太阳能自动跟踪系统方案
单轴太阳能光伏发电自动跟踪控制系统设计

单轴太阳能光伏发电自动跟踪控制系统设计引言:太阳能光伏发电已经成为可再生能源中最受关注的一种技术。
光伏发电效率受到太阳光照的影响,传统的固定光伏发电系统效率较低。
为了优化光伏发电系统的效率,设计了一种单轴太阳能光伏发电自动跟踪控制系统,能够根据太阳位置自动调整光伏板的角度,最大限度地提高太阳能的利用效率。
一、系统工作原理:该单轴太阳能光伏发电自动跟踪控制系统由光敏电阻、测量电路、控制电路和执行机构组成。
光敏电阻负责感应太阳光照强度,传递给测量电路进行电信号转换。
控制电路接收到转换后的信号,并与事先设定的峰值进行比较。
然后,根据比较结果来控制执行机构,使光伏板按需自动调整角度。
二、光敏电阻的选择:光敏电阻是该系统中最重要的一个元件,因为它直接影响到系统的准确度和稳定性。
在选择光敏电阻时,需要考虑以下因素:光敏电阻的特性曲线、光敏电阻的响应时间、光敏电阻的阻值范围等。
一般建议选择具有较高灵敏度和稳定性的光敏二极管。
三、测量电路设计:测量电路的作用是将光敏电阻的电信号转换为适合控制电路处理的电信号。
测量电路一般由信号放大器、滤波器和模数转换器构成。
信号放大器用于放大光敏电阻产生的微弱电信号,滤波器用于去除噪声和杂散信号,模数转换器用于将模拟信号转换为数字信号。
在设计过程中,需要合理设置放大系数和滤波参数,以确保测量电路的准确性和稳定性。
四、控制电路设计:控制电路是系统的核心部分,其功能是根据光敏电阻测量电路输出的信号,与事先设定的峰值进行比较,并根据比较结果来控制执行机构进行角度调整。
控制电路一般由比较器、运算放大器和逻辑电路构成。
比较器用于将输入信号与参考信号进行比较,运算放大器用于放大比较结果的差别,逻辑电路用于判断角度调整方向,并控制执行机构的运动。
五、执行机构设计:执行机构是该系统中最关键的部分,其功能是根据控制电路的指令,使光伏板按需自动调整角度。
常见的执行机构有两种:电动执行机构和气动执行机构。
光伏发电自动跟踪系统的设计

光伏发电自动跟踪系统的设计一、本文概述随着全球能源危机和环境问题的日益严重,可再生能源的开发和利用受到了越来越多的关注。
其中,光伏发电作为一种清洁、可再生的能源形式,具有广泛的应用前景。
然而,传统的光伏发电系统往往存在固定安装、无法有效跟踪太阳位置的问题,导致能量接收效率不高。
因此,本文旨在设计一种光伏发电自动跟踪系统,以提高光伏电池板的能量接收效率,从而推动光伏发电技术的发展和应用。
本文首先介绍了光伏发电的基本原理和现状,分析了传统光伏发电系统存在的问题和不足。
然后,详细阐述了光伏发电自动跟踪系统的设计原理和实现方法,包括硬件设计和软件编程两个方面。
在硬件设计方面,介绍了系统的主要组成部分,如传感器、电机驱动器等,并阐述了它们的工作原理和选型依据。
在软件编程方面,介绍了系统的控制算法和程序流程,包括太阳位置计算、电机控制等。
本文对所设计的光伏发电自动跟踪系统进行了实验验证和性能分析,证明了该系统的有效性和优越性。
也指出了该系统存在的不足之处和改进方向,为未来的研究提供了参考和借鉴。
通过本文的研究和设计,旨在为光伏发电领域提供一种高效、可靠的自动跟踪系统解决方案,推动光伏发电技术的进一步发展和应用,为实现可持续发展和环境保护做出贡献。
二、光伏发电原理及关键技术光伏发电是利用光生伏特效应将光能直接转换为电能的发电方式。
当太阳光照射到光伏电池上时,光子与光伏电池内的半导体材料相互作用,激发出电子-空穴对。
这些被激发的电子和空穴在光伏电池内部电场的作用下分离,形成光生电流,从而实现光能向电能的转换。
光伏发电的关键技术主要包括光伏电池材料的选择、光伏电池的结构设计、光电转换效率的提升以及系统的集成与优化。
光伏电池材料是光伏发电的基础,常用的材料有单晶硅、多晶硅、非晶硅以及薄膜光伏材料等。
