2013年浙江省温州市中考数学模拟试卷(四)
2013年温州中考数学试卷附答案

:
(D LL赛 后 ,甲 猜测七 巧板 拼图、 趣题 巧解 、 数学应用 、 魔方复原这四项得分分别按 10%,钔 %,20%,30%
棂据猜涮 ,求 出甲的总分 折算记人总分。
;
(2)本 次大赛组委会最后决定 ,总 分为 BO分 以上 (包 括 sO分 )的 学生获一等奖.现 获悉 乙、 的总分分别 丙
B.==O
7.如 图 ,在 ⊙0中 ,oC⊥ 弦 AB于 点 C,^B=4,oC=1,则
卩
l^3
B.√
:・
C・ ÷
C。
8.如 图 ,在 △ ABC中 ,zC=90° ,AB=5,BC=3,则 蚯 nA的 值 是 ( ▲
A.溽
t
√15
0B的 长是 (
D・ Γ ÷
D,汀
D・
(第
7题 图)
▲
〉
—
)
A.÷
告
A。
¨
1,2,4
B,4,5,9
) C.4,6,8
5 , 5 ,
5.若 分 式
Jˉ 3的
值 为 0,则
. C。 ∶ tu=ˉ 4 D。 . ==-3 6.已 知 点 P(l,工 3)在 反 比例 函 丿 =吉 Ω≠ 0〉 的 图象 上 ,则 虍 值 是 ( △ 钧 攀
平的值 是 (
▲
)
A.lz=3
A・
,
・
∶ =£鲁等 品 即 =午 卩 ?g畀 ∴ 一呼 cE=辔 ÷
,
(第
扭 题图 D
D
彳
(2)・ fm。 ==3,
∴ 5,cE=管 ~÷ m=3, BC=8-狃 ⊥
∴ BE=4,
r。
∵点 F落 在 j轴 上(如 图 2), r.pE∥ B0,
浙江省温州瓯海区2013中考模卷数学试题

初中毕业生第二次适应性考试(数学试卷)一、选择题(每小题4分,共40分)1.下列各选项中,最小的实数是( ▲ )A .-3B .-1C .0D .3 2.要使二次根式2x -有意义,则x 应满足( ▲ )A .2>xB .2x ≥C .2-≥xD .2x ≠3.某反比例函数的图象经过点(-2,3),则此函数图象也经过点( ▲ ) A .(2,3) B .(-3,-3) C . (2,-3)D .(-4,6)4.为了支援灾区学生,“爱心小组”的七位同学为灾区捐款,捐款金额分别为60,75,60,75,120,60,90 (单位:元).那么这组数据的众数是( ▲ )A .120元B .90元C .75元D . 60元5.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是( ▲ )A .2B .4C .6D .86.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y += 的图象不经过( ▲ ) A .第一象限 B .第二象限 C .第三象限D .第四象限7.由6个大小相同的正方体搭成的几何体,被小颖拿掉2个后,得到 如图1所示的几何体,图2是原几何体的三视图.请你判断小颖拿掉 的两个正方体原来放在( ▲ )A .1号的前后B .2号的前后C .3号的前后D .4号的左右 8.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向 左或向右两种机会均相等的结果,那么,小球最终到达H 点的xyO图1 图2主视图左视图俯视图概率是( ▲ )A .81 B .61 C .41 D .219.如图,AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点, ∠B =25°,则∠D 等于( ▲ ) A .25° B .50° C .30° D .40°10.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ▲ ) A .140︒ B .130︒ C .110︒ D .70︒二、填空题(每小题5分,共30分)11. 分解因式:x 2-9= ▲ . 12. 若分式12-x 与1互为相反数,则x 的值是 ▲ .13.如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED =1,BD =4,那么AB = ▲ . 14.一个滑轮起重装置如图所示.滑轮的半径是10cm ,当重物上升10cm 时,滑轮的一条半径OA 绕轴心O 按逆时针方向旋转的角度约 为 ▲ .(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1º) 15.已知一次函数b kx y +=的图象交y 轴于正半轴,且y 随x 的增大而减小,请写出符合上述条件的一个解析式.....: ▲ . 16.以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是 ▲ .三、解答题(共80分)17.(本题8分)计算:()01260cos 2)21(4π-+︒--+-.18.(本题8分)解方程:312422x x x -=--.19.(本题8分)如图,正方形ABCD 中, E 是CD 上一点,F 在CB 的延长线上,且BF DE =. (1)求证:ADE ∆≌ABF ∆;(2)问:将ADE ∆顺时针旋转多少度后与ABF ∆重合, 旋转中心是什么?20.