实变函数论课后答案第一章2

合集下载

实变函数论与泛函分析曹广福到章课后答案

实变函数论与泛函分析曹广福到章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉;若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:i )(inflim )(inf lim x x nnA nnA χχ=ii )(sup lim )(sup lim x x n nA nnA χχ=证明:i )(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明i }{n B 互相正交ii i ni i ni B A N n 11,===∈∀证明:i m n N m n ≠∈∀,,;不妨设n>m,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.ii 因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: i })(|{a x f x E >=}1)({1na x f n +≥∞=ii})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:i })(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即ka a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故 ,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1k a x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim ka x f x E x m n +≤∈=}1)(|{k a x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:ka x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间a,b 上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的; 证明: 设Q 为有理数集,由定理6:Q 是不可数的;现在证:z y x z y x Q Q Q ,,|),,{(=⨯⨯}都是有理数可数Q x ∈∀,因为Q Q ⨯)}({Qx Q x ⨯=∈ 是可数个有理数集的并,故可数,又因为)}({Q Q Q Qx Q Q x ⨯⨯=⨯⨯∈ 并且Q Q Q Q x Q x ⨯⨯⨯∈∀~}{,,所以Q Q x ⨯⨯}{可数故Q Q Q ⨯⨯可数14.证明:可数集的有限子集的全体仍是可数证明: 设Q 为可数集,不妨记为:},,,,,{321 n r r r r Q =N n ∈∀,令}},,,,{|{321n n r r r r a a A ⊂=则 n A 为有限集n 2n =A ,则 n A =∈Nn A 为正交可数集,即0n C ≤A又因为}{A Q x x Q ⊂∈|}{~,所以A Q C ≤=0 ,故0C A =A 是Q 上一切有限子集的全体;15.设是两两不相交的集所组成的集列,证明:∅==∞→∞→n n n n E E lim lim证明: 因为{ ,,21E E }两两不相交,所以,∅=∈∀∞=m nm E N n ,,故∅=∅=∈=∞=∞=∞=∞→11)(lim n m nm n n n E E另一方面,若∅≠=∞=∞=∞→)(lim 1m nm n n n E E ,我们取n n E x ∞→∈lim 0则k n N k k ≥∃∈∀,,使得k n E x ∈.特别的,当 N k ∈=1时,n E x n ∈≥∃有,11,当11+=n k时:211221,E x n n k n N n ∈>+=≥∈∃,有)21n n < 从而,21n n E E x ∈ 这与∅=21n n E E 矛盾,故∅=∞→n n E lim从而∅==∞→∞→n n n n E E lim lim16.若集A 中每个元素由相互独立的可列个指标所决定,即A=}{21 x x a ,而每个指标i x 在一个势为C 的集中变化,则集A 的势为C;证明:设i x 在势为C 的集合中变化,即A=∏∞=∈121}),,(|{21i ix x B x x a因R B R B i i i i'→':,~ϕϕ 是既单又满的映射, 定义 ∏∏∞=∞∞=∈=∀→1211),,(;:i i i iB x x x R Bϕ,)),(),((),,()(2121 x x x x x ϕϕϕϕ==故∞∞=∏RB i i到是1ϕ得既单又满的映射,从而,∞∞=∏R BA i i~~1从而 C R A ==∞17.设n n A ∞=1 的势是C,证明至少有一个n A 的势也是C;证明:因为n n n A A N n ∞=⊂∈∀1, ,所以C A A n n n =≤∞=1如果C A N n n ≠∈∀,,则C A N n n <∈∀,,即,n A 正交可数,从而,n n A ∞=1正交可数.这与C A n n =∞=1矛盾.故,N ∈∃n ,使C A n =.18.证明:0,1上的实函数全体具有势C2 证明:设]}1,0[|{⊂=A A ,则C 2=记0,1上全体是函数所构成的集合为ϑ 对于 ∈∀x ,定义函数⎩⎨⎧∉∈=A x Ax x A .0,1)(χ ,即A χ是集合A 的特征函数;}{ϑ⊂⊂=]1,0[|A A ⇒ ϑ≤= C 2另一方面,ϑ∈∀f ,定义 ]}1,0[|))(,{(∈=x x f x B f则 2R R R B f =⨯⊂,}|{2R R B B R ⨯⊂=,则C R 22=}|{~ϑϑ∈f B f 2R ⊂,所以 C R 22=≤ϑ,从而,C 2=ϑ20.证明:n R 中孤立点集市有限或可数集证明:E x ∈∀中,E 是n R 的一些孤立点所构成的集合 由定义,0>∃x δ,使得}{),(x E x O x = δ.现在令 }|)2,({E x x O x∈=δξ,则ξ中任意二领域是不相交的事实上,若y x E y x ≠∈∃,,,有∅≠)2,()2,(yxy x O δδ取)2,()2,(yxy x O z δδ⋂∈,并且不失一般性设:y x δδ≤,则y yxy z z x y x δδδρρρ=+<+≤22),(),(),(.故 }{)2,()2,(y y x O x yx=∈δδ ,这推出y x =,这与y x ≠矛盾.E x ∈∀,取一个有限点)2,(xx x O r δ∈,则,当,y x r r y x =⇔≠,所以}|{~E x r E x ∈,故ξ≥∈=}|{E x r E x .E 正交可数.19.设|{0x E R E n=⊂,}的内点是E x 称为E 的内点集,证明:0E 是开集; 证明:0E x ∈∀,因为x 为E 的内点,0>∃ε使得:E x x ⊂+-),(εε,现在证:),(E x x ⊂+-εε事实上,),(εε+-∈∀x x y ,取0|y -x |>-=εδ则E x x y y ⊂+-⊂+-),(),(εεεε,故0E y ∈,从而,0),(E x x ⊂+-εε,即0E 中每个点都是0E 得内点因此,0E 为开集21.假设f(x)是a,b 上唯一有限实函数,证明:它的第一类间断点的全体是可数的; 证明:a,b 中右极限存在的间断点是至多可数的. 令)0()(lim |),[{+=∈=+→'x f x f b a x S xx 有限},N ∈∀n ,作:}0|),[{>∃∈=δb a x E n ,时,使得),[),(,b a x x x x δδ+-∈'''∀ 则:1),{)(1b a x f E n n 在是∞= 上连续点的集合事实上,0,10>∀⋂∈∀∞=εn n E x ,取)1(1εε<>nn 即 因n E x ∈0,故),[),(,,000b a x x x x ⋂+-∈'''∀>∃δδδ有ε<-|)()(|0x f x f 即,)(x f 在0x 点连续;2n E S N n -∈∀,,因)()(lim 0+→'='+x f x f xx 有限,故0>∃x δ使得),[),(b a x x x x ⊂+∈'∀δ ,nx f x f 21|)()(|0<-'+,故,),,(,x x x x x δ+∈'''∀有nx f x f 1|)()(|<''-',从而,n x E x x ⊂+),(δ.现在证:}|),{(n x E S x x x A -∈+=δ 是两两不相交的开区间集,,2121x x E S x x n ≠-∈∀,不妨设 21x x <,如果∅≠++),(),(212211x x x x x x δδ ,取),(),(212211x x x x x x x δδ++∈*则 1121x x x x x δ+<<<*即,n x E x x x ⊂+∈),(2112δ,这与n E S x -∈2矛盾,故A 两两不相交,从而n E S -可数故)(11n n n E S S -⋃=⋂-∞=∞=至多可数;即,),[b a 中第一类间断点至多可数; 20.