不同材料具有不同的光电转换效率和成本,因此在选择时需要综合考虑性能和经济性。
光伏电池的结构设计也是影响光伏发电效率的重要因素。
太阳能电池板追日自动跟踪系统的研究

太阳能电池板追日自动跟踪系统的研究1.引言近年来,由于环境污染和化石能源的消耗,太阳能作为一种清洁、可再生的能源逐渐受到了广泛关注。
太阳能电池板作为太阳能利用的重要组成部分,具有将阳光能转化为电能的能力。
然而,由于太阳的运动轨迹以及天气等因素,太阳能电池板的效率常常受到一定程度的限制。
因此,设计一种能够实现自动追踪太阳的系统,成为提高太阳能电池板效率的有效途径。
2.太阳能电池板追日自动跟踪系统的原理太阳能电池板追日自动跟踪系统通过控制电机的转动,使太阳能电池板始终朝向太阳。
系统主要由光敏电阻、测量装置、控制器和电机组成。
当太阳光照射到光敏电阻上时,光敏电阻产生电信号,并通过测量装置转换为相应的角度信息。
控制器通过比较实际角度与太阳位置的偏差,控制电机旋转,使太阳能电池板调整到正确的角度。
3.系统参数设计与优化为确保系统的准确性和稳定性,需要对系统的参数进行设计与优化。
首先需要选取合适的测量装置,以确保可以准确地测量太阳能电池板的角度。
传感器的选取应考虑其分辨率、精度和抗干扰能力等因素。
其次,需要合理设计控制器的算法,以保证系统的精度和灵敏度。
控制器应对太阳位置变化做出快速而准确的响应,从而实现对太阳能电池板运动的精确控制。
最后,还需对电机的选型和驱动方式进行优化,以确保电机可以在恶劣环境下稳定运行。
4.系统性能测试与分析在完成系统参数设计与优化后,需要进行系统性能测试与分析。
测试时可以在不同天气条件下观测太阳能电池板的追踪效果,并对实际追踪角度与理论角度之间的差异进行比较。
此外,还可通过测试太阳能电池板的电能输出情况,以评估系统的效率和稳定性。
通过对测试结果的分析,可以进一步改进系统设计,提高追日自动跟踪系统的性能和可靠性。
5.应用前景与展望太阳能电池板追日自动跟踪系统具有重要的应用前景和发展空间。
随着太阳能的广泛应用,对太阳能电池板效率的要求也越来越高。
追日自动跟踪系统可以帮助太阳能电池板始终追踪太阳,最大程度地提高电能转换效率,从而提高整个太阳能发电系统的综合效能。
太阳能自动跟踪系统的设计

太阳能自动跟踪系统的设计解决方案:跟踪系统驱动器接口电路步进电机驱动电路限位信号采集电路太阳能是已知的最原始的能源,它干净、可再生、丰富,而且分布范围广,具有非常广阔的利用前景。
但太阳能利用效率低,这一问题一直影响和阻碍着太阳能技术的普及,如何提高太阳能利用装置的效率,始终是人们关心的话题,太阳能自动跟踪系统的设计为解决这一问题提供了新途径,从而大大提高了太阳能的利用效率。
跟踪太阳的方法可概括为两种方式:光电跟踪和根据视日运动轨迹跟踪。
光电跟踪是由光电传感器件根据入射光线的强弱变化产生反馈信号到计算机,计算机运行程序调整采光板的角度实现对太阳的跟踪。
光电跟踪的优点是灵敏度高,结构设计较为方便;缺点是受天气的影响很大,如果在稍长时间段里出现乌云遮住太阳的情况,会导致跟踪装置无法跟踪太阳,甚至引起执行机构的误动作。
而视日运动轨迹跟踪的优点是能够全天候实时跟踪,所以本设计采用视日运动轨迹跟踪方法和双轴跟踪的办法,利用步进电机双轴驱动,通过对跟踪机构进行水平、俯仰两个自由度的控制,实现对太阳的全天候跟踪。
该系统适用于各种需要跟踪太阳的装置。
该文主要从硬件和软件方面分析太阳自动跟踪系统的设计与实现。
系统总体设计本文介绍的是一种基于单片机控制的双轴太阳自动跟踪系统,系统主要由平面镜反光装置、调整执行机构、控制电路、方位限位电路等部分组成。
跟踪系统电路控制结构框图如图1所示,系统机械结构示意图如图2所示。
任意时刻太阳的位置可以用太阳视位置精确表示。
太阳视位置用太阳高度角和太阳方位角两个角度作为坐标表示。