(本题10分) 从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5︰4︰2︰1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题: ⑴ 补全条形统计图;⑵ 四种家电销售总量为 万台; ⑶ 为跟踪调查农户对这四种家电的使用情况, 从已销售的家电中随机抽取一台..家电,求抽 到冰箱的概率.21.(本题10分)如图所示,小杨在广场上的A 处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D 处的仰角为30º,然后他正对大楼方向前进5m 到达B 处,又测得该屏幕上端C 处的仰角为45º.若该楼高为26.65m ,小杨的眼睛离地面1.65m ,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离( 3 ≈1.732,结果精确到0.1m ).四种家电销售量条形统计图销售量(万台)冰箱彩电洗衣机空调家电类别1515AC DE22.(本题10分)某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p (件)与每件的销售价x (元)满足关系:1002p x =-.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?23.(本题12分)如图,BD 为⊙O 的直径,点A 是弧BC 的中点,AD 交BC 于E 点,2AE =,4ED =. (1)求证: ABE ∆~ABD ∆;(2) 求tan ADB ∠的值;24.(本题14分)如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线c bx x y ++=232经过B 点,且顶点在直线x=25上.(1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C 和点D 是 否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD 于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.7ABCODE初中毕业生第二次适应性考试(数学参考答案)一、选择题(本题共10小题,每小题4分,共40分)1. A2. B3. C4. D5. B6. D7. B8. C9. D10. A二、填空题(本题有6小题,每小题5分,共30分)11.(3)(3)x x +- 12. -1 13. 4 14. 57º15. 如32+-=x y ,(答案不惟一,0<k 且0>b 即可) 16. 2×9⎝⎭三.解答题(本题有8小题,共80分)17. (本题8分)解:原式1212)2(2+⨯--+= (每项计算1分)……4分110+-=0=.……4分18. (本题8分)解:去分母,得322x x -=-. ……3分 整理,得35x =.解得 53x =. ……3分 经检验,53x =是原方程的解. 所以原方程的解是53x =. ……2分19.(本题8分)(1)证明:在正方形ABCD 中︒=∠=∠90ABC D ,AB AD =.︒=∠∴90ABF ,ABF D ∠=∠∴. ……3分又BF DE =,∴ADE ∆≌ABF ∆. ……3分 (2)将ADE ∆顺时针旋转90度后与ABF ∆重合,旋转中心是点 A . ……2分 20. (本题10分)解:(1)如图所示; ……3分 (2)180; ……3分(3)解:(55542112P ==+++抽到冰箱).答:抽到冰箱的概率是512.……4分21.(本题10分)解:设AB 、CD 的延长线相交于点E ,∵∠CB E=45º,C E⊥AE ,∴CE=BE.∵CE=26.65-1.65=25,∴BE=25,∴AE=AB+BE=30. ……3分在Rt △ADE 中,∵∠DAE =30º,∴DE =AE ×tan30 º =30×33=10 3 ……3分 ∴CD =CE -DE =25-10 3 ≈25-10×1.732=7.68≈7.7(m) ……4分 答:广告屏幕上端与下端之间的距离约为7.7m.22.(本题10分)解:根据题意,得 (30)(1002)200x x --=, ……4分整理,得 28016000x x -+=.解得 4021==x x . ……3分P =100-2×40=20.答:每件商品的售价应定为40元,每天要销售这种商品20件. ……3分 23.(本题12分)(1)连接AC ,∵点A 是弧BC 的中点,∴∠ABC=∠AC B. 又∵∠AC B=∠AD B,∴∠ABC=∠ADB. 又∵∠BAE=∠BAE, ∴△ABE∽△ABD. ……4分(2)∵△ABE∽△ABD,∴AB2=2×6=12. ∴AB=23.在Rt△ADB中,tan∠ADB=33632=. ……4分 24.