证明nR 中孤立点集是至多可数集证明:设F 是点集E 中一些孤立点所构成的集合0,>∃∈∀x F x δ,有}{),(x E x O x = δ现在先证:}|)2,({F x x O x∈δ是两两不相交的事实上,2121,,x x F x x ≠∈∀,如果)2,()2,(2121xxx O x O y δδ⋂∈∃,则),(),(),(2121x y y x x x ρρρ+≤22122x xxδδδ≤+<不妨设21x x δδ≤,故}{),(2,212x E x O x x =⋂∈δ,这与21x x =矛盾.所以,}|)2,({F x x O x∈δ是两两不相交的.F x ∈∀,取有理点)2,(xx x O r δ∈,故Q F x r F x ⊂∈}|{~,从而,0C Q F =≤22.证明:nR 中直线上每个闭集必是可数个开集的交,每个开集必是可数个闭集的并. 证明:设F 是R '中的一个闭集,先证:0>∀δ,),(δF O =R ∈x {|}),(δρ<F x 是R 中的开集,其中}|),(inf{),(F y y x F x ∈=ρρ),(δF O x ∈∀,则δρ<),(F x ,取δρδε<-=),(F x ,故),(δF O ),(δF O ⊂事实上,),(εx O t ∈∀,所以),(δF O 是开集 现在证:)1,(1nF O F n ∞== 、事实上,N n ∈∀,)1,(n F O F ⊂,所以)1,(1nF O F n ∞=⊂ .反过来,)1,(1n F O x n ∞=∈∀ ,有nF x 1),(<ρ.故0),(=F x ρ.F x ∉,即F R x -∈.0>∃δ,使),(δx O F R -⊂.所以),(δx O ∅=F .故,δρ≥),(F x ,这与0),(=F x ρ矛盾.所以F x ∈,从而)1,(1nF O F n ∞== .再来证:每个开集必是可数个闭集的并.事实上,若G 是开集,则G R -是闭集.所以存在可数个开集N n n O ∈}{,使得}{n O G R =-,所以)(}{11n n n n Q R O R G -=-=∞=∞= .即G 是可数个闭区间集∞=-1)}{(n n Q R 的并.23.假设∞=1}{i i I 是一列开区间,如果∅≠∞=i i I 1,证明i i I ∞=1是一个开区间证明:N ∈∀i ,记}N ∈=i i |inf{αα,}N ∈=i i |sup{ββ ,其中),(i i i I βα=,因为∅≠∞=i n I 1,所以可取),(10βα⊂∈∈∞=i i n I I x现在我们证:i i I ∞==1),( βα因为N i ∈∀,),(),(βαβα⊂=i i i I ,故),(1βα⊂∞=i i I反过来,),(βα∈∀x ,即βα<<x ,当0x x ≤时,因为x <α,所以N ∈∃1i ,有ββαα≤<≤<<<110i i x x x .所以i i i i i I I x ∞=⊂=∈1),(111 βα. 如果β<≤x x 0,N ∈∃2i ,使220i i x x x β<≤<,故i i i i i I I x ∞=⊂=∈12111),( βα,从而i i I ∞==1),( βα24.设R E '⊂,}|{A B ∈λλ是E 的一个开覆盖,证明:}|{A B ∈λλ中必存在至多可数个}|{N ∈i B i λ,使得iB E i λN∈⊂ .证明:不妨设}|{A B ∈λλ中每一个元都是开区间.E x ∈∀,存在A x ∈λ,有x B x λ∈,故有:R ∃端点的开区间),(R r x x =δ,使得x B x x λδ⊂⊂.即,ix Ex E δ∈⊂ .又因为}|),({E x R r x x x ∈=δ~Q Q E x R r x x ⨯⊂∈}|),{(所以}|{E x x ∈δ可数.不妨设}|{E x x ∈δ=}|{N n x ∈δ,又记=∈}|{E x B n λ}|{N n B n ∈λ.其中,n B n λδ⊂}(N n ∈∀故n B E n n x λδδNn NEx ∈∈∈⊂=⊂25.已知:可数集},21,21,21,1{2 n E =,开区间列)1,1(εε+-,)21,21(εε+-, ),21,21(,n n εε+-,覆盖了它,这里210<<ε,从此覆盖中能否选出集E 的有限子覆盖.答:不能,证明如下:证明:反正如果k n n n ,,21∃,N k ∈,使得)21,21(1n nki E εε+-⊂= ,不妨设 k n n n <<< 21,因为)1(k i i ≤≤∀,12122112121+=->-≥-kk k i n n n n εε,则121+k n)21,21(1k k n n ki εε+-∉= .这与E k n ∈+121矛盾.所以不真.26.设}|{A F ∈λλ是一簇集合,如果A n ∈∀λλλ,,,21 ,有∅≠=i F ni λ1,则称集合簇}|{A F ∈λλ具有有限交性质.证明:如果}|{A F ∈λλ是具有有限交性质的非空有界闭集簇,那么∅≠∈λλF A.证明:取A ∈0λ,令}1),(|{0<∈=λρF x R x G n ,其中=),(0λρF x}|),(inf{0λρF y y x ∈,∑=-=ni i iy xy x 12)(),(ρ,则G 是n R 中开集.且G F ⊂0λ,如果∅=∈λλF A,则)(0λλλλλF G F G G F AA-=-=⊂∈∈ .由Borel 有限覆盖定理P27 定理9,存在m λλλ,,,21 ,使得⊂0λFi mi mi F G F G i λλ11)(==-=- .从而,∅====i mi i mi F F F λλλ01)(0 ,这与}|{A F ∈λλ具有有限交性质矛盾.27.试用Borel 有限覆盖定理证明:Bolzano-Weiestyass 定理P24定理4,若E 是是一个有界无穷点集,则∅≠'E .证明:设E 是nR 中的有界无穷点集,如果∅='E ,则E x ∈∀,0>∃x δ,使得}{),(x E x O x = δ,则),(x Ex x O E δ∈⊂ .由Borel 有限覆盖定理,E x x x n ∈∃,,,21 ,有),(1i x i m i x O E δ=⊂ ,从而)],([1i x i m i x O E E δ== =),(1i x i m i x O E δ ==}{1i mi x = =},,,{21n x x x ,这与E 为无穷集矛盾,从而∅≠'E .29.可数个开集的交称为δG 型集,可数个闭集的并称为σF 型集.证明:有理数集不是δG 型集,但是σF 型集.证明:设Q 为R '中全体有理数所构成的集合.如果Q 是δG 型集,即n n G Q ∞==1,其中n G 是开集,由开集的结构,N n ∈∀,),(k k n n kn G βα =,其中k n n k k )},{(βα是互不相交的开区间. 不是一般性,设 ≤≤≤≤<≤<11111n n n n n n k βαβαβα这是,必有1-∞=1n α事实上,如果-∞≠1n α,即r ∃为有理数,1n r α<.因为N k ∈∀,k n n r αα<<1,故Q G G r n n n n n kk k =⊃=∉∞=1),( βα,这与Q r ∈矛盾.2N k ∈∀,1,,+=k n k n αβ如果N k ∈∃*,1,,**+≠k n k n αβ.则1,,**+<k n k n αβ.因此,Q r ∈∃,有1,,**+<<k n k n r αβ.这有:Q G r n n n kkk⊃=∉),(βα 这是一矛盾.3 +∞==}{sup ,k n kn ββ.事实上,若+∞≠n β,则n β为有限实数,Q r ∈∃,使得k ∀,r n k n <≤ββ,,故Q G r n n n kk k ⊃=∉),(βα ,这也是一矛盾.}|{}{),(,,,,k R G R k n kk n kk n k n kn ααβα ==-'=-'},|{}|{}{,,111k N n k G R G R Q R k n k n n n n n n ∈==-'=-'=-'∞=∞=∞=αα 为可数集,这与C Q R =-'矛盾.因为在R '中单点集是闭集,所以Q r ∈∀,令}{r F r =,则F 为闭集,所以r Qr F Q ∈= ,故Q 为σF 型集.30.定义在]1,0[上的任何函数的连续点构成的集合是一个δG 型集.92'.证明:开区间)1,0(中有理点的全体不是一个δG 型集,但是一个δG 型集.30.是否存在]1,0[上的的函数满足:在有理点处连续,而在无理点处都不连续 是证明你的结论. 回答:不存在.为此,只需证明如下命题命题:开区间)1,0(中的任何函数的连续点构成的集合是一个δG 型集.这是因为,如果存在]1,0[上的函数f ,使得)()(lim |)1,0({)1,0(x f x f x Q xx ='∈=→'' . 当命题成立时,必有Q )1,0(为δG 型集,这与92'题的结论矛盾. 命题的证明:设)(x f 是开区间)1,0(有定义的一实函数,记)()(lim |)1,0({x f x f x E xx ='∈=→'',下证:E 是一个δG 型集.N n ∈∀,令10|),{(<<<=βαβαn A 且⇒∈∀),(2,1βαx xnx f x f 1|)()(|21<-.