无功补偿常用计算公式及应用实例
动态无功补偿常用计算公式

动态无功补偿常用计算公式1 功率因数PF1=P/S1j×S1j/S1P有功功率S1j基波视在功率S1视在功率2相位功率因数cosφ1=P/ S1j3畸变率THD1= S1j/ S10.955-0.93(根据谐波大小而定)4视在功率S1=3U1I1KV A5视在基波功率S1j = S1×THD1KV A6基波无功功率Q1= S1j×sinφ17补偿后功率因数PF2= P/S2J×S2J/S28畸变率THD2= S2J/ S29视在功率S2=3U2I2KV A10视在基波功率S2J = S2×THD2KV A11基波无功功率Q2= S2J×sinφ212基波补偿容量Qc =P×(tgφ1—tgφ2)13基波补偿电容值C=(Qc /3U2abω)×1-δμF ω电源角频率δ感性与容性比14变压器谐波阻抗(角内)Xbn =3n U2abUK/100SeΩ n谐波次数Se变压器额定容量15电容器基波电流IC =UabωC/1-δ A16电容器基波电压UC = Uab/1-δV17滤波器感性容性比δ=LCω218补偿线电流IL =3IC=3UabωC/1-δ A19滤波电感电压Ul = UC- Uab= Uabδ/1—δV20 n次滤波器滤除率γn = Xbn/(Xbn+Xfn)%比21 n 次滤波器滤阻抗X fn =n 2δ—1/nω0C Ω22 n 次滤波器滤电阻R n =nω0L n /q Ω q 值滤波电感有功与无功比 23谐振频率f=1/2π×LC/1 HZ24电源容性升压ΔU=U 0s ×(Q c /S ) V 25电容器基波容量Q ce =ω0CU 2 KV AR26电抗器基波容量Q le =ω0LI 2le KV AR27容抗X c =1/nω0C Ω 28感抗X l =nω0L Ω 29视在功率S=22Q P +30功率因数COS φ=P/S31n 次滤波器效果γ=1/(1+100S(n 2δ-1)/ n 2Q (1—δ)u k ) 32 基谐比ξ=3I h γU 2/Q 33电容器谐波升压ΔU CN =I N /3ω0NC 34三相电容器谐波容量 Q N =I 2N3/ω0NC整流装置的控制角α,换相重叠角γ及负载电流Ιd 与谐波电流的关系由于整流变压器漏抗的存在,可控硅整流装置的换相不是瞬间完成的。
无功补偿常用计算公式及应用实例.doc

无功补偿常用计算公式及应用实例
.解决方案:
每个电容器的额定电流输入=31.45安每个相电容器的额定电流输入=331.45=94.35安每个相电容器的额定电流XC==67.4每个相电感器的额定电流XL=67.46%=4.04 XL=2FL=0.0128H=12.8 MH(4)已知规格为30千伏安/450伏的三相电容器。
要求根据6%的电抗率选择电抗器A。
电容器额定运行状态下的计算——每相电流I==38.49A安,每等值容抗===6.75安电抗器选择——XL=0.066.75=0.405 QL=3(0.405)=1.8千伏安。
电源电压为380伏,无电抗器计算-每相工作电流=电容器输出功率=32.5380=21.39千伏安。
电源电压为380伏,设置上述电抗器时,计算出的每相工作电流===34.545A电容器端电压=()=(34.5456.75)=403.86V电抗器压降==34.5450.405=14V电抗器总功率=3()=3(34.54514)=1.451 Var电容器总功率=()=(34.54543.86)=电抗器功率与电容器功率之比=24.163Kvar E。
以下结论
电抗率之比等于两者的全功率之比;
加入电抗器后,由于电路中容抗的降低,输出电流增加。
以上信息仅供顾建华的文字教育参考。
无功补偿常用计算公式及应用实例