(本题14分)解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+. ∴2254()32m =⨯-+, ∴16m =-. ∴所求函数关系式为:22251210()432633y x x x =--=-+. ……4分(2)在Rt △ABO 中,OA =3,OB =4,∴225AB OA OB =+=.∵四边形ABCD 是菱形,∴BC =CD =DA =AB =5. ∴C 、D 两点的坐标分别是(5,4)、(2,0).当5x =时,2210554433y =⨯-⨯+=. 当2x =时, 2210224033y =⨯-⨯+=.∴点C 和点D 在所求抛物线上. ……4分 (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩. 解得:48,33k b ==-.∴4833y x =-. ∵MN ∥y 轴,M 点的横坐标为t ,∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-, ∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大,此时点M 的坐标为(72,12). ……6分。
温州市2013年第二学期阶段学业测试九年级数学试卷及答案

BA(第7题)浙江省温州市2012-2013学年第二学期阶段学业测试九年级数学试卷2013.5一、选择题(本题共10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1.-2的相反数等于 ( ) A .-2 B .2 C . 21- D .212.下列图形中,为轴对称图形的是 ( )3.一个几何体的三视图如图所示,这个几何体是 ( )A.正方体 B .圆柱 C .球 D .圆锥4.若a >-3,下列不等式不一定成立的是( )A .a+3>0B .-a <3C .a+b >b-3D .a >95.抛物线y = -12(x+1)2+3的顶点坐标( ) A .(1,3) B .(1,-3) C .(-1,3) D .(-1,-3)6.如图,A 、B、C 是⊙O 上的三点,∠BAC=45°, (第6题)则∠BOC 的大小是( )A .90°B .60°C .45°D .22.5°7.如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( )A .sin A =B .1tan 2A =C .cos B =D .tan B =8.一个扇形的圆心角是120°,面积为3πcm 2,那么这个扇形的半径是( ) A .3cm B.3cm C.6cm D.9cm9.如图,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的AB CO主视图左视图 俯视图虚线剪开,拼成如下右图的一座“小别墅”, 则图中阴影部分的面积是( ).A .2B .4C .8D .10 10.若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .10和1 C .7和9 D .9和18二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x -6x+9= .12.右图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖 上,则蚂蚁停留在黑色瓷砖上的概率是 . 13.如图,点P 是半径为5的⊙O 内的一点,且OP =3,设AB 是过点P 的 ⊙O 内的弦,且AB ⊥OP ,则弦 AB 长是________.14.小明用一个半径为36cm 的扇形纸板,制作一个圆锥的玩具帽,已知帽子的底面径r 为9cm,则这块扇形纸板的面积为 . (第13题)15.如图,A 、B 是反比例函数y =2x 的图象上的两点.AC 、BD都垂直于x 轴,垂足分别为C 、D ,AB 的延长线交x 轴于点 E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积 与ΔACE 的面积的比值是__________.16.如图1,正方形每条边上放置相同数目的小球,设一条边上的小球数为n ,请用含n 的代数式表示正方形边上的所有小球 数 ;将正方形改为立方体,如图2,每条边上同样 放置相同数目的小球, 设一条边上的小球数仍为n ,请用含 n 的代数式表示立方体上的所有小球数 .三、解答题(本题有8小题,第17、20、21、22题每题10分,第18题6分,第19题8分,第23题12分,第24题14分,共80分)17.(本题10分)(1)计算:30(2)2tan 451)-+-(2))3(331---x x x18.(本题6分)如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是: (写一个即可),并说明理由.第15题图19.(本题8分)我市某社区创建学习型社区,要调查社区居民双休日的学习状况,采用下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住宅楼中随机选取200名居民;③选取社区内200名在校学生。