又记n n A G =.于是,我们只需证:n N n G E ∈= .事实上,E x ∈∀,因为)()(lim x f x f xx ='→'',所以N n ∈∀,0>∃n δ,使得)1,0(),(⊂+-∈'∀n n x x x δδ,恒有nx f x f 21|)()(|<-',所以 )1,0(),(,21⊂+-∈∀n n x x x x δδ,恒有+-≤-|)()(||)()(|121x f x f x f x fnx f x f 1|)()(|2<-,故n n n G x x ⊂+-),(δδ,所以n n n n n G x x x ∞=∞=⊂+-∈11),( δδ即,n n G E ∞=⊂1反过来,n n G x ∞=∈∀1.⇒+-∈'∀>∃>∀),(,0,0:(n n x x x f δδδε)|)()(|2ε<-'x f x f0>∀ε,取N n ∈0,使得ε<01n .因为001n n n n A G G x =⊂∈∈∞=所以R ∈∃βα,:10<<<βα,使得),(βα∈x ,并且),(,21βα∈∀x x 有ε<<-0211|)()(|n x f x f ,取0},min{>--=x x βαδ,故x '∀:δ<-'||x x ,即 x ',),(),(βαδδ⊂+-∈x x x ,所以ε<<-'01|)()(|n x f x f .从而='→'')(lim x f x x)(x f .故E x ∈.因此,n n G E ∞==1 真.31.假设R A '⊂,且对任意R x '∈,存在x 的一个δ-领域),(δδ+-x x ,使得A x x ),(δδ+-最多只有可数个点,证明:A 必有有限级或可列集.证明:因为A x ∈∀,0>∃x δ使得x x x B A x x =+- ),(δδ是一个至多可数集,而),(x x Ax x x A δδ+-⊂∈由24题,A N i x i ⊂∈∃}|{使得:),(1i i x x i n x x A δδ+-⊂∞=又i i i i i x n x x i n x x i n B x x A x x A A ∞=∞=∞==+-=+-=111)),(()],([ δδδδ.即A 至多可数. 32.证明下列陈述相互等价. i A 是无处稠密集ii A 不包含任何非空开区间iii A 是无处稠密集 iv A 的余集A C 是稠密集无处稠密集:nR E ⊂,E 称为是无处稠密的,如果,0>∀δ,nR x ∈∀,),(δx O E ⊄.证明:i ⇒ii.设A 是无处稠密集,即0>∀δ,R x '∈∀有A x x ⊄+-),(δδ. 如果)(,βαβα<'∈∃R ,有A ⊂),(βα.取2βα+=x ,取02>-=αβδ,故A x x ⊂=+-),(),(βαδδ.这与A x x ⊄+-),(δδ得假设矛盾.所以i ⇒ii 真.ii ⇒iii.如果A 不是无处稠密的,即nR x ∈∃0,0>∃δ,使得),(δδ+-x xA ⊂=),(βα.这与A 不包含任何非区间矛盾.iii ⇒iv.设A 无处稠密.现在我们证:R A R '=-'.R x '∈∀,如果A R x -'∉,则A x ∈,所以0>∀δ,有A A x x =⊄+-),(δδ.故∅≠-'+-)(),(A R x x δδ.所以A R x -'∈.iv ⇒i.设R A R '=-',R x '∈∀,0>∀δ,∅≠-'+-][),(A R x x δδ.所以A x x ⊄+-),(δδ.从而,A 无处稠密. 33.证明:若集合E 的聚点0x 不属于E ,则0x 是E 的边界点.定义:0x 称为E 的边界点,如果0>∀δ,有∅≠E x O ),(0δ且∅≠E x O ),(0δ.证明:设E E x -'∈0,则0>∀δ,∅≠=-E x O E x x O ),(}]{),([000δδ.且∅≠-∈)(),(00E R x O x n δ,即,0x 是E 的界点.第二章习题参考解答1:证明:有理数全体是R '中可测集,且测度为0.证:1先证单点集的测度为0.R x '∈∀,令}{x E =.0>∀ε,N n ∈∀)2,2(11+++-=n n n x x I εεε,因为E I I E m n n n n ⊃=∞=∞=∑11||inf{* ε,n I 为开区间≤}∑∑∞=∞===112||n n n nI εεε.故0*=E m .所以E 可测且0=mE .2再证:R '中全体有理数全体Q 测度为0.设∞=1}{n n r 是R '中全体有理数,N n ∈∀,令}{n n r E =.则}{n E 是两两不相交的可测集列,由可测的可加性有:∑∑∞=∞=∞=====11100)(*n n n n n mE E m Q m .法二:设∞==1}{n n r Q ,N n ∈∀,令)2,2(11+++-=n n n n n r r I εεε,其中ε是预先给定的与n无关的正常数,则:∑∑∑∞=∞=∞=∞===≤⊃=11)(112||}||inf{*i i nin i i n IQ I I Q m εεε .由ε得任意性,0*=Q m .2.证明:若E 是nR 有界集,则+∞<E m *.证明:若E 是nR 有界.则∃常数0>M ,使E x x x x n ∈=∀),,(21 ,有=EM xxni ini i≤=-∑∑==1212)0(,即)1(n i i <≤∀,有M x i ≤,从而],[1M x M x E i ni i +-⊂∏=.所以+∞<=≤+-≤∑∏==n ni i n i i M M M x M x m Em )2(2],[**113.至少含有一个内点的集合的外测度能否为零解:不能.事实上,设nR E ⊂,E 中有一个内点 E x x x n ∈=),(1 .0>∃δ,使得E x x x O i ni i ⊂+-=∏=)2,2(),(1δδδ.则0)]2,2([**1>=+-≥∏=n i ni i x x m E m δδδ所以0*≠E m . 4.在],[b a 上能否作一个测度为a b -,但又异于],[b a 的闭集解:不能事实上,如果有闭集],[b a F ⊂使得a b mF -=.不失一般性,可设F a ∈且F b ∈.事实上,若F a ∉,则可作F a F }{*=,],[*b a F ⊂.且mF mF a m mF =+=}{*.这样,我们可记*F 为新的F ,从而),(),(),(],[b a F b a F b a F b a -=-=-.如果∅≠-F b a ],[,即F b a F b a x -=-∈∃),(],[,而F b a -),(是开集,故x 是F b a -],[的一个内点,由3题,0),()],([)],([*≠-=-=-mF b a m F b a m F b a m .这与a b mF -=矛盾.故不存在闭集],[b a F ⊂且a b mF -=5.若将§1定理6中条件")("0∞<≥n k n E m 去掉,等式∀n n n n mE E m ∞→∞→<lim )lim (是否仍成立 解:§1定理6中条件")("0∞<≥n k n E m 是不可去掉的.事实上,N n ∈∀,令),1[n n E n --,则∞=1}{n n E 是两两相交的可测集列,由习题一得15题:∅==∞→∞→n n n n E E lim lim .故0)lim (=∞→n n E m ,但N n ∈∀,1),1[=-=n n m mE n .所以1lim =∞→n n mE .从而)lim (lim n n n n E m mE ∞→∞→≠.6.设1E , ,2E 是)1,0[中具有下述性质的可测集列:0>∀ε,N k ∈∃使ε->1k mE ,证明:1)(1=∞=i i E m证:事实上,0>∀ε,因为N k ∈∃,ε->1k mEε->≥≥≥∞=1)(]1,0[11k i i mE E m m7.证明:对任意可测集B A ,,下式恒成立.mB mA B A m B A m +=+)()( .证明:A A B A B A )(-=且∅=-A A B A )(故 mA A B A m B A m +-=)()( .即)()()(A B m A B A m mA B A m -=-=-又因为)()(A B A B B -=.且∅=-)()(A B A B ,所以=mB)()(A B m A B m +-故)()(B A m mB mA B A m -=-,从而mB mA B A m B A m +=+)()( 8.设是1A ,2A 是]1,0[中的两个可测集且满足121>+mA mA ,证明:0)(21>A A m .证:212121)()(mA mA A A m A A m +=+ .又因为1])1,0([)(21=≤m A A m所以01)()(21212121>-+≥-+=mA mA A A m mA mA A A m9.设1A ,2A ,3A 是]1,0[中的两个可测集,且2321>++mA mA mA ,证明:0)(321>A A A m证:321321321)(])[()(mA A A m A A A m A A A m +=+ =)()()()(21321A A m A m A m A m -++.