太阳能自动跟踪装置控制系统设计

合集下载

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计引言:太阳能光伏发电已经成为可再生能源中最受关注的一种技术。

光伏发电效率受到太阳光照的影响,传统的固定光伏发电系统效率较低。

为了优化光伏发电系统的效率,设计了一种单轴太阳能光伏发电自动跟踪控制系统,能够根据太阳位置自动调整光伏板的角度,最大限度地提高太阳能的利用效率。

一、系统工作原理:该单轴太阳能光伏发电自动跟踪控制系统由光敏电阻、测量电路、控制电路和执行机构组成。

光敏电阻负责感应太阳光照强度,传递给测量电路进行电信号转换。

控制电路接收到转换后的信号,并与事先设定的峰值进行比较。

然后,根据比较结果来控制执行机构,使光伏板按需自动调整角度。

二、光敏电阻的选择:光敏电阻是该系统中最重要的一个元件,因为它直接影响到系统的准确度和稳定性。

在选择光敏电阻时,需要考虑以下因素:光敏电阻的特性曲线、光敏电阻的响应时间、光敏电阻的阻值范围等。

一般建议选择具有较高灵敏度和稳定性的光敏二极管。

三、测量电路设计:测量电路的作用是将光敏电阻的电信号转换为适合控制电路处理的电信号。

测量电路一般由信号放大器、滤波器和模数转换器构成。

信号放大器用于放大光敏电阻产生的微弱电信号,滤波器用于去除噪声和杂散信号,模数转换器用于将模拟信号转换为数字信号。

在设计过程中,需要合理设置放大系数和滤波参数,以确保测量电路的准确性和稳定性。

四、控制电路设计:控制电路是系统的核心部分,其功能是根据光敏电阻测量电路输出的信号,与事先设定的峰值进行比较,并根据比较结果来控制执行机构进行角度调整。

控制电路一般由比较器、运算放大器和逻辑电路构成。

比较器用于将输入信号与参考信号进行比较,运算放大器用于放大比较结果的差别,逻辑电路用于判断角度调整方向,并控制执行机构的运动。

五、执行机构设计:执行机构是该系统中最关键的部分,其功能是根据控制电路的指令,使光伏板按需自动调整角度。

常见的执行机构有两种:电动执行机构和气动执行机构。

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。

其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。

然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。

因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。

本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。

然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。

在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。

在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。

本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。

也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。

通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。

二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。

当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。

这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。

光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。

光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。

不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。

光伏电池的结构设计也是影响光伏发电效率的重要因素。

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。

但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。

跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。

光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。

光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。

而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。

该系统适用于各种需要跟踪太阳的装置。

该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。

系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。

跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。

任意时刻太阳的位置可以用太阳视位置精确表示。

太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。

太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。

太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。

系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。