全国名校2013年中考数学模拟试卷分类汇编44 动态综合问题

动态综合型问题一、选择题1、(2013·曲阜市实验中学中考模拟)如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周, P 为弧AD 上任意一点,若AC=5,则四边形ACBP 周长的最大值是( )A . 15B . 20C .15+.15+答案:C2、(2013年深圳育才二中一摸)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 沿折线DC ED BE --运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是cm /秒.设P 、Q 同时出发秒时,△BPQ 的面积为y cm 2.已知y 与的函数关系图象如图(2)(曲线OM 为抛物线的一部分),则下列结论:①5==BE AD ;②53cos =∠ABE ;③当50≤<t 时,252t y =;④当429=t 秒时,△ABE ∽△QBP ;其中正确的结论是( ).A .①②③ B.②③ C. ①③④ D.②④ 答案:C3、 (2013年河北三摸)如图,在正方形ABCD 中,AB =3㎝.动点M 自A 点出发沿AB 方向以每秒1㎝的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3㎝的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (㎝2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是答案:B 二、解答题CAB D MN1、(2013吉林镇赉县一模)如图,在梯形ABCD 中,BC ∥AD ,∠A +∠D =90°,tanA =2,过点B 作BH ⊥AD 于H ,BC =BH =2,动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作EF ⊥AD 交折线D C B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1,设运动时间是x 秒(x >0). (1)当点E 和点C 重合时,求运动时间x 的值; (2)当x 为何值时,△BCD 1是等腰三角形;(3)在整个运动过程中,设△FED 1或四边形EFD 1C 1与梯形ABCD 重叠部分的面积为S ,求S 与x 的函数关系式.答案:2、(2013江苏东台实中)已知Rt △ABC ,∠ACB =90°,AC =BC =4,点O 是AB 中点,点P 、Q 分别从点A 、C 出发,沿AC 、CB 以每秒1个单位的速度运动,到达点C 、B 后停止。
2013年温州中考数学试卷及详解

2013年温州市中考数学试题卷参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aac b b x 242-±-=(ac b 42-≥ ) 一、选择题(本题有 小题,每小题 分,共 分。
每小题只有一个选项是正确的,不选、多选、错选均不给分) 计算3)2(⨯-的结果是✌ 小明对九( )班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图。
由图可知,该班同学最喜欢的球类项目是✌ 羽毛球 乒乓球 排球 篮球 下列各图形中,经过折叠能围成一个立方体的是 下列各组数可能是一个三角形的边长的是✌ , , , , , , , , 若分式43+-x x 的值为 ,则x 的值是 ✌ 3=x 0=x 3-=x 4-=x 已知点 ( , )在反比例函数)0(≠=k xky 的图象上,则k 的值是 ✌ 31 31- 如图,在⊙ 中, ⊥弦✌于点 ,✌, ,则 的长是✌ 3 5 15 17 如图,在△✌中,∠ °,✌, ,则♦♓⏹✌的值是✌43 34 53 54 如图,在△✌中,点 ,☜分别在✌,✌上, ☜∥ ,已知✌☜,43=DB AD ,则☜的长是 ✌ 在△✌中,∠ 为锐角,分别以✌,✌为直径作半圆,过点 ,✌, 作,如图所示,若✌,✌,421π=-S S ,则43S S -的值是✌429π 423π 411π 45π二、填空题(本题有 小题,每小题 分,共 分) 因式分解:m m 52- ♉♉♉♉♉♉♉♉♉♉ 在演唱比赛中, 位评委给一位歌手的打分如下: 分, 分, 分, 分, 分,则这位歌手的平均得分是♉♉♉♉♉分 如图,直线a ,b 被直线c 所截,若a ∥b ,∠ °,∠ °,则∠ ♉♉♉♉♉♉♉♉♉♉度 方程0122=--x x 的根是♉♉♉♉♉♉♉♉♉♉ 如图,在平面直角坐标系中,△✌的两个顶点✌, 的坐标分别为( , ),( , ), ⊥x 轴,将△✌以y 轴为对称轴作轴对称变换,得到△✌❼❼❼(✌和✌❼, 和 ❼, 和 ❼分别是对应顶点),直线b x y +=经过点✌, ❼,则点 ❼的坐标是♉♉♉♉♉♉♉♉♉♉ 一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上。
浙江省温州市2013年中考数学学业模拟考试试卷