所以)()()()()][()(32132132121A A A m A m A m A m A A A m A A m -++=+又因为)]()()[(133221A A A A A A m =)]()[(32121A A A A A m =)][()(32121A A A m A A m +)][()[(32121A A A A A m -=)(21A A m + 321)[(A A A m ][(321A A A m -.所以=)(321A A A m -+)][()(32121A A A m A A m )]()()[(133221A A A A A A m =)]()()[()()()()(133221321321A A A A A A m A A A m A m A m A m --++因为1]1,0[)(321=≤m A A A m1]1,0[)]()()[(133221=≤m A A A A A A m .所以02)()()(11)()()()(321321321>-++=--++≥A m A m A m A m A m A m A A A m .10.证明:存在开集G ,使mG G m >证明:设∞=1}{n n r 是]1,0[闭区间的一切有理数,对于N n ∈∀,令)21,21(22+++-=n n n n n r r I ,并且n n I G ∞==1是R '中开集2121121212111=-==≤∑∑∞=+∞=n n n n mI mG .而,]1,0[⊃G ,故mG m G m =>=≥211]1,0[. 11.设E 是R '中的不可测集,A 是R '中的零测集,证明:CA E 不可测.证明:若CA E 可测.因为A A E ⊂ ,所以0*)(*=≤A m A E m .即0)(*=A E m .故A E 可测.从而)()(CA E A E E =可测,这与E 不可测矛盾.故CA E 不可测. 12.若E 是]1,0[中的零测集,若闭集E 是否也是零测集.解:不一定,例如: E 是]1,0[中的有理数的全体.]1,0[=E .0=mE ,但1]1,0[==m E m .13.证明:若E 是可测集,则0>∀ε,存在δG 型集E G ⊃,σF 型集E F ⊃,使ε<-)(F E m ,ε<-)(F G m证明:由P51的定理2,对于nR E ⊂,存在δG 型集E G ⊃,使得E m mG *=.由E 得可测性,mE E m =*.则0>∀ε.0)(=-=-mE mG E G m .即0>∀ε,ε<-)(F G m . 再由定理3,有σF 型集F 使得E F ⊃.且ε<=-=-0)(mF mE F E m15.证明:有界集E 可测当且仅当0>∀ε,存在开集E G ⊃,闭集E F ⊃,使得ε<-)(F G m .证明:)(⇐N n ∈∀,由已知,存在开集E G n ⊃,闭集E F n ⊃使得nF G m n n 1)(<-. 令n n G G ∞==1,则E G ⊃.N n ∈∀,)(*)(*)(*n n n F G m E G m E G m -≤-≤-)(01∞→→<n n.所以,0)(*=-E G m .即E G -是零测集,可测. 从而,)(E G G E --=可测)(⇒设E 是有界可测集因为E I IE m n n n n⊃=∞=∞=∑11||inf{* ,n I 为开长方体+∞<}.故,0>∀ε,存在开长方体序列∞=1}{n n I ,使得E I n n ⊃∞=1.有2*||*1ε+<≤∑∞=E m I E m n n .另一方面,由E 得有界性,存在nR 中闭长方体E I ⊃.记E I S -=,则S 是nR中有界可测集.并且mE mI mS -=.由S 得有界可测性,存在开集S G ⊃*有2)(*ε<-S G m .因为E I ⊃,故S I G ⊃ *.因此mS I G m S I G m -=->)()(2** ε==--)()(*mE mI I G m))((*I G m mI mE --)(*I G I m mE --=令,I G I F *-=,则F 是一个闭集,并且由E I S I G -=⊃ *,有F IG I E =-⊃ *.因此2)()(*ε<--=-=-I G I m mE mF mE F E m ,从而,存在开集E G ⊃,闭集E F ⊃.有))()(()(F E E G m F G m --=- )(E G m -≤)(F E m -+εεε=+<22.由ε的任意性知,0})0{(*=⨯'R m .即}0{⨯'R 是零测集.从而,位于ox 轴上的任意集}0{⨯'⊆R E ,因此,E 为零测集.16.证明:若nm R E ⊂是单调增加集列不一定可测且m n E ∞=1,则m m m n E m E m *lim )(*1∞→∞==证明:m n E E ∞==1,即,E 有界并且E E E E E n ⊂⊂⊂⊂⊂⊂ 321故+∞<≤≤≤≤≤≤E m E m E m E m E m n *****321 ,即∞=1}*{m m E m 单调递增有上界.所以,m m E m *lim ∞→存在并且E m E m m m **lim ≤∞→下证:E m E m m m **lim ≥∞→.由于E 有界,可作一个开长方体),(1∏==∆ni iiβα,有N n ∈∀,∆⊂⊂E En.0>∀ε,因为n i n i i n E I I E m ⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故,存在开长方体序列}{i I使得n i n E I ⊃∞=1,且ε+<=≤≤∑∑∞=∞=∞=111*||*)(**i n ii ii n n E m II m I m E m .令∆=∞= )(1i n n I G ,则nG 为有界开集,且∆⊂⊂n n G E ,ε+<≤≤∞=n n i n n E m I m G m E m *)(***1.N n ∈∀,又令=n A k n G ∞=1),2,1( =n .且n n A A ∞==1,则由∆⊂⊂n n A E 知,}{n A 是单调递增的可测序列,由P46的定理4,n n n n mA A m mA E m ∞→∞→==≤lim lim *.又由,)(N n G A n n ∈∀⊂,有ε+<≤n n n E m mG mA *.从而ε+≤∞→∞→n n n n E m mA *lim lim .故ε+≤∞→n n E m E m *lim *.由ε得任意性,即得n n n E m mA *lim ∞→≤.从而,n n n m n E m E m mA *lim )(*1∞→∞=== .17.证明:n R 中的Borel 集类具有连续势.证明:为了叙述方便,我们仅以1=n 为例进行证明:用[,]b a 表示R '上的开区间,用),(b a 表示上的一个点.A 表示R '上的所有开区间的集合;Q 表示R '所有闭集;σρ和δϑ分别表示所有的σF 型集,所有δG 型集.因为R R b a R b a b a R b a b a A '⨯'⊂<'∈'∈=},,|),{(~},[,{],又因为A R a b a R ⊂'∈'}[,{]~.故C R R A R ='⨯'≤≤'.所以C A =.又因为|{O A ⊆存在可数个开区间}{k I ,有}1k k I O ∞== .所以Q A ≤.又定义映射Q A →∞:ϕ,∞=∈∀∏A I ni i 1,有Q I I k k ni i ∈=∞==∏11)( ϕ.故ϕ是一个满射.所以C A A Q A C =≤=≤=∞∞)(ϕ. 故C A =.又定义:→∞Q:ψδϑ,→∞Q :τσρ,i i ni i O O ∞===∏11)( ψ,ci i ni i O O ∞===∏11)( τ则ψ与τ都是满射.所以 C Q Q Q C =≤==≤∞∞)(ψϑδ.即,C =δϑ.同理,C =σρ.记β时R '上的Borel 集的全体.因集合的“差”运算可以化成“交”运算,例如:∆⊂=⊂=∞=∞=A A E E n n n n 11c B A B A =- .因此,β中的每个元都是δσϑρ 中可数元的并,交后而成.故C C =≤≤=∞)(δσδσϑρβϑρ .从而,C =β.即,R '上Borel 集的全体的势为C .18.证明对任意的闭集F ,都可找到完备集F F ⊂1,使得mF mF =1.19.证明:只要0>mE ,就一定可以找到E x ∈,使对0>∀δ,有0)),((>δx O E m .证明:设n R E ⊂,0>mE .首先将nR 划分成可数边长为21的左开右闭的n 维长方体 }|)21,2({1Z m m m i i ni i ∈+= .则}|)21,2({11Z m m m E i i ni i ∈+== β互不相交且至多可数.不妨记为1}{)1(1A k k E ∈=β,N A ⊂1.因)1(1k k E E ==β,则0)1(>=∑kkEm mE .故N k ∈∃1,有0)1(1>k mE .又因}|)21,2({212)1(2Z m m m E i i ni i k∈+== β互不相交且至多可数.故可记2}{)2(2A k k E ∈=β,其中 N A ⊂2,又由,)2(2)1(k k k E E ==β.故0)2()1(>=∑k kk E mE ,所以, N A k ⊂∈∃22,有0)2(>k mE .