上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。

单片机太阳能跟踪系统设计

单片机太阳能跟踪系统设计

单片机太阳能跟踪系统设计摘要:本文介绍了一种基于单片机的太阳能跟踪系统的设计。

该系统通过使用光敏传感器和步进电机,能够实时跟踪太阳位置并自动调整太阳能电池板的方向,以最大程度地吸收阳光能量。

文章详细讨论了系统的硬件设计和软件编程,并进行了实验验证系统的有效性与稳定性。

引言:随着可再生能源的发展和应用,太阳能作为一种绿色能源正变得越来越普遍。

而太阳能电池板作为太阳能转换的核心装置,其工作效率直接受到太阳光照强度和入射角度的影响。

因此,设计一种能够实时追踪太阳位置的太阳能跟踪系统,对于提高太阳能电池板的能量转换效率具有重要意义。

1. 系统硬件设计1.1 光敏传感器光敏传感器是实现太阳位置检测的关键模块,其作用是测量光强度并转化为电信号。

在本设计中,采用光敏二极管作为光敏传感器,通过调整电路参数和选用适当的滤光片以提高传感器的灵敏度和稳定性。

1.2 步进电机步进电机是用于控制太阳能电池板偏转角度的执行器。

本设计中,选用具有较高精度和可控性的双相步进电机,通过调节步进电机的脉冲信号和相位控制信号,可以实现对太阳能电池板的精确调整。

1.3 控制电路控制电路是整个系统的核心部分,主要由单片机、驱动电路和电源组成。

单片机作为系统的主控制器,通过接收光敏传感器采集的信号,并经过一系列计算和判断,生成控制信号给步进电机实现调整。

驱动电路负责将单片机输出的信号转化为适合步进电机工作的电流信号,以驱动步进电机。

2. 系统软件编程2.1 信号采集与处理在软件编程阶段,首先需要进行光敏传感器信号的采集与处理。

通过ADC模块采集光敏传感器输出的电压信号,并借助数字滤波算法对其进行滤波和降噪处理,确保获取准确可靠的光强度数据。

2.2 太阳位置计算根据光敏传感器测量到的光强度数据,通过一定的数学模型和算法,可以计算出太阳的位置。

根据太阳位置的变化规律,可以判断出太阳的相对方位和倾角,从而确定太阳能电池板的调整方向。

2.3 步进电机控制根据太阳位置计算的结果,通过单片机输出的脉冲信号和相位控制信号,控制步进电机按照设定的步进角度和方向调整太阳能电池板的位置,使其始终面向太阳。

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能是一种清洁、可再生的能源,越来越多的人开始关注和使用太阳能发电系统。

太阳能发电系统中,太阳能电池板的角度对能量转换效率影响很大。

为了使太阳能电池板能够始终面向太阳,保持最佳角度,研究和设计太阳能双轴自动跟踪系统是非常必要的。

首先,系统设计方面。

太阳能双轴自动跟踪系统主要由太阳能电池板、运动控制系统和传感器系统组成。

太阳能电池板负责转换太阳能为电能,是整个系统的核心部件。

运动控制系统根据传感器系统实时采集到的太阳位置数据,控制太阳能电池板的角度调整。

传感器系统包括光敏传感器和方位传感器,负责检测太阳的位置并将数据传输到运动控制系统。

在太阳能双轴自动跟踪系统的研究中,需要考虑以下几个问题。

首先是数据采集问题。

传感器系统需要实时采集太阳的位置数据,以便运动控制系统进行调整。

传感器系统应该具备高精度、快速响应的特点,以确保数据的准确性和系统的灵敏度。

其次是运动控制问题。

运动控制系统需要精确地控制太阳能电池板的角度调整,以达到最佳转换效率。

运动控制系统应该具备稳定性和高精度的特点,以确保太阳能电池板能够准确地跟踪太阳的位置。

此外,系统的安全性和稳定性问题也需要考虑。

例如,对于极端天气条件下的系统运行,系统应该具备抗风、抗雨和抗震能力。

太阳能双轴自动跟踪系统的研究还可以从以下几个方面展开。

首先是材料和结构的研究。

太阳能电池板的材料和结构对于系统的效率和稳定性有着重要影响。

通过研究和优化太阳能电池板的材料和结构,可以提高系统的效率和稳定性。

其次是算法和控制的研究。

根据实时采集到的太阳位置数据,运动控制系统需要精确地计算调整角度,并控制太阳能电池板的运动。

通过研究和优化算法和控制策略,可以提高系统的精度和响应速度。

综上所述,太阳能双轴自动跟踪系统的设计与研究非常重要。

通过合理设计系统的结构和算法,并优化材料和控制策略,可以提高太阳能发电系统的转换效率和稳定性。

这将对太阳能发电系统的普及和应用起到积极的促进作用,推动可持续能源发展。

一种太阳能电池自动跟踪系统的设计

一种太阳能电池自动跟踪系统的设计
东西 0- 6  ̄ o 3 0, 南北 一 8 o + 8  ̄ 10 ~ 1 0
8 3 0I
图 3 1 统 总框 图 - 系
p C
( )东 西或 南北 传 感器 电信 号差 大 于 0 V 时 陈 - 、 . 2 列跟踪 . 否则 不跟踪 ( 、 到异 常情 况像 自然灾 害 时 . 四) 遇 能够 采取 相应 的保护措 施 , : 如 遇冰雹 时 , 列走 到垂 直状 态 ; 阵 台风暴
图 3 2所 示 。 —
这 样 就 把 MC 一 I的 串行 端 口 (XD和 R D) S5 T X 转
负载
换成标准的 R 一3 S 2 2接 口 .只要 用 一 根 通 信 电 缆将 该 通 信 端 口与 P C机 的 C M E连 接 起 来 。 写 好 通信 软 O I 编 件 . 者就 可 以通信 了 二 本 系统 主要 工作 都 在无人 端 f 位 V ) 行 。 下 L进 外接 一 通 信接 V 的有人 端f 位V ) I 上 t主要完 成 如 下功 能 : ( ) 在接 收 到无 人端 的告 警信 号 时 , 制 指示 灯 一 、 控 亮 并发 出告 警信 号 , 由打 印机 打印 出相 应 的信 息 。
O 本 系统 的上位机是 配有 C M1 C M2口的 O 和 O ( ) 九 、本系 统不 考虑 风 力发 电机及 油机 的 故 障处 C M 口 P C机 。 由于 R 一 3 S 2 2采 用 负 逻 辑 . : 辑 1 … V 即 逻 :5 理。 均视为 理想状态 。 1V; 5 逻辑 0+ V + 5 :5 1V。而 MC 一 1 片机 的输 入 、 S5 单 输 3 总体 系统结构 及控 制过程 简 述 、 出电平均 为 1 L电平 . T 两者 的 电气规 范不 一致 。 以为 所