太阳高度角指从太阳中心直射到当地的光线与当地水平面的夹角。
太阳方位角即太阳所在的方位,指太阳光线在地平面上的投影与当地子午线的夹角,可近似地看作是竖立在地面上的直线在阳光下的阴影与正南方的夹角。
系统采用水平方位步进电机和俯仰方向步进电机来追踪太阳的方位角和高度角,从而可以实时精确追踪太阳的位置。
上位机负责任意时刻太阳高度角和方位角的计算,并运用软件计算出当前状况下俯仰与水平方向的步进电动机运行的步数,将数据送给跟踪系统驱动器,单片机接收上位机送来的数据,驱动步进电机的运行。
《2024年太阳能电池板追日自动跟踪系统的研究》范文

《太阳能电池板追日自动跟踪系统的研究》篇一一、引言随着科技的不断进步和环保意识的日益增强,太阳能作为一种清洁、可再生的能源,其利用效率与效益日益凸显。
太阳能电池板作为太阳能利用的核心设备,其性能的优化与提升成为研究的重要方向。
其中,太阳能电池板追日自动跟踪系统(以下简称“跟踪系统”)的研究与应用,对于提高太阳能的利用率和转换效率具有重要意义。
本文旨在探讨太阳能电池板追日自动跟踪系统的原理、设计及其实验结果,以期为相关研究与应用提供参考。
二、系统概述太阳能电池板追日自动跟踪系统是一种利用传感器和控制系统,实现对太阳运动轨迹实时追踪的系统。
该系统能够根据太阳的位置变化,自动调整太阳能电池板的朝向,使电池板始终面向太阳,从而提高太阳能的利用率和转换效率。
该系统主要由传感器模块、控制模块和执行模块等部分组成。
三、系统原理1. 传感器模块:传感器模块负责实时监测太阳的位置信息。
通常采用光电传感器或GPS定位系统等设备,实时获取太阳的位置数据。
2. 控制模块:控制模块是系统的核心部分,负责接收传感器模块传输的太阳位置信息,根据预设的算法计算出太阳能电池板需要调整的角度,并发出控制指令。
3. 执行模块:执行模块根据控制模块发出的指令,驱动电机等设备,实现对太阳能电池板的自动调整。
四、系统设计1. 硬件设计:硬件设计主要包括传感器、控制器和执行器等设备的选择与配置。
传感器应具备高精度、低噪声的特点,控制器应具备快速响应、高稳定性等特点,执行器应具备高精度、低能耗的特点。
2. 软件设计:软件设计主要包括传感器数据的采集与处理、控制算法的设计与实现等。
软件应具备实时性、准确性、可靠性等特点,能够实现对太阳能电池板的精确控制。
五、实验结果与分析通过实验验证,太阳能电池板追日自动跟踪系统能够实时监测太阳的位置信息,并根据计算结果自动调整太阳能电池板的朝向。
实验结果表明,该系统能够有效提高太阳能的利用率和转换效率,与固定安装的太阳能电池板相比,具有显著的优越性。
单片机太阳能跟踪系统设计

单片机太阳能跟踪系统设计摘要:本文介绍了一种基于单片机的太阳能跟踪系统的设计。
该系统通过使用光敏传感器和步进电机,能够实时跟踪太阳位置并自动调整太阳能电池板的方向,以最大程度地吸收阳光能量。
文章详细讨论了系统的硬件设计和软件编程,并进行了实验验证系统的有效性与稳定性。
引言:随着可再生能源的发展和应用,太阳能作为一种绿色能源正变得越来越普遍。
而太阳能电池板作为太阳能转换的核心装置,其工作效率直接受到太阳光照强度和入射角度的影响。
因此,设计一种能够实时追踪太阳位置的太阳能跟踪系统,对于提高太阳能电池板的能量转换效率具有重要意义。
1. 系统硬件设计1.1 光敏传感器光敏传感器是实现太阳位置检测的关键模块,其作用是测量光强度并转化为电信号。
在本设计中,采用光敏二极管作为光敏传感器,通过调整电路参数和选用适当的滤光片以提高传感器的灵敏度和稳定性。
1.2 步进电机步进电机是用于控制太阳能电池板偏转角度的执行器。
本设计中,选用具有较高精度和可控性的双相步进电机,通过调节步进电机的脉冲信号和相位控制信号,可以实现对太阳能电池板的精确调整。
1.3 控制电路控制电路是整个系统的核心部分,主要由单片机、驱动电路和电源组成。