这样下去得一个单调递减的可测集列 ⊃⊃⊃=)2()1()0(210k k k E E E E ,其中:N j >∀,)]21,2([)]21,2([{111j i n i j i j i ni j i j k jk m m E m m EE j j+=+===- .记)]21,2([1j i ni ji j m m E F +== ,故闭集列∞=1}{j j F 单调递减且N j >∀,)(0)21(21)(0)(+∞→→=≤≤<j mF E m jnnj j k jj . 由闭集套定理,j j F x ∞=∈∃1! .对于0>∀δ,因jnj mF )21(≤,取N j >0,使δ<0)21(j n .则 E x O m m E F x j i ni j i j ),()]21,2([0001δ⊂+=∈=,故0)),((0>≥j mF x O E m δ .20.如果nR E ⊂可测,0>α,记}),,(|),,{(11E x x x x E n n ∈= ααα.证明:E α也可测,且mE E m n⋅=αα)(.证明:1先证:E m E m n*)(*⋅=αα因为E I IE m i i i iαα⊃=∞=∞=∑11||inf{)(* ,i I 为开长方体},对于开长方体序列∞=1}{i n I ,若E I i i α⊃∞=1,则E I i i ⊃∞=α11,E I i i ⊃∞=α11也是开长方体序列,且∑∞=≤1|1|*i i I E m α=∑∞=1||1i inIα.即∑∞=≤⋅1||*i i nI E m α.因此≤⋅E m n*αE I I i i i i α⊃∞=∞=∑11||inf{ ,i I 为开长方体}.另一方面,0>∀ε,因为E I IE m i i i i⊃=∞=∞=∑11||inf{* ,i I 为开长方体}.故存在开长方体序列n i i E m I αε+<∑∞=*||1*.所以E I i i αα⊃∞=*1 ,故εαααα+<==∑∑∞=∞=E m I I E m n i i n i i *||||)(*1*1*.由ε得任意性,知E m E m n *)(*αα≤.从而E m E m n *)(*αα=2再证:E α可测事实上,nR T ⊂∀,n R T ⊂α1,由E 得可测性,=)1(T m α+)1(*E T m α)1(*CE T m α.故,=)(1T m n α+)(*1E T m n αα )(*1CE T m n αα.因此=T m *+)(*E T m α )(*CE T m α .E α可测. 因此,当E 可测时,mE E m nαα=*.下面是外测度的平移不变性定理.定理平移不变性设nR E ⊂,nR x ∈0,记}|{}{00E x x x x E ∈+=+.则E m x E m *}){(*0=+证明:当E 是nR 中开长方体时}{0x E +也是一个开长方体,且其相应的边均相同,故E m E x E x E m *|||}{|}){(*00==+=+.如果E 是nR 中的任意点集,对于E 德任意由开长方体序列∞=1}{i i I 构成的覆盖,∞=+10}}{{i i x I 也是覆盖}{0x E +,且仍是开长方体序列,故≤+}){(*0x E m∑∑∞=∞==+110|||}{|i i i iI x I.所以≤+}){(*0x E m E I I i i i i ⊃∞=∞=∑11||inf{ ,i I 为开长方体}=E m *.即≤+}){(*0x E m E m *.下证:E m *≤}){(*0x E m +令}{01x E E +=,由上面的证明知,}){(*01x E m -+≤1*E m .所以=E m *}){(**}){(*0101x E m E m x E m +=≤-+.从而,E m x E m *}){(*0=+.21.设2)(x x f =,R E '⊂.是零测集,证明:}|)()(2E x x x f E f ∈==也是零测集.证明:设R E '⊂,0=mE1当)1,0(⊂E 时,0>∀ε,当0*=E m ,则存在开区间到∞==1)},({i i i i I βα使得)1,0(),(1⊂⊂∞=i i i E βα ,且2)(||11εαβ<-=∑∑∞=∞=i i i i iI.故==∞=)),(()(1i i i f E f βα)1,0(),(221⊂∞=iii βα .))(()(|)(|)(*12211i i i i i iii i i I f E f m αβαβαβ+-=-=≤∑∑∑∞=∞=∞=εεαβ=-=-≤∑∞=22)(21i i i .所以0)(*=E f m .第三章习题参考解答 1.设f 是E 上的可测函数,证明:R a '∈∀,})(|{a x f x E ==是可测集.解:R a '∈∀,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与})(|{a x f x E ≤=均是可测集.从而})(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测.2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r ,})(|{r x f x E >=是可测集.证:)(⇐R a '∈∀,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞→lim ,则})(|{})(|{1k k r x f x E a x f x E >=>=∞= .由每个k r x f x E >)(|{}的可测性,知})(|{a x f x E >=可测.从而,)(x f 在E 上的可测.)(⇒设f 在E 上的可测,即R a '∈∀,})(|{a x f x E >=可测.特别地,当r a =时有理数时,})(|{r x f x E >=可测.3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题:命题1.若E 是R '中的非空子集,则R '∈∀α,有E m E m *||*αα=证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为E I I E m i i i i ⊃=∞=∞=∑11||inf{* ,i I 为开区间}.0>∀ε,存在开区间序列∞=1}{i i I ,E I i i ⊃∞=1 ,||*||*1αε+<≤∑∞=E m I E m i i .又因为E I i i ⊃∞=α1 注:若),(i i i I βα=,则⎩⎨⎧=ααααβααβααα),,(),,(i i i i i I .所以εααααα+⋅<==≤∑∑∑∞=∞=∞=E m I I IE m i i i i i i*||||||||||||*111.由ε得任意性,有i i i i i I E I I E m ,||inf{*11αα⊃≤∞=∞=∑ 为开区间}故存在开区间∞=1}{i i I ,使E I i i α⊃∞=1,且εα+<≤∑∞=E m I E m i i *||*1.又因为E I i i ⊃∞=α11,故εαα+<≤∑∞=E m I E m i i *|1|*1.由ε得任意性,有E m E m αα**||≤从而E m E m αα**||=.命题2.设R E '⊂,+∞<E m *,则E 可测⇔R '∈∀α,E α可测.由题的直接推论.证:)(⇐是直接的,我们仅需证明)(⇒R '∈∀α,如果0=α,则}0{=E α为零测集.故E α可测.不妨设0≠α.现在证明R T '⊆∀,)(*)(**E C T m E T m T m αα +=.事实上,对于R T '⊆∀,则R T '⊆α1,因为E 在R '可测,所以)1(*)1(*)1(*CE T m E T m T m ααα+=,即)(*||1)(*||1*||1CE T m E T m T m αααα+=)(*)(**E C T m E T m T m αα +=即E α可测.3.设f 是R '上的可测函数,证明:对于任意常数α,)(E f α仍是R '上的可测函数.解:记R E '=,对于R '∈∀α,当0=α时,R a '∈∀,⎩⎨⎧>'=≤∅=>af R E a f a f x E )0(,)0(,})0(|{.故})(|{a x f x E >α可测所以:)(x f α可测.当0≠α时,R '∈∀α,令x y α=,则})(|{})(|{a y f xyE a x f x E >=>α= })(|{1a y f y E >α.在因为f 在R '可测,故})(|{a y f y E >可测,又由命题2,})(|{})(|{a x f x E a y f y E >=>可测.从而)(x f α使R E '=上哦可测函数.4.设)(x f 是E 上的可测函数,证明:3)]([x f 在E 上可测.证明:R '∈∀α,因为)(x f 在E 上可测.所以})(|{3a x f x E >是可列集.即})(|{})(|{33a x f x E a x f x E >=>可测.从而3)]([x f 在E 上可测.5.若],[b a 上的函数)(x f 在任意线段],[βα)(b a <<<βα上可测,试证它在整个。