无功补偿常用计算公式及应用实例无功补偿常用计算公式及应用实例1.电容器容量的单位1F=1O&^F IMF-10^mF=103 nF lnF=10^MF1 nF=105PF lPF=10'3nFF (法拉)nF (纳法)疔(微法)PF (皮法〉2.电容器的容抗&Xc= 备(式中C为法拉,Xc为欧姆)在工频电路中的X(:速算法,(?=50)心"2irfc^ 314C&1吋电容器的容抗X c= 話芥勺184。
□ Mf电容器的容抗心習Q(式中C为微法)3.单相电容器计算I=U/X C X C=U/I U=IxXcU JQ-IU=I2X C=Xc=l/27tfd匕加FC -U2?ifc上式中:Q—乏(Var)U—伏(V)C—法(F)I一安(A)X—欧(O)例:单相电容器O239RF,接在400V工频电源匕计算无功功率? 解 1 Q=314CU2=314 X 239 X 4002/106=12007Var 12KVar解 2 Xc =^=13320Q=U2/X C=4003/ 13 32-12012Var * 12KVar 4.三相电容器计算:・o电容器总功率(>V3I C U I甘焉上式中k为线电流,u为线电压◎例1;三相电力电容器怡台,每台为20Kvar,额定工作电压为400V, 计算每相电流?1 _ 18X20X10^ lc=V3X400例2:单相电力电容器239呼,0.4KV 三台,按三角形连接*电源电压 为38OV,计算无功功率?I解h 每台电容器抗归;]4x2j9 (或按速算法32Q )毎台电容器的相电流「c =誉纤二忍龙A每台电容器的实际功率Q 上28. 52x380-l0840Var^10. 84 Kvar 总功率 Q-3Cr =3X 10. 84二32,52 Kvar解2:I 严X 28, 52=49.3AQ-V3I CU=73 X4Q 34X380=32436Var=32* 44 Kvar例3t 三台单相电容器额定参数为6.3kV, 50Kvar f 是否可接在10KV 系统中应用?投入运行后「实际无功功率是多少?解:将三台电容器按星形连接,电容器对地用10KV 绝缘子隔离后(见 下图)即可接入10KY 系统运行。
无功补偿计算公式

无功补偿计算公式无功补偿是电力系统中的一个重要概念,是指在电力系统中对无功功率进行调整的过程,以提高系统的功率因素,降低无功功率的损失。
无功补偿的计算公式可以通过不同的方法得到,下面将详细介绍几种常见的无功补偿计算公式。
一、基础公式1.功率因数公式功率因数(PF)定义为有功功率与视在功率的比值,即:PF=P/S其中,P表示有功功率,单位为瓦特(W);S表示视在功率,单位为伏安(VA)。
2.无功功率公式无功功率(Q)可以由功率因数和视在功率计算得到:Q=√(S²-P²)二、无功补偿公式1.容性补偿容性补偿是通过增加并行连接的电容器来提高功率因数。
假设原始功率因数为PF1,需要提高到目标功率因数PF2,容性补偿公式为:C = ((P * tan(acos(PF2)))) / (ω * (tan(acos(PF1)) -tan(acos(PF2)))))其中,C表示所需电容器的容量,单位为法拉(F);P表示有功功率,单位为瓦特(W);PF1和PF2分别表示原始功率因数和目标功率因数;ω表示电网的角频率,单位为弧度/秒。
2.感性补偿感性补偿是通过增加串联连接的电感来消除过多的无功功率。
感性补偿公式为:L = ((Q * tan(acos(PF2)))) / (ω * (tan(acos(PF1))) -tan(acos(PF2)))))其中,L表示所需电感的大小,单位为亨利(H);Q表示需要消除的无功功率,单位为伏安(VAR);PF1和PF2分别表示原始功率因数和目标功率因数;ω表示电网的角频率,单位为弧度/秒。
需要注意的是,以上公式仅适用于理想情况下的无功补偿计算。
在实际应用中,还需要考虑电力系统的特性、负载变化等因素,以确保无功补偿的效果和安全性。
三、案例分析假设一个电力系统的视在功率为10kVA,有功功率为8kW,功率因数为0.8、现在需要将系统的功率因数提高到0.9、根据以上的公式,可以计算出容性补偿和感性补偿的数值。
最新无功补偿计算公式