太阳能自动跟踪装置设计

太阳能自动跟踪装置设计

太阳能自动跟踪装置设计摘要随着能源需求的不断增长和传统能源的禁限,太阳能作为一种可再生,环保且无限可用的清洁能源显得越来越重要。

但是由于其发电量受到日照角度的影响,因此需要设计一种能够自动跟踪太阳光线的装置,以最大化太阳能电池板的能量输出。

本文设计了一种太阳能自动跟踪装置,并对其原理、结构、控制系统以及实验结果进行了分析和评价。

实验结果表明,本文设计的太阳能自动跟踪装置可以有效提高太阳能电池板的能量输出,同时具有结构简单、节能环保等优点。

关键词:太阳能,自动跟踪,电池板,能量输出AbstractWith the continuous increase of energy demand and the limitations of traditional energy, solar energy as a renewable, environmentally friendly and unlimited clean energy is becoming more and more important. However, sinceits power generation is affected by the angle of sunlight, it is necessary to design a device that can automatically track solar rays in order to maximize the energy output of solar panels. In this paper, a solar automatic tracking device is designed, and the principle, structure, control system and experimental results are analyzed and evaluated. The experimental results show that the solar automatic tracking device designed in this paper can effectively improve the energy output of solar panels, and has the advantages of simple structure, energy saving and environmental protection.Keywords: solar energy, automatic tracking, solar panel, energy output.1.引言随着环保意识的提高和可再生能源需求的不断增长,太阳能作为一种非常重要的清洁能源被广泛应用于各个领域。