第三版实变函数论课后答案1

第三版实变函数论课后答案1

习题二 (p18)1. 用解析式给出)(1,1-和)(,-∞∞ 之间的一个11-对应。

解:)(1,1x ∀∈- ,令()tan 2x x πϕ= ,则())(,x ϕ∈-∞∞,且()'22012x x πϕπ=>⎛⎫+ ⎪⎝⎭,故ϕ严格单调于)(1,1-,1lim x→±=±∞, 所以()tan 2x x πϕ= 为)(1,1-和)(,-∞∞ 之间的一个11-对应。

2.证明只需a b <就有)()(,~0,1a b 。

证明:)(,x a b ∀∈,令()x ax x bϕ-=-,则())(0,1x ϕ∈,且显然为11-对应。

第三节习题(P20)1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12,n r r r ,则平面上的有理点)({}1,;,jj Q Q r s r Q s Q A ∞=⨯=∈∈= ,其中)({},;1,2,jijAr r i n == 为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯= 为可数集。

(第20页定理5)。

3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ.事实上,∀ n 阶有理数()()120,,,,ni n i i n i X x a x a Q a a a ==∈∑ 令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设k kQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ ,将k Q 中的点排成一列12,,m l l l , 则11k kj j Q Q Q A ∞+==⨯= ,其中(){},,,1,2,3,j i j A l i j γ== 显然为可数集,故11k j j QA ∞+== 也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞= 全体阶有理多项式作为可数集的并也是可数集.P24 习题1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为 ()12,,,,n Q r r r = . []0,1全体无理数的集合为 R,则[] 0,1Q R = . 由于 Q是一可数集合, R 显然是无穷集合(否则[]0,1为可数集, Q R 是可数集,得矛盾).故从P21定理7得 [] 0,1Q R R = . 所以 R=ℵ, R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P . 则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤, 而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞== .任取一,0,z f P m ∈∃≥有,z m f P∈. f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=也是至多可数集.又{},1;1,2,n N nx n ∀∈+= 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.(P29)2.设1nR R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂.表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.3.设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈ 所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y x y =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .第二章第二节习题(P35)1.证明点集F 为闭集的充要条件是F F =.证明:因为'F F F = ,若F 为闭集,则'F F ⊂所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂从而F 为闭集.P42第四节习题1. 证明全体有理数所构成的集合不是G δ集,即不能表成可数多个开集的交. 证明:设1R 上全体有理数为{}123,,,,n r r r r Q =. 则一个{}n r 作为单点集是闭集,所以{}1i i Q r ∞== 是F δ集,但要证Q 不是G δ集,则不容易.这里用到:Baire 定理,设nE R ⊂是F δ集,即1k k E F ∞== .k F ()1,2,k = 是闭集,若每个k F 皆无内点,则E 也无内点(最后再证之)反证设{};1,2,i Q r i == 为G δ集,即1i i Q G ∞== ,(i G 为开集,1,2,i = )1R 上的单调函数的全体所组成的集合的势为c =ℵ.证明:任取1R 上的单调函数f ,则其间断点至多可数个,设其无理数的间断点,为12,,,,m x x x (可为有限)设1R 中的有理数为{}12,,,,,n Q r r r f =∀∈令 ()()()()()()()()(){}21111,,,,,,,,i i i i f x f x r f r x f x r f r R ϕ=⊂ .则()f ϕ为2R 中可数集.若,f g ∈,使()()f g ϕϕ=,则()()(),i i x f x f ϕ∀∈存在()()(),jjx g x g ϕ∈使()()()(),,i i j j x f x x g x =所以 () (),i j i jx x f x g x ==, 从而()(),i i i x Q f r g r ∀∈=.f ∀的无理数间断点i x ,i x 也是g 的无理数间断点,且()()i i g x f x =.反过来也是的,g ∀的无理间断点,i x 也是f ,的无理数间断点,且()()i i g x f x =.故()()f g ϕϕ=表明f 与g 在有理点重合,无理间断点相同,且在无理间断点的值.所以f g =于1R ,所以ϕ是11-的.利用下面结论:Claim :任何其有连续势的集合的全体可数子集所构成的族的势为连续势. 知:c ≤ .另一方面()(){},0,1c c f x x c c ==+∈≤ 证毕.Lemma :设为,X Y 两集合,:X Y ϕ→是一个满射,则Y X ≤.即存在X 的一个子集,A A Y .证明:因为ϕ为满射,()(){}1,;,y Y y x x X x y ϕϕ-∀∈=∈=≠∅ 且,,y z Y y z ∈≠时必有()()11y z ϕϕ--=∅ .令(){}1;y y Y ϕ-Γ=∈,则由选择公理存在一个集合X ,它由Γ中每一个集合()1y ϕ-中恰取一个元素而形成,显 ,X X a X ⊂∀∈,存在唯一一个y Y ∈,使()1a y ϕ-∈.所以 X 与Y 是对等的,故Y X ≤.证毕.选择公理:若Γ是由互不相交的一些非空集合所形成的集合族,则存在集合X ,它由该族的每一个集合中恰取一个元素而形成.2. 证明[]0,1上全体无理数所作成的集合不是F δ集.证明:设[]0,1上全体无理数所作成的集合是 ,则[]0,1Q =- ,(Q 为1R上全体有理数的集合)若 为F δ集,则存在闭集,1,2,i F i = 使1i i F ∞== .所以[]10,1cc i i Q F ∞=== 为G δ集.[][]{}{}110,10,1i k i k Q F r ∞∞==⎛⎫== ⎪⎝⎭ ,{}k r ,i F 为闭集,{}k r 无内点. 1i i F ∞== 显为内点.所以i F 无内点.这说明[]0,1无内点(Baire 定理)得矛盾. 证毕.P452. 证明任何闭集都可表成可数多个开集的交.证明:设F 为任一闭集. ,n N ∀由本节第一题知()1;,n U p d p F n ⎧⎫=<⎨⎬⎩⎭为开集,且(),1,2,n F U n ⊂= ,从而有1n n F U ∞=⊂ .下证1n n F U ∞=⊂ ,这只用证1n n U F ∞=⊂ ,1n n p U ∞=∀∈ .反证设p F ∉则c p F ∈,故从F 为闭集知c F 为开集.故0δ∃>使(),cN P F δ⊂.从而有(),,q F d p q δ∀∈≥(否则(),d pqδ≥(),cq N P F δ⇒∈⊂cq F F ⇒∈=∅矛盾) 这说明()(),inf ,q Fd p F d p q δ∈=≥.另一方面,1n n p U ∞=∈ 表明,n n p U ∀∈,从而有()1,p F nρ=.令n →∞知(),0p F ρ=. 这与(),0d p F δ≥>矛盾. 所以p F ∈,从而1n n p U ∞=∈ 得证.P57第三章第2节习题2.证明:若E 有界,则m E *<∞.证明:若nE R ⊂有界,则存在一个开区间(){}120,,;n M n E R I x x x M x M ⊂=-<< .(0M >充分大)使M E I ⊂.故()()()111inf ;2n nn n m n n i m E I E I I M M M ∞∞*===⎧⎫=⊂≤=--=<+∞⎨⎬⎩⎭∑∏ .P682.举例说明定理6的结果对任m T *=∞的T 可以不成立.解:令[][]1,,,n A n T R =∞==-∞∞,则121n n A A A A +⊃⊃⊃11,0n n n n E A m A ∞∞==⎛⎫==∅= ⎪⎝⎭()()()0m T E m E m ***==∅=而()()lim lim n n n n m T A mA **→∞→∞==∞6Th m T *∴<∞中是必需的.3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*)证明:若()m A B =∞ ,则,A B A B ⊂()()()0,,m A B m A m B ⇒==∞=∞()()()()m A B m A B m A m B ∴∞=+=++∞ 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+-注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+- A 可测()()()()()c m B m A B m A B m A B m B A =+=+-()()()(),m A B m B A m B m A B ∴<∞-=- ()()()()m A B m A m B m A B ∴=+-P1032..证明当()f x 既是1E 上又是2E 上的非负可测函数时,()f x 也是12E E ⋃ 上的非负可测函数证明:显然()0f x ≥于1E ,且()0f x ≥于2E 表明()0f x ≥于12E E ⋃ 又1a R ∀∈,{}{}{}1212|()|()|()E E x f x a E x f x a E x f x a ⋃>=>⋃>由于f 在1E ,2E 上分别可测,{}1|()E x f x a >和{}2|()E x f x a >均为可测集,从而由P61推论2,{}{}12|()|()E x f x a E x f x a >⋃>={}12|()E E x f x a ⋃>为可测集,再由P101Th1知f 在12E E ⋃上可测或直接用P104Th4的证明方法.3.设mE <+∞,()f x 是E 上几乎处处有限的非负可测函数,证明对0ε>,都有闭集F E ⊂,使(\)m E F ε<,而在F 上()f x 是有界的证明:令{}0|()0E E x f x ==,{}|()E E x f x E ∞∞==,由条件f 在E 上几乎处处有限,0mE ∞=.由()f x 可测于E 上知,{}{}0|()0|()0E E x f x E x f x =≥⋂≤是可测集(P103Th2,P64Th4可测集的交仍可测)令{};0()E E x f x +=<<+∞,1;()k A E x f x k k ⎧⎫=≤≤⎨⎬⎩⎭,则 {}1;()\;()k A E x f x k E x f x k ⎧⎫=≤<⎨⎬⎩⎭可测,1k k E A +∞+== ,且1k k A A +⊂由P64Th5 ()lim k k m E mA +→+∞=,而mE <+∞,则()m E +<+∞故0ε∀>,0k ∃使00()2k m E mA ε+≤-<,而0k A E +⊂故0(\)2k m E A ε+<由0E ,0k A 可测,∃闭集01k F A ⊂,01(\)8k m A Fε<,∃闭集00F E ⊂使00(\)8m E F ε<令10F F F =⋃,则F 为闭集,且在F 上00()f x k ≤≤由于E F ∞⋂=∅,00\\(\)E F E E E F E E E F ∞+∞+=⋃⋃=⋃⋃ 又000001\\(\)(\)E E F E E F F E F E F +++⋃=⋃⋃⊂⋃ 而0011\(\)(\)k k E F E A A F ++⊂⋃,故00(\)(\)m E F mE m E E F F ∞+≤+⋃⋃0010(\)(\)m E F m E F +≤++ 001(\)(\)882842k k m E A m A F εεεεεεε+≤++≤++=+<证毕.7.设()f x 是1R 可测集E 上的单调函数,证明()f x 在E 上可测.证明:不妨设()f x 在E 上单调不减,即12,x x E ∀∈,若12x x <,则12()()f x f x ≤1a R ∀∈,我们来证明[|()]E x f x a =≤是可测集,这样由本节定理2知()f x 可测于E (P103).若1a R ∈使得[|()]a E x f x a ≤=∅ ,则显然a E 可测若1a R ∈使得a E ≠∅,此时若令0sup a y E =,则要么0y =+∞,要么0y <+∞(1) 若0y =+∞,则,M a M M y E ∀∃<∈,故,x x E M ∀∈∃使x M a y x E >∈, 由()f x 在E 上单调不减,我们有()()x M f x f y a ≤≤,即a E E E ⊂⊂,从而a E E =为可测集(2) 若0y <+∞,则要么0y E ∈,要么0y E ∉若0y E ∈,则0()f y a ≤,此时0(,)x E y ∀∈⋂-∞,0,x a x y E x y y ∃∈<<,由()f x 单调不减于E 知,()()x f x f y a≤< 故0(,)a E y E ⋂-∞⊂,而0a y E ∈,从而有00(,](,]a E y E E y ⋂-∞⊂⊂⋂-∞,故0(,]a E E y =⋂-∞为可测集. 若0y E ∈,而0()f y a >,0a y E ∉,则0(,)x y E ∀∈-∞⋂,0,x a x y E x y y ∃∈<<0x x y y <<,()()x f x f y a ≤<则00(,)(,)a y E E y E -∞⋂⊂⊂-∞⋂ 即0(,)a E y E =-∞⋂为可测集.