单片机作为系统的主控制器,通过接收光敏传感器采集的信号,并经过一系列计算和判断,生成控制信号给步进电机实现调整。
驱动电路负责将单片机输出的信号转化为适合步进电机工作的电流信号,以驱动步进电机。
2. 系统软件编程2.1 信号采集与处理在软件编程阶段,首先需要进行光敏传感器信号的采集与处理。
通过ADC模块采集光敏传感器输出的电压信号,并借助数字滤波算法对其进行滤波和降噪处理,确保获取准确可靠的光强度数据。
2.2 太阳位置计算根据光敏传感器测量到的光强度数据,通过一定的数学模型和算法,可以计算出太阳的位置。
根据太阳位置的变化规律,可以判断出太阳的相对方位和倾角,从而确定太阳能电池板的调整方向。
2.3 步进电机控制根据太阳位置计算的结果,通过单片机输出的脉冲信号和相位控制信号,控制步进电机按照设定的步进角度和方向调整太阳能电池板的位置,使其始终面向太阳。
太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能是一种清洁、可再生的能源,越来越多的人开始关注和使用太阳能发电系统。
太阳能发电系统中,太阳能电池板的角度对能量转换效率影响很大。
为了使太阳能电池板能够始终面向太阳,保持最佳角度,研究和设计太阳能双轴自动跟踪系统是非常必要的。
首先,系统设计方面。
太阳能双轴自动跟踪系统主要由太阳能电池板、运动控制系统和传感器系统组成。
太阳能电池板负责转换太阳能为电能,是整个系统的核心部件。
运动控制系统根据传感器系统实时采集到的太阳位置数据,控制太阳能电池板的角度调整。
传感器系统包括光敏传感器和方位传感器,负责检测太阳的位置并将数据传输到运动控制系统。
在太阳能双轴自动跟踪系统的研究中,需要考虑以下几个问题。
首先是数据采集问题。
传感器系统需要实时采集太阳的位置数据,以便运动控制系统进行调整。
传感器系统应该具备高精度、快速响应的特点,以确保数据的准确性和系统的灵敏度。
其次是运动控制问题。
运动控制系统需要精确地控制太阳能电池板的角度调整,以达到最佳转换效率。
运动控制系统应该具备稳定性和高精度的特点,以确保太阳能电池板能够准确地跟踪太阳的位置。
此外,系统的安全性和稳定性问题也需要考虑。
例如,对于极端天气条件下的系统运行,系统应该具备抗风、抗雨和抗震能力。
太阳能双轴自动跟踪系统的研究还可以从以下几个方面展开。
首先是材料和结构的研究。
太阳能电池板的材料和结构对于系统的效率和稳定性有着重要影响。
通过研究和优化太阳能电池板的材料和结构,可以提高系统的效率和稳定性。
其次是算法和控制的研究。
根据实时采集到的太阳位置数据,运动控制系统需要精确地计算调整角度,并控制太阳能电池板的运动。
通过研究和优化算法和控制策略,可以提高系统的精度和响应速度。
综上所述,太阳能双轴自动跟踪系统的设计与研究非常重要。
通过合理设计系统的结构和算法,并优化材料和控制策略,可以提高太阳能发电系统的转换效率和稳定性。
这将对太阳能发电系统的普及和应用起到积极的促进作用,推动可持续能源发展。
太阳能双轴跟踪系统原理解析

太阳能双轴跟踪系统原理解析太阳能双轴跟踪系统原理解析1. 引言太阳能作为一种清洁、可再生的能源形式,受到了越来越多的关注和应用。
为了更高效地收集太阳能,提高太阳能发电系统的效率,太阳能双轴跟踪系统应运而生。
本文将深入探讨太阳能双轴跟踪系统的原理及其在太阳能发电领域的应用。
2. 太阳能双轴跟踪系统的基本原理太阳能双轴跟踪系统是一种能够根据太阳的位置来调整太阳能发电设备角度的系统。
它通过使用两个轴(水平轴和垂直轴)来实现对太阳能接收器的定位,以确保太阳能始终垂直照射到接收器上。
这种追踪方式与传统的固定式太阳能系统相比,能够使得接收器相对于太阳的角度始终保持最佳状态,从而提高太阳能发电的效率。