基于ARM的太阳跟踪装置闭环控制系统设计

基于ARM的太阳跟踪装置闭环控制系统设计

2 4・
工业仪表与 自动化装置
21 00年第 2期
基 于 AR 的 太阳跟 踪 装 置 闭 环 控 制 系统 设 计 M
向 平, 张 晋, 高 洁
( 西北 工业大 学 机 电学院 , 西安 7 0 7 ) 10 2
摘要 : 文章以跟踪太阳为 目的, 设计了以 A M R 7的微 处理器 L C 20为硬件 , C O I 实时 P 29 I / S— I x
Ke r : y wo ds ARM7;IC/0S—I ;s n ta ig;co e x I u r cn l s d—lo o to o p c nrl
0 引 言
太阳能以其无污染、 安全、 维护简单、 资源不枯 竭等特点成为大家关注的主要焦点 。然而它也存在 着密度 低 、 间歇性 、 间分 布 不 断变 化 的 问题 , 就 空 这
XI ANG Pn , HANG Jn, ig Z i GAO Je i
( otws r oy cncl n esy X n 7 07 C i ) N r etnP leh i i rt, i , 10 2, hn h e t aU v i Ⅱ a
Ab t a t Fo h u p s fta ig t e s n,h sp p rd sg st e s r cn y tr b s d o h s r c : rte p r o e o cn h u t i a e e in h un ta i g s se m a e n t e r ARM7 LP 2 0 a h ad r n  ̄C/OS— I mb dd d r a — i o to y tmsa h lto m f C2 9 st e h r wae a d - Ie e e e l—tme c n r ls se st e p afr o s f r .I p t o wa d t e pon fa d n e s r o f r c o e —lo o to y tm n te b ss o o t e t u s fr r h i to d i g s n o s t o m ls d— o p c n r ls se o h a i f wa a ay i g t e tp e moo a d n io me tl f co s I i to u e t e r n p a t f tC/0S — I t n lzn h se p r t r n e vr n n a a t r. t nr d c s h ta s l n o z I o L PC2 9 a d t e a sg me to i ls d—lo o to y tm a ksi loa ay e .Th y tr fr 2 0. n h s in n ft sco e h o p c n r ls se St s sa s n l z d e s se m o
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业论文题目太阳能自动跟踪装置控制系统设计系别机械交通学院班级机制122姓名李鹏万学号123731214答辩时间2016年5月新疆农业大学机械交通学院目录摘要 01 设计研究背景及意义 (2)2 主要研究内容 (2)2.1 系统的设计目标 (2)2.2 设计的主要内容 (2)3 系统的总体设计 (3)3.1 太阳自动跟踪方式的确定 (3)3.2 本设计的设计思想 (3)4 太阳能充电控制器的设计 (4)4.1 太阳能电池的选型 (4)4.2 蓄电池的选型 (6)4.2.1 铅酸蓄电池基本概念 (6)4.2.2 本系统蓄电池的选型 (7)4.3 太阳能充电控制器的设计 (7)4.3.1 UC3906芯片的介绍 (8)4.3.2 BUCK电路的设计 (8)4.4 充电控制器外围电路设计 (10)5 跟踪系统传感器检测装置的设计 (12)5.1 阴天检测装置的设计 (12)5.2 白天黑夜检测装置 (13)5.3 太阳位置传感器的介绍 (14)5.3.1 传感器检测部分的设计 (14)5.3.2 光敏二极管的介绍 (16)5.3.3 LM324芯片的介绍 (16)6 视日运动轨迹模块设计 (17)6.1 太阳赤纬角的计算 (17)6.2 太阳高度角的计算 (17)6.3 太阳方位角的计算 (17)6.4 日出日落时间计算 (18)7 执行器件的选型 (18)7.1 步进电机的选型 (18)7.2 步进电机驱动器的选型 (19)7.3 执行器件的连接方式 (20)8 控制系统的设计 (20)8.1 单片机电源模块的设计 (21)8.2 驱动器电源模块的设计 (22)8.2.1 GS3660芯片介绍 (22)8.2.2 Boost电路基本拓扑设计 (24)8.2.3 驱动器电源模块的硬件设计 (25)8.3 单片机硬件系统设计 (26)8.3.1单片机简介 (26)8.3.2 单片机的特点 (26)8.3.3 AT89C51单片机的特性 (27)8.4 单片机软件系统的设计 (27)8.4.1 主程序的设计 (27)8.4.2 光电追踪模块 (29)8.4.3 视日跟踪模块 (29)9 结论 (30)参考文献: (32)谢辞 (33)附录 (34)太阳能自动跟踪装置控制系统的设计李鹏万指导老师:杨宛章、张静摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。

现阶段影响太阳能普及的主要原因是太阳能电池的成木较高而光电转化效率却较低。

因此,如何提高太阳能利用效率是太阳能行业发展的关键问题。

在国内,大多数太阳能电池阵列都是固定安装的,无法保证太阳光实时垂直照射,导致太阳能资源不能得到充分利用。

自动太阳跟踪控制系统在跟踪太阳旋转的情况下可接收到更多的太阳辐射能量,从而提高太阳能电池板的输出功率,该技术在各种太阳跟踪装置中可以广泛应用。

整个系统不需要任何外部电源供电,完全依靠自身太阳能电池板发电供电。

在光线充足的天气条件下,系统保证太阳能电池自动跟踪太阳旋转并始终保持太阳光垂直照射在太阳能电池的表面,以提高太阳能电池的发电效率。

系统带有光电检测装置,在天气情况不佳的时候切换跟踪方式。

以提高太阳的吸收效率。

关键字:太阳能电池;自动跟踪;太阳位置传感器;光电检测Design of control system for solar automatic trackingdevicLi Pengwan Instructor: Yang Wanzhang、Zhang JingAbstract: Solar energy as a new type of clean energy, received wide attention of all over the world, the main reason for the stage of the popularization of solar energy is solar cells into wood higher and photoelectric conversion efficiency is low. Therefore, how to improve the utilization efficiency of solar energy is the key problem of the solar energy industry development. In China, most of the solar cell array is fixed, there is no guarantee that the sun light of real-time vertical irradiation, resulting in solar energy resources can not be fully utilized. Automatic sun tracking control system in tracking solar rotation can receive more solar radiation energy, so as to improve the output power of the solar battery board, the Technology can be widely used in various solar tracking devices.The system does not require any external power sources, completely rely on their own solar panels for electricity power supply. In the sunny weather conditions, the system to ensure that the solar automatic tracking solar rotation and keep perpendicular irradiation of the sun light on the solar cell surface and to improve the efficiency of the solar cell power generation. System with photoelectric detection device, in poor weather conditions when switching tracking mode.In order to improve the absorption efficiency of the sun.Keywords:solar cell; automatic tracking; solar position sensor;Photoelectric detection1 设计研究背景及意义在能源消耗量越来越大,传统能源日益枯竭的今天,人类对于新能源的渴求变得越来越强烈。

