想证明题就不难了。

我再次提醒,微分中值定理的证明题一定要自己总结,自己活用体系,这样的话上考场才能达到游刃有余的目的,才能正真的
同学们思考证明题一定要有逻辑顺序,注意总结,这样的话,证明题就成为了“加分”题了。

考研数学考试大纲及解析

考研数学考试大纲及解析

考研数学考试大纲及解析2017年考研数学考试大纲及解析今年的数学大纲与往年相比有并没有任何变化,以下是店铺大家整理的关于2017年考研数学考试大纲及解析,供参考阅读,希望对大家有所帮助!想了解更多相关信息请持续关注我们店铺!<数学一>1、考试形式和试卷结构试卷满分150分,考试时间180分钟2、答题方式答题方式为闭卷、笔试3、试卷内容结构高等数学约56% 线性代数约22% 概率论与数理统计约22%4、试卷题型结构单选题,8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分<数学二>试卷题型结构为:单项选择题8小题,每小题4分,共32分; 填空题 6小题,每小题4分,共24分;解答题(包括证明题) 9小题,共94分. 高等数学部分:2017年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2016完全相同.线性代数部分:2017年全国硕士研究生入学统一考试数学考试大纲中的考试内容和考试要求与2016完全相同.<数学三>1、考试形式和试卷结构试卷满分150分,考试时间180分钟2、答题方式答题方式为闭卷、笔试3、试卷内容结构微积分约56% 线性代数约22% 概率论与数理统计约22%4、试卷题型结构单项选择题选题,8小题,每小题4分,共32分填空题,6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分一、大纲要求:函数、极限、连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的`性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。

2017年硕士研究生入学考试自命题科目考试大纲

2017年硕士研究生入学考试自命题科目考试大纲

2017年硕士研究生入学考试自命题科目考试大纲
科目代码:432 科目名称:统计学
一、考试要求:
主要考察学生对统计和概率相关的基础知识与基本理论的理解与掌握,以及运用概率统计知识解决实际问题的能力,考试要求是测试考生掌握数据处收集、处理和分析的一些基本统计方法。

主要包括:(1)掌握了基本的概率论知识。

(2)具有运用统计方法分析数据和解释数据的基本能力。

二、考试内容
1、统计学
数据的预处理;统计量;参数估计的基本原理;假设检验的基本原理;方差分析的基本原理;一元线性回归的估计和检验。

2、概率论
事件的概率;条件概率和全概公式;随机变量的定义;离散型随机变量的分布列和分布函数;连续型随机变量的概率密度函数和分布函数;随机变量的期望与方差;大数定律与中心极限定理。

三、考试形式
考试形式为闭卷、笔试,考试时间为3小时,满分150分,其中统计学110分,概率论40分。

题型包括:选择题、解答题、计算分析题。

四、参考书目
[1] 《统计学》,贾俊平著,中国人民大学出版社,2015年第6版。

[2] 《概率论与数理统计》,盛骤,谢式千,潘承毅编著,高等教育出版社,2010年第4版。

[3] 《概率论与数理统计》,李永乐编著,科学出版社,2015年第2版。

2017年考研大纲使用说明

2017年考研大纲使用说明

2017年考研数学大纲使用说明来源:智阅网根据2017《全国硕士研究生招生考试数学考试大纲》,数学一的考试内容涉及到的学科有高等数学(满分82分),线性代数(满分34分),概率论与数理统计(34分)。

接下来,我们根据历年真题,并结合考研大纲,对这些学科进行逐一分析。

第一部分,高等数学。

高等数学作为硕士研究生招生考试的内容之一,主要考查考生对高等数学的基本概念、基本理论、基本方法的理解和掌握以及考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。

与此同时,在数学一的考试大纲中,高等数学部分包含八个章节,其分别为:1、函数、极限、连续;2、一元函数微分学;3、一元函数积分学;4、向量代数和空间解析几何;5、多元函数微分学;6、多元函数积分学;7、无穷级数;8、常微分方程。

一、函数、极限、连续高等数学在考研中,也被称为微积分学。

微积分学的研究对象是函数,许多重要的概念都需要用极限理论精确定义,因此极限是微积分学的重要基础,这部分内容对后续内容的学习影响深远,故应重点掌握。

考试内容:函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立,数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷大量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限。

函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

函数、极限、连续部分的重点及常见考点:这部分内容由三个部分组成,即函数、极限和函数的连续性,其考查的主要内容和能力有:1、函数的几种特性,包括有界性、单调性、周期性和奇偶性,考生要能够利用定义验证和判断所给函数是否具有上述某种特性。

2、函数的常见类型,包括初等函数、反函数、复合函数、分段函数和隐函数,考生需要做到:(1)准确使用函数的记号,由于错用函数及其导数的记号是丢分的原因之一;(2)清楚函数的复合关系,尤其是要会求分段函数的复合函数的表达式;(3)熟悉函数的几种表示法,并能够识别函数的类型;这其中,复合函数和分段函数是经常考查的主要对象,后续学习中还有积分上限函数和级数的和函数也是考查的重点。

硕士《数学分析》考试大纲 .doc

硕士《数学分析》考试大纲 .doc

硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。

2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。

3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。

4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。

5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。

二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。

2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。

3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。

明确不连续点的类型;掌握反函数、复合函数的连续性。

4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。

5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。

三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。

2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。

3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。

四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硕士研究生入学统一考试《数学分析》科目大纲
(科目代码:620)
学院名称(盖章):数学与统计学院学院负责人(签字):
编制时间: 2014年 8 月 30 日
《数学分析》科目大纲
(科目代码:620)
一、考核要求
数学分析是数学与应用数学专业的专业基础核心课程,是学生学习分析学系列课程及数学专业其它后继课程的重要基础,也为高观点下深入理解中学数学教学内容所必需。

数学分析的主要内容有:极限理论、微分学、积分学及级数理论。

数学分析中的极限思想十分重要,它几乎贯穿了数学分析及其它与分析相关的自然学科的始终。

数学分析课程的考核,以其基本理论和方法为主,考核学生对从特殊到一般,从具体到抽象的思想方法的掌握情况,考核学生对基础知识的掌握情况,考核学生是否具有严密的逻辑推理能力,考核学生应用所学知识解决某些实际问题的能力。

二、考核评价目标
数学分析课程重点考核学生对理论基础知识掌握的情况及分析解决某些实际问题能力。

通过考核,选拔出具有较好的数学功底的学生来攻读数学学科的硕士研究生。

考核评价目标应使录取的研究生具有较扎实与系统的从事基础数学、应用数学以及计算数学等的进一步学习及科研工作所需的数学分析知识。

三、考核内容
第一章极限
第一节实数集与函数
考核不等式、集合、映射、函数、初等函数、领域、上确界、下确界的定义,会进行集合运算和函数的各种表示,能分析函数的有界性、奇偶性、单调性和周期性,熟悉确界原理。

第二节数列极限
考核数列、数列极限的定义、无穷小数列,收敛数列的性质,数列极限的四则运算,单调数列及单。

相关文档
最新文档