3. 太阳能双轴跟踪系统的构成太阳能双轴跟踪系统主要由以下几个组成部分构成:3.1 太阳能追踪控制器:该控制器根据预设的追踪算法和传感器采集的数据,来计算并控制太阳能发电设备的运动。
它可以通过控制执行机构,调整发电设备的角度和方向。
3.2 电动机或执行机构:太阳能双轴跟踪系统通过电动机或其它执行机构来实现设备的角度调整。
这些电动机或执行机构通过接收控制器的指令,将设备转动到正确的位置上。
3.3 传感器:为了准确地获取太阳的位置信息,太阳能双轴跟踪系统通常会配备多个传感器。
这些传感器可以是太阳光电传感器、倾斜传感器等。
它们通过检测太阳的位置和周围环境的变化,向控制器提供实时的反馈信息,以确保设备能够准确追踪太阳。
3.4 太阳能接收器:太阳能双轴跟踪系统最关键的一部分是太阳能接收器。
它通常由太阳能电池板或聚光器组成,用于将太阳光转化为电能。
通过精确地追踪太阳,太阳能接收器可以最大限度地吸收太阳的能量,提高太阳能的利用效率。
4. 太阳能双轴跟踪系统的优势相较于固定式太阳能系统,太阳能双轴跟踪系统具有以下几个优势:4.1 提高发电效率:通过追踪太阳的位置并使接收器始终垂直照射,太阳能双轴跟踪系统可以最大限度地吸收太阳能,提高发电效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。
太阳光线自动跟踪装置解决了太阳能利用率不高的问题。
本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。
第一,机械部分设计:机械结构主要包括底座、主轴、齿轮和齿圈等。
当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。
第二,控制部分设计:主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。
系统采用光电检测追踪模式实现对太阳的跟踪。
传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。
当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。
关键词太阳能;跟踪;光敏电阻;单片机;步进电机AbstractHuman being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed.First,the mechanical part is designed.Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together.Second, control system part is designed.Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors.Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor目录1绪论1.1课题来源模拟生产实际课题:太阳能自动跟踪系统设计。
1.2课题背景1.2.1能源现状及发展能源是人类社会赖以生存和发展的物质基础。
当前,包括我国在内的绝大多数国家都以石油、天然气和煤炭等矿物燃料为主要能源。
随着矿物燃料的日渐枯竭和全球环境的不断恶化,很多国家都在认真探索能源多样化的途径,积极开展新能源和可再生能源的研究开发工作[1]。
虽然在可预见的将来,煤炭、石油、天然气等矿物燃料仍将在世界能源结构中占有相当的比重,但人们对核能以及太阳能、风能、地热能、水力能、生物能等可持续能源资源的利用日益重视,在整个能源消耗中所占的比例正在显著地提高。
据统计[2],20世纪90年代,全球煤炭和石油的发电量每年增长l%,而太阳能发电每年增长达20%,风力发电的年增长率更是高达26%。