若0y E∉,则0a y E ∉,同样可证0(,)a E E y E =⋂-∞⋂可测.若()f x 单调不增,则()f x -在E 上单调不减,从而可测,故(())()f x f x --=在E 上可测.P1082.设mE <+∞,(),1,2,n f x n = 都是E 上的几乎处处有限的可测函数,并且lim ()()n n f x f x →+∞= .a e ,|()|f x <+∞ .a e ,必有E 的可测集序列{}n E ,使1n n E E +⊂,1,2,n = ,lim n n mE mE →+∞=,而在每一n E 上{}()m f x 都一致收敛于零.证明:由于mE <+∞,{}1()n n f x +∞=可测于E 且几乎处处有限,l i m ()(n n f x f x →+∞=,|()|f x <+∞ .a e ,由Egoroff 定理:1,,,()\()n nmnn n N e E m e f x fE E e n∀∈∃⊂<=可测集一致收敛于可测 令1nn i i E F ==,则()mfx f 一致收敛于n E显然12n E E E E ⊂⊂⊂⊂⊂ n N∀∈,()(\)n n mE m E m E E =+,而mE <+∞,()n m E mE ≤<+∞故10(\)nn nm E m E m E Em e n≤-≤=< 则lim n n mE mE →+∞= 证毕.P112. §3习题1.若E 是有界可测集,()f x 在E 上几乎处处有限 ,则()f x 在E 上可测的充要条件是有一串在整个空间上连续的函数()n x Φ ,使 l i m()()n n x f x →∞Φ= .a e 于E证明:充分性是显然的,()n x Φ在1R 上连续,从而是可测的,及几乎处处有限,也必在E 上可测必要性:由E 有界可测,()f x 在E 上几乎处处有限,故由Lusin 定理,∃闭集1F E ⊂,1(\)1m E F <,()f x 是1F 上的连续函数,又1E F -有界可测,由Lusin 定理,∃闭集21\F E F ⊂,使121(\\)2m E F F <利用归纳法知,若k F 已选好,则 11\kk ii F E F+=∃⊂ ,111(\\)1ki k i m E F F k +=<+ 且()f x 在1k F +上连续. 由于k ∀,1ki i F = 仍是有界闭集,故由P116Th2的证明方法知f 可扩充为1R 上的连续函数()n x Φ,()()n x f x Φ=于1ki i F = 上且k ∀,111(\)(\)0kk i i i i m E F m E F k ∞→+∞==≤≤→ ,故1(\)0i i m E F ∞==01ii x F ∞=∀∈ ,00()n n x ∃=使n x F ∈ 则01n i i x F =∈000()()n x f x Φ=且当0()n n x ≥时,0011n niii i x F F ==∈⊂故1000()|()()nii n n F x x f x =Φ=Φ= 故00lim ()()n n x f x →∞Φ= 这就证明了01i i x F E ∞=∀∈⊂ 00lim ()()nn x f x →∞Φ=故从1(\)0i i m E F ∞== 知必要性成立注意:本题的困难在于若直接这样用P116定理2,,n n F E ∀∃⊂,1(\)n m E F n<01()n f C R ∃∈,|()n n F f f x =则n ∀,11(\)(\)0i n i m E F m E F n ∞=≤<→ 则1(\)0i i m E F ∞==01i i x F ∞=∀∈ ,00001,n n i i n x F F =∃∈⊂ ,但直接取()()()n n x f x f x Φ==就不知是否有000()()n x f x Φ=,当0n n >,因仅知当n x F ∈时()()n f x f x =,而()n f x 在n i F -(0i >)时的性质不明,因为没有条件保证1n n F F +⊂ 而我们的前面证明是用到111n n iii i F F +==⊂ ,1()()n n x x f +Φ=Φ=于1ni i F = 上.P117. §4习题1. 设()()n f x f x ⇒于E ,()()n g x g x ⇒于E ,证明:()()()n n f x g x f x g x +⇒+于E证明:0ε∀>,[||()()(()())|][||()()|][||()(2n n n n E x f x g x f x g x E x f x f x E x g x g xεε+-+≥⊂-≥⋃- A B εε⋃(否则,若[||()()(()())|]n n x E x f x g x f x g x ε∈+-+≥,而x A Bεε∉⋃,()c c c x A B A B εεεε∈⋃=⋂|()()||()()|22n n f x f x g x g x εε⇒-<-<|()()(()())||()()||()()|22n n n n f x g x f x g x f x f x g x g x εεεε⇒≤+-+≤-+-<+=矛盾),则[||()()(()())|][||()()|][||()()|]022n n n n mE x f x g x f x g x mE x f x f x mE x g x g x εεε+-+≥≤-≥+-≥→(()(),()()n n f x f x g x g x ⇒⇒) 从而()()()()n n f x g x f x g x +⇒+2. 设|()|n f x K ≤.a e 于E ,1n ≥,且()()n f x f x ⇒于E ,证明|()|f x K≤.a e 于E 证明:由本节定理2(Riesz 定理)从()()n f x f x ⇒知∃{}()n f x 的子列{}()k n f x 使()lim ()k n k f x f x →∞=.a e 于E设A E ⊂,(\)0m E A =,()()k n f x f x →于A ,从条件|()|k n f x K ≤.a e 于E ,设k n B E ⊂,(\)0k n m E B =,|()|k n f x K ≤.a e 于k n B 上令1()kn k B BA +∞==⋂ ,则B K ⊂,且11(\)()(()(())k k cccccn n k k m E B m E B m E B A m E A B E +∞+∞===⋂=⋂⋃=⋂⋃⋂111()()(\)(\)00k k ccn n k k k m E A m E B m E A m E B +∞+∞+∞===≤⋂+⋂=+=+∑∑∑故(\)0m E B =,,k n x B k B B A ∀∈∀⊂⋂,则|()|k n f x K ≤令k →∞,|()|f x K ≤故x B ∀∈有|()|f x K ≤,从而命题得证 P131第五章1.试就[0,1]上的D i r i c h l e t 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆:()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])100cm Q m Q =⋅⋂+⋅⋂=⋅+⋅=回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰4.证明:若()f x 是E 上的非负函数,()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f 可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnn EE x f x E E f x dx f x dx f x dx n dx nmE >=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0nmn m mE x f x mE mF+∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|E x f x EE x f x ==->,知()0.f x a e =于E .证毕.6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()m E x f x a m E x g x a≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dx gx dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则 [|()][|()][|()E x f x a E x f x b E x a f x b≥-≥=≤< [|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()m E x g x a m E x g x b m E x a g x b=≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m mk k E E x f x +=≤<及,2[|()]m m m E E x f x m =≥则2,0mm m kk E E==,,m k E 互不相交同样 ,,21[|()],[|()]22m m k m m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m kk E E == , ,m k E 互不相交 令 ~,,2200()(),()()22mmm km km m m E m m m E k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()m x ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m km m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<=故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知()lim ()lim ()()mm n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则2[|()2]kkk mE x f x +∞=≥<+∞∑ ,故l i m 2[|()2]k kn mE x f x →∞≥=(1)反证设l i m0n n n m e →∞⋅>,则00,,kk N n ε∃>∀∈∃使0k k n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim 0n n n me →∞⋅=10.证明:若非负可测函数()f x 在E 上的积分()E f x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1EE =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n nn n n m B r B r w r r m m→∞→∞=+=+-=若[|||||]m E E x x m =≤,[|||||]m E E x x m =<,则(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故11lim ()lim()lim()()m m m m m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c >另一方面,0lim ()0r F r +→= (当0f M<<有界时,010()()()m rE Frf x d x M m≤=≤≤→⎰) 一般,0ε∀>,()N ε∃,使||3N EEf dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→= 由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1nn mE mFmF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n nn n n n mE mFmF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+ 故01(())2n k nn m E FF δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+所以0111000()()1111()()(())1112n n kk n k n n n n k n n EE F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰ k →+∞,得0010012n δ≥>+得矛盾,故结论不成立0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()n n f xf x →∞= 并且有0n 使()n Efx dx <+∞⎰,举例说明,当()nEfx dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得l i m ()l i m (nn n n EEs x dx s x dx →∞→∞=⎰⎰,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令nE R⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n E f x dx mE n ==+∞⎰,()0l i m ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰P151 第2节习题1. 设mE <+∞,()f x 在E 上可测且几乎处处有限[;1()]n E E x n f x n =-≤<,0,1,2,n =±±证明:()f x 在E 上可积的充要条件是nn mE+∞-∞<+∞∑证明 ()f x 在E 上可积⇔f 在E 上可积⇔Ef dx <+∞⎰,显然n E 可测(由f 可测)1nnn n EE E f dx f dx f dx +∞==-∞=+⎰⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-⎰⎰1()()nnn n E E f x dx f x dx +∞==-∞=-∑∑⎰⎰若Ef dx <+∞⎰,则1(1)n nn n Ef dx n mE nmE +∞==-∞+∞>≥--∑∑⎰011n n n n n n nmE mE n mE +∞+∞===-∞=-+∑∑∑11()n n nn n n n mE m E n mE +∞+∞==-∞=≥-+∑∑ n n mE mE +∞-∞≥-∑则从mE <+∞知nn mE+∞-∞<+∞∑。