某某市2013年学业模拟考试数学试卷参考公式:二次函数cbx ax y ++=2)0(≠a 图象的顶点坐标是)44,2(2ab ac a b --。
卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.2的相反数是()A . -2B .2C .-21D .212.下列计算正确的是()A .02=0B.9 =3 C.3-1= -3D. 2 +3= 53.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )5.下列从左边到右边的变形,是因式分解的是( )A.29)3)(3(x x x -=+- ; B.))((23n m n m m mn m -+=-; C.)1)(3()3)(1(+--=-+y y y y ; D.z yz z y z z y yz +-=+-)2(2242; 6.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD , 若∠CAB=35°,则∠ADC 的度数为( )1 2A .B . 1 2C . 12D .12第10题图xyOCD ABA .35° B.45° C.55° D.65°7.三角形在方格纸中的位置如图所示,则αcos 的值是( )A .53 B .310 C .54D . 510 8.一次函数y =-3 x +2的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限9 如图,矩形ABCD 中,AB=8, AD=3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG.同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过_____ 秒时。
直线MN 和正方形AEFG 开始有公共点?A .53B .12C .43D .2310. 如图,在直角坐标系中,矩形OABC 的顶点A 、B 在双曲线y =k x( x >0)上,BC 与x 轴交于点D .若点A 的坐标为(1,2),则点B 的坐标为( )A .(3,32) B .(4,21) C .(6,94) D .(5,52) 二、填空题(本大题有6小题,每题5分,共30分) 11.函数y=12x -中自变量的取值X 围是. 12. 一组数据5,5,6,x ,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是。
温州市中考数学模拟试卷及答案(word解析版)

2013年浙江省温州市中考数学模拟试卷及答案(word解析版)浙江省温州市2013年中考数学模拟试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)2.(4分)(2013•温州模拟)2010年5月1日,举世瞩目的上海世博会正式开园.截至当天19:00,约有20.4万名中外游客进世博园区参观,参观人数用科学记数法表示为()3.(4分)(2013•温州模拟)函数的图象经过点A(﹣2,3),则k的值为()4.(4分)(2013•温州模拟)如图几何体的主视图是()7.(4分)(2013•温州模拟)如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为()8.(4分)(2013•温州模拟)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()9.(4分(2013•温州模拟))为响应团中央“号召全国每位团员,少先队员捐一瓶水”的倡议,我校师生积极开展了“情系西南灾区”的捐款活动.某班6名同学捐款的数额分别是(单位:10.(4分)(2013•温州模拟)如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ,△DKM,△CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为()二、填空题(本题共6小题,每小题5分,共30分)211.(5分)(2013•温州模拟)分解因式:a+3ab=.12.(5分)(2013•温州模拟)如图,圆锥的底面半径为2cm,高为2的侧面积是8π cm. cm,那么这个圆锥13.(5分)(2013•温州模拟)若二次函数y=x﹣3x+2m的最小值是2,则m=2 .14.(5分)(2013•温州模拟)如图,三个半径都为3cm的圆两两外切,切点分别为D、E、F,则EF的长为 3 cm.15.(5分)(2013•温州模拟)某地按以下规定收取每月电费:用电量如果不超过60度,按每度电0.8元收费;如果超过60度则超过部分按1.2元收费.已知某用户3月份交电费66元.那么3月份该用户用电量为75 度.16.(5分)(2013•温州模拟)将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,E是AC上的一点(AE>CE),且DE=BE,则AE的长为.三、解答题(本题有8小题,共80分)17.