预计在未来5至10年内,可持续能源将能够与矿物燃料相抗衡,从而结束矿物燃料一统天下的局面。
相对于日益枯竭的化石能源来说,太阳能似乎是未来社会能源的希望所在。
1.2.2我国太阳能资源我国幅员广大,有着十分丰富的太阳能资源。
我国地处北半球欧亚大陆的东部,土地辽阔,幅员广大。
我国的国土跨度从南到北、自西至东,距离都在5000km以上,总面积达960×104km,占世界总面积的7%,居世界第三位。
据估算[3],我国陆地表面每年接收的太阳辐射能约为50×1018KJ,全国各地太阳年辐射总量达335~837KJ/cm2·A,中值为586KJ/cm2·A。
从全国太阳年辐射总量的分布来看,西藏、青海、新疆、内蒙古南部、山西、陕西北部、河北、山东、辽宁、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。
尤其是青藏高原地区最大,那里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。
例如被人们称为“日光城”的拉萨市,1961年至1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5天,阴天为98.8天,年平均云量为4.8,太阳总辐射为816KJ/cm2·A,比全国其它省区和同纬度的地区都高。
全国以四川和贵州两省的太阳年辐射总量最小,其中尤以四川盆地为最,那里雨多、雾多,晴天较少。
例如素有“雾都”之称的成都市,年平均日照时数仅为1152.2h,相对日照为26%,年平均晴天为24.7天,阴天达244.6天,年平均云量高达8.4。
其它地区的太阳年辐射总量居中。
1.2.3目前太阳能的开发和利用人类直接利用太阳能有三大技术领域[4],即光热转换、光电转换和光化学转换,此外,还有储能技术。
太阳光热转换技术的产品很多,如热水器、开水器、干燥器、采暖和制冷,温室与太阳房,太阳灶和高温炉,海水淡化装置、水泵、热力发电装置及太阳能医疗器具。
1.2.4太阳能的特点太阳能作为一种新能源,它与常规能源相比有三大优点[5]:第一,它是人类可以利用的最丰富的能源,据估计,在过去漫长的11亿年中,太阳消耗了它本身能量的2%,可以说是取之不尽,用之不竭。
第二,地球上,无论何处都有太阳能,可以就地开发利用,不存在运输问题,尤其对交通不发达的农村、海岛和边远地区更具有利用的价值。
第三,太阳能是一种洁净的能源,在开发和利用时,不会产生废渣、废水、废气,也没有噪音,更不会影响生态平衡。
太阳能的利用有它的缺点:第一,能流密度较低,日照较好的,地面上1平方M的面积所接受的能量只有1千瓦左右。
往往需要相当大的采光集热面才能满足使用要求,从而使装置地面积大,用料多,成本增加。
第二,大气影响较大,给使用带来不少困难。
1.3课题研究的目的本课题研究一种基于光电传感器的太阳光线自动跟踪装置,该装置能自动跟踪太阳光线的运动,保证太阳能设备的能量转换部分所在平面始终与太阳光线垂直,提高设备的能量利用率。
1.4研究课题的意义1.4.1新环保能源长期以来[6],世界能源主要依靠石油和煤炭等矿物燃料,而这些矿物作为一次性不可再生资源,储量有限,而且燃烧时产生大量的二氧化碳,造成地球气温升高,生态环境恶化。
据国际能源机构预测,人类正面临矿物燃料枯竭的严重威胁。
这种全球性的能源危机,迫使各国政府投入大量的人力和财力,研究和开发新能源,如太阳能等。
能源危机,环境保护成为当今世界关注的热点问题。
据联合国环境规划署资料[7],目前矿物燃料提供了世界商业能源的95%,且其使用在世界范围内以每10年20%的速度增长。
这些燃料的燃烧构成改变气候的温室气体的最大排放源,按照可持续发展的目标模式,决不能单靠消耗矿物原料来维持日益增长的能源需求。
因此越来越多的国家都在致力于对可再生能源的深度开发和广泛利用。
其中具有独特优势的太阳能开发前景广阔。