寻找一种可再生并且环保的新能源来满足社会经济发展的需要成为世界范围关注的核心问题。

太阳能受到了世界各国广泛重视的主要原因为太阳能是一种新型的清洁能源,并且取之不尽用之不竭。

当今世界位于“阳光地带”的国家人口数量占世界总人口数量的75%,这些人口拥有全球40%的电力需求。

此外,预计在将来的20年时间里,全球大约80%的电力能源需求将来源于“阳光地带”地区。

因此这些地区和国际的光伏能源具有得天独厚的竞争潜力。

欧洲光伏协会(EPIA)预计太阳能将在2020年前成为世界范围的主流能源,并在2030年前成为主要的电力来源[1]。

由此可见,光伏产业在未来拥有非常广阔的应用前景。

因此,太阳能的利用对于满足人们对于能源的需求,保持世界经济的增长具有至关重要的作用,研究和利用光伏能源具有十分重要的意义[1]。

2 主要研究内容2.1 系统的设计目标根据目前太阳能技术发展特点以及国内外光伏发电系统的发展状况,针对现阶段太阳能光伏发电系统普遍存在的效率偏低的现实。

本文研究并设计了双轴独立自动太阳跟踪控制系统。

具体的设计思路如下:(1)双轴:系统采用两个步进电机来控制太阳能电池水平方向和竖直方向的移动。

(2)独立:系统不需要外部电源提供能源,其工作所需的能源完全来自于自身太阳能电池发电和蓄电池的储能。

(3)自动跟踪:系统的运行过程是自动化的,利用视日跟踪方式和光电跟踪相互自动转化实现对太阳的跟踪工作。

2.2 设计的主要内容本文所研究的太阳能自动追踪装置是由单片机为控制核心的自动控制控制系统,整个装置是通过软件控制系统控制硬件结构部分完成的。

但本文主要涉及的内容是控制部分,所以在这里主要讲系统的硬件和软件两部分。

(1)系统的硬件部分主要包括芯片以及各种电子元器件、电路图的连接。

电路主要包含以下几部分:1)太阳能充电控制器的设计:这部分内容主要就是为了合理的给蓄电池充电,保证蓄电池的使用寿命。

2)光电检测电路的设计:这部分内容主要作用就是通过光电二极管来判别太阳的方位。

3)系统检测电路的设计:单片机通过接受光电检测电路发出的电信号控制电机转动,达到跟踪太阳的目的。

4)辅助电路设计:复位电路。

(2)软件部分程序的编写:在硬件电路的基础上用C51单片机语言编写配套软件,对软硬件联合调试,直到系统稳定运行。

3 系统的总体设计3.1 太阳自动跟踪方式的确定目前,太阳的跟踪方式有很多,但主要还是光电检测跟踪方法和视日跟踪方法。

光电跟踪易受天气条件影响,而长时间使用视日跟踪系统会产生误差,所以经过分析两种跟踪方式的优缺点,决定采用两种跟踪方式结合。

一般的工作过程是,开机后,检测系统检测当时是在白天或晚上,这是由一个光电检测电路检测,当系统检测到夜间,然后系统停止运行;如果系统检测到的是白天,那么系统首先按照光电检测追踪方式进行对太阳的跟踪,当遇到阴天时,系统会自动转到视日追踪模式下,当天气转晴时,系统又会自动转到光电追踪模式下进行追踪。

这样,将两者结合起来,并对两者的跟踪方法进行了补充,使系统更加稳定,提高了系统跟踪的精度。

3.2 本设计的设计思想(1)系统选用AT89C51单片机作为控制电路的核心。

(2)利用光电二极管作为传感器的检测装置,每两光电二极管组成的比较电路,光电二极管导通和停止产生相位差,通过放大器将发出一个信号给单片机的I/O,用来控制电机的运行。

(3)利用由光电二极管组成的比较电路来判断是白天还是黑夜,若是黑夜就系统停止运行,进入等待状态,若是白天则程序继续运行。

(4)利用光电二极管来判断晴天还是阴天,晴天系统采用光电检测追踪模式,如果天气情况发生变化系统则采用视日追踪模式。

相关文档
最新文档