(10分)(2013•温州模拟)(1)计算:;(2)解方程组.18.(8分)(2013•温州模拟)如图,矩形ABCD中,M是CD的中点.求证:(1)△ADM≌△BCM;(2)∠MAB=∠MBA.19.(8分)(2013•温州模拟)如图,方格纸中的每个小正方形的边长均为1.(1)观察图①、②中所画的“L”型图形,然后各补画一个小正方形,使图①中所成的图形是轴对称图形,图②中所成的图形是中心对称图形;(2)补画后,图①、②中的图形是不是正方体的表面展开图:(填“是”或“不是”)答:①中的图形①﹣1不是或图①﹣2是,②中的图形是.20.(8分)(2013•温州模拟)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到 10 元购物券,至多可得到 50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.21.(10分)(2013•温州模拟)如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍.22.(10分)(2013•温州模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD 于点F.(1)求证:DE是⊙O的切线;(2)若⊙O的半径OA=5,弦AC的长是6.①求DE的长;②请直接写出的值.23.(12分)(2013•温州模拟)由于受到手机更新换代的影响,某手机店经销的Iphone4手机二月售价比一月每台降价500元.如果卖出相同数量的Iphone4手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月Iphone4手机每台售价为多少元?(2)为了提高利润,该店计划三月购进Iphone4s手机销售,已知Iphone4每台进价为3500元,Iphone4s每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?(3)该店计划4月对Iphone4的尾货进行销售,决定在二月售价基础上每售出一台Iphone4手机再返还顾客现金a元,而Iphone4s按销售价4400元销售,如要使(2)中所有方案获利相同,a应取何值?24.(14分)(2013•温州模拟)如图,在平面直角坐标系中,O是坐标原点,点C的坐标为(0,﹣3),B是射线CO上的一个动点,经过B点的直线交x轴于点A(直线AB总有经过第二、四象限),且OA=2OB,动点P在直线AB上,设点P的纵坐标为m,线段CB的长度为t.(1)当t=7,且点P在第一象限时,连接PC交x轴于点D.①直接写出直线AB的解析式;②当CD=PD时,求m的值;③求△ACP的面积S.(用含m的代数式表示)(2)是否同时存在m、t,使得由A、C、O、P为顶点组成的四边形是等腰梯形?若存在,请求出所有满足要求的m、t的值;若不存在,请说明理由.。
最新温州市中考数学模拟试题卷

2013年温州市中考数学模拟试题卷参考公式:二次函数y=ax 2+bx+c (a ≠0)的图象的顶点坐标是24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 一、选择题(本大题有10小题,每小题4分,共40分。
)1、在0,1,2, 3.5---这四个数中,最小的负整数是( ▲ )A 、0B 、1-C 、2-D 、 3.5-2、如图,直线a ,b 被直线c 所截,已知a ∥b ,∠1=35°,则∠2的度数为( ▲ )A 、35°B 、55°C 、145°D 、165°3、已知点M ()2,3-在双曲线k y x=上,则下列各点一定在该双曲线上的是( ▲ ) A 、()3,2- B 、()2,3-- C 、()2,3 D 、()3,24、图1所示的物体的左视图(从左面看得到的视图)是( ▲ )图1 A 、 B 、 C 、 D 、 (第2题)5、抛物线()2y x 11=--+的顶点坐标是( ▲ )A 、()1,1B 、()1,1-C 、()1,1-D 、()1,1-6、在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如表所示:则这些运动员成绩的中位数是( ▲ )A 、1.66B 、1.67C 、1.68D 、1.757、已知⊙O 1和⊙O 2内切,它们的半径分别为2cm 和5cm ,则O 1O 2的长是( ▲ )A 、2cmB 、3cmC 、5cmD 、7cm8、如图是某校九年级部分男生做俯卧撑的成绩进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( ▲ )A 、100,55%B 、100,80%C 、75,55%D 、75,80%9、如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D=35°,则∠OAC 的度数是( ▲ )A 、35°B 、55°C 、65°D 、70°(第8题) (第9题) (第10题)10、如图,正方形ABCD 的边长为4,点E 是AB 边上的一点,将△BCE 沿着CE 