1、无功补偿需求量计算公式:补偿前:有功功率:P1= S1*COS1ϕ有功功率:Q1= S1*SIN1ϕ补偿后:有功功率不变,功率因数提升至COS2ϕ,则补偿后视在功率为:S2= P1/COS2ϕ= S1*COS1ϕ/COS2ϕ补偿后的无功功率为:Q2= S2*SIN2ϕ= S1*COS1ϕ*SIN2ϕ/COS2ϕ补偿前后的无功差值即为补偿容量,则需求的补偿容量为:Q=Q1- Q2= S1*( SIN1ϕ-COS1ϕ*SIN2ϕ/COS2ϕ)= S1*COS1ϕ*(1112-ϕCOS—1122-ϕCOS)其中:S1-----补偿前视在功率;P1-----补偿前有功功率Q1-----补偿前无功功率;COS1ϕ-----补偿前功率因数S 2-----补偿后视在功率;P2-----补偿后有功功率Q2-----补偿后无功功率;COS2ϕ-----补偿后功率因数2、据此公式计算,如果需要将功率因数提升至0.9,在30%无功补偿情况下,起始功率因数为:Q=S*COS 1ϕ*(1112-ϕCOS —1122-ϕCOS ) 其中Q=S*30%,则:0.3= COS 1ϕ* (1112-ϕCOS —19.012-) COS 1ϕ=0.749即:当起始功率因数为0.749时,在补偿量为30%的情况下,可以将功率因数正好提升至0.9。
3、据此公式计算,如果需要将功率因数提升至0.9,在40%无功补偿情况下,起始功率因数为:Q=S*COS 1ϕ*(1112-ϕCOS —1122-ϕCOS ) 其中Q=S*40%,则:0.4= COS 1ϕ* (1112-ϕCOS —19.012-) COS 1ϕ=0.683即:当起始功率因数为0.683时,在补偿量为40%的情况下,可以将功率因数正好提升至0.9。
8.3摩擦力一、选择题1.(2013年丽水中考题)如图1是“研究滑动摩擦力与压力关系”的实验。
在甲、乙两次实验中,用弹簧测力计沿水平方向拉木块,使木块在水平木板上做匀速直线运动。
功率因数无功补偿计算

功率因数无功补偿计算功率因数无功补偿是电力系统中的重要内容,通过调整无功功率的变化来改善系统的功率因数,提高系统的电能利用率。
以下是功率因数无功补偿计算的一些相关参考内容。
1. 定义和原理功率因数是指电路中的有功功率和视在功率之间的比值,其范围在0到1之间。
当功率因数为1时,说明电路中只有有功功率,无无功功率,此时电能的利用率最高。
但实际中,许多负载如电感、电容设备会由于自身特性造成无功功率的产生,降低了系统的功率因数。
为了提高功率因数,需要对电路进行无功补偿。
无功补偿的原理是通过在电路中加入适当的电容器或电感器,使得其产生的无功功率与负载产生的无功功率相互抵消,从而达到提高功率因数的目的。
2. 无功补偿的计算方法(1) 电容补偿电容补偿主要用于消除负载电感所产生的无功功率。
计算电容补偿的容量首先需要通过负载的无功功率来确定。
一般情况下,负载无功功率可以通过电流、电压和功率因数来计算。
例如,对于单相负载,可以使用以下公式进行计算:无功功率 = 电流 ×电压 ×无功功率因数其中,电流和电压可以通过测量获得,无功功率因数一般根据负载的类型进行选择,如感性负载可选择-0.9,容性负载可选择0.9。
计算得到无功功率后,可以通过以下公式计算所需电容的容量:C = 无功功率/ (2πf × 电压^2)其中,C为所需电容的容量,f为电源频率。
(2) 电感补偿电感补偿主要用于消除负载电容所产生的无功功率。
计算电感补偿的大小时,同样需要根据负载的无功功率来确定。
对于单相负载,可以使用以下公式进行计算:无功功率 = 电流 ×电压 ×无功功率因数其中,电流和电压可以通过测量获得,无功功率因数一般根据负载的类型进行选择,如感性负载可选择0.9,容性负载可选择-0.9。
计算得到无功功率后,可以通过以下公式计算所需电感的大小:L = 无功功率/ (2πf × 电压^2)其中,L为所需电感的大小,f为电源频率。
无功补偿计算公式

1、无功补偿需求量计算公式:补偿前:有功功率:P1= S1*COS1ϕ有功功率:Q1= S1*SIN1ϕ补偿后:有功功率不变,功率因数提升至COS2ϕ,则补偿后视在功率为:S2= P1/COS2ϕ= S1*COS1ϕ/COS2ϕ补偿后的无功功率为:Q2= S2*SIN2ϕ= S1*COS1ϕ*SIN2ϕ/COS2ϕ补偿前后的无功差值即为补偿容量,则需求的补偿容量为:Q=Q1- Q2= S1*( SIN1ϕ-COS1ϕ*SIN2ϕ/COS2ϕ)= S1*COS1ϕ*(1112-ϕCOS—1122-ϕCOS)其中:S1-----补偿前视在功率; P1-----补偿前有功功率Q 1-----补偿前无功功率;COS1ϕ-----补偿前功率因数S2-----补偿后视在功率;P2-----补偿后有功功率Q2-----补偿后无功功率;COS2ϕ-----补偿后功率因数2、据此公式计算,如果需要将功率因数提升至0.9,在30%无功补偿情况下,起始功率因数为:Q=S*COS 1ϕ*(1112-ϕCOS —1122-ϕCOS ) 其中Q=S*30%,则:0.3= COS 1ϕ* (1112-ϕCOS —19.012-) COS 1ϕ=0.749即:当起始功率因数为0.749时,在补偿量为30%的情况下,可以将功率因数正好提升至0.9。
3、据此公式计算,如果需要将功率因数提升至0.9,在40%无功补偿情况下,起始功率因数为:Q=S*COS 1ϕ*(1112-ϕCOS —1122-ϕCOS ) 其中Q=S*40%,则:0.4= COS 1ϕ* (1112-ϕCOS —19.012-) COS 1ϕ=0.683即:当起始功率因数为0.683时,在补偿量为40%的情况下,可以将功率因数正好提升至0.9。
无功补偿电容的计算方法公式

2016-08-16全球电气资源
一.感性负载的视在功率S×负载的功率因数COSφ=需要补偿的无功功率Q:S×COSφ=Q
二.相无功率Q=补偿的三相无功功率Q/3
三.因为:Q =2πfCU^2 , O:
1μF电容、额定电压380v时,无功容量是Q=0.045Kvar
100μF电容、额定电压380v时,无功容量是Q=4.5Kvar
1000μF电容、额定电压380v时,无功容量是Q=45Kvar
四.“多大负荷需要多大电容”
1)你可以先算出三相的无功功率Q
2)在算出1相的无功功率Q/3
3)在算出1相的电容C
4)然后三角形连接
五.因为:Q =2πfCU^2 , SO:
1μF电容、额定电压10Kv时,无功容量是Q=31.4Kvar
100μF电容、额定电压10Kv时,无功容量是Q=3140Kvar
六.因为:Q =2πfCU^2, SO:
1μF电容、额定电压220v时,无功容量是Q=0.015Kvar
100μF电容、额定电压220v时,无功容量是Q=1.520Kvar
1000μF电容、额定电压220v时,无功容量是Q=15.198Kvar
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:每台电容器额定电流 I`N =3
3
10
11103200⨯⨯⨯=31.45A 每相电容器额定电流 I N =3⨯31.45=94.35A 每相容抗 X C =
3
35.9410113⨯⨯=67.4Ω
每相感抗 X L =67.4⨯6%=4.04Ω X L =2πFL L=
f XL π2=314
04
.4=0.0128H =12.8mH
(4)已知一台三相电容器,规格为30kvar/450v,要求按6%电抗率选配电抗器
A. 电容器额定工作状态下的计算— 每相额电流I=
450
310303⨯⨯=38.49A, 每相等值容抗c X =49
.383450
⨯=6.75Ω
B. 电抗器选择—
X L =0.06⨯6.75=0.405Ω Q L =3(249.38⨯0.405)=1.8kvar
C. 电源电压为380v,不设电抗器时的计算— 每相工作电流I=
A 5.3275
.63380=⨯
电容器输出功率c Q =3⨯32.5⨯380=21.39kvar D. 电源电压为380v,设上述电抗器时的计算
每相工作电流'I =
)
X -(X 3l c ⨯U
=
)
405.075.6(3380
-⨯=34.545A
电容器端线电压'U =3('I ⨯c X )
=3(34.545⨯6.75)=403.86V
电抗器压降L U ='I ⨯L X =34.545⨯0.405=14V 电抗器总功率'L Q =3('I ⨯L U )=3(34.545⨯14)=1.451Kvar 电容器总功率
'
c Q =3('I ⨯'U )=3(34.545⨯403.86)=24.163Kvar
电抗器功率与电容器功率之比值%6163
.24451
.1''L ==c Q Q
E. 通过上例计算得出以下结论— a.接入电抗器后,能使电容器端电压提高, 从而在相同电源电压条件下,能提高电容 器的输出功率;
b.电抗率之比同等于二者全功率之比;
c.增设电抗器后,由于电路中容抗的减少,从而提高输出电流。
以上仅供参考 顾建华。