折叠至△FCE ,若CF 、CE 恰好与正方形ABCD 的中心为圆心的⊙O 相切,则折痕CE 的长为( ▲ )A 、53B 、5C 、833D 、以上都不对 二、填空题(本题有6小题,每小题5分,共30分)11、分解因式:()2x 14--= ▲12、母线长为3cm ,底面直径为4cm 的圆锥侧面展开图的面积是 ▲ cm 213、若一次函数y kx b =+(k ,b 都是常数,k ≠0)的图象如图所示,则不等式kx b 0+>的解为 ▲(第13题) (第14题) (第16题)14、如图,已知D 为BC 上一点,∠B =∠1,∠BAC=78°,则∠2= ▲15、目前甲型H1N1流感病毒在全球已有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x 个人,那么可列方程为 ▲ .16、5个正方形如图摆放在同一直线上,线段BQ 经过点E 、H 、N ,记△RCE 、△GEH 、 △MHN 、△PNQ 的面积分别为s 1,s 3,s 2,s 4,已知s 1+s 3=17,则s 2+s 4= ▲三、解答题(本题有8小题,共80分,各小题都必须写出解答过程)17、(本题10分)(1)计算:()00822cos 45+--(2)解方程:(选择其中一小题解答)①212x 1x 1=-- ②22x 0-=18、(本题7分)数学课上,老师让甲、乙、丙三位同学分别计算当x=1-、2、4时,二次函数2y x mx n =++的函数值,甲、乙两同学正确算得当x=1-时,y=6;当x=2时,y=3;丙同学由于看错了n 而算得当x=4时,y=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年浙江省温州市中考数学模拟试卷(四)一、选择题
.C
±
.C D.
.C D.
9.分式方程的解是()
D
11.若分式无意义,则实数x的值是_________.
12.如图,直线l1∥l2,∠1=120°,则∠2=_________度.
13.若m2﹣2m=1,则2m2﹣4m+2007的值是_________.
14.已知一次函数y=2x+1,则y随x的增大而_________(填“增大”或“减小”).
15.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是_________枚.
16.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,则菱形ABCD的边长是_________.
三、解答题
17.计算:
18.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.
19.如图,在等腰梯形ABCD中,E为底BC的中点,连接AE、DE.
求证:△ABE≌△DCE.
20.小红与小刚姐弟俩做掷硬币游戏,他们两人同时各掷一枚壹元硬币.
(1)若游戏规则为:当两枚硬币落地后正面朝上时,小红赢,否则小刚赢.请用画树状图或列表的方法,求小刚赢的概率;
(2)小红认为上面的游戏规则不公平,于是把规则改为:当两枚硬币正面都朝上时,小红得8分,否则小刚得4分.那么,修改后的游戏规则公平吗?请说明理由;若不公平,请你帮他们再修改游戏规则,使游戏规则公平(不必说明理由)
21.(8分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠D=30°,
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求的长.(结果保留π)
22.(8分)阅读材料,解答问题.
例用图象法解一元二次不等式:.x2﹣2x﹣3>0
解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.
∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.
观察函数图象可知:当x<﹣1或x>3时,y>0.
∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.
(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是_________;
(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.
23.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
24.如图1,已知:抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,经过B、C两点的直线是y=x
﹣2,连接AC.
(1)B、C两点坐标分别为B(_________,_________)、C(_________,_________),抛物线的函数关系式为_________;
(2)判断△ABC的形状,并说明理由;
(3)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.。