实变函数论与泛函分析(曹广福)1到5章课后答案

实变函数论与泛函分析(曹广福)1到5章课后答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inf lim )(inf lim x x n nA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf 0=≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf 0=⇒=⇒∉≥x A x m nk m A nm A k χχ,故0)(i n f su p =≥∈x mA nm N b χ ,即)(i nf lim x nA nχ=0 ,从而)(inf lim )(inf lim x x n nA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交. (ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i ni i ni A B 11==⋃⊂⋃,现在来证:i ni i ni B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|min 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i ni B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥}1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

第三版实变函数论课后答案

第三版实变函数论课后答案

i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,

2
,而 Ak0 E 故 m( E \ Ak0 )

2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )

, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a

证毕.

8
m( E \ Ak0 ) m( Ak0 \ F1 )

8


2


8


4


2

E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
2.集合的包含关系
若集合A和B满足关系:对任意 ∈A,可以得到x∈B,则成A是B的子集,记为A B或B A,若A B但A并不与B相同,则称A是B的真子集.
例7. 若 在R上定义,且在[a,b]上有上界M,即任意对
∈[a,b]有 M.用集合语言表示为:[a,b] { : M}.
用集合语言描述函数性质,是实变函数中的常用方法,请在看下例.
定理1
(交换律)
证明我们只证明
先设 则有 且有 于是这证来自了在证反过来的包含关系,设 ,则有 ,此即 ,因此 于是 。
综合起来,便是等式成立。
这表面,集合运算的分配律,在无限并的情况下依然成立
3、集合的差集和余集
若A和B是集合,称 为A和B是差集,A\B也可以记为A-B,如图1.3是A-B的示意图:
请读者注意:我们怎样把描述函数列性质的 语言,转换为集合语言。
例12 设 是定义在E上的函数列,若x是使 收敛与0的点,则对任意的 ,存在 ,使得对任意 即
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
例1设 和 是定义在E上的函数,则对任意
例2.
例3若记
例4 若 是一族开区间,而 ,则存在
使得 (有限覆盖定理)
例5若 是定义在E上的函数,则
2、集合的交集
设A,B是任意两个集合,由一切既属于A又属于B的元素组成的集合C称为A和B的交集或积集,简称为交或积,记作 ,它可以表示为

实变函数论课后答案第三版

实变函数论课后答案第三版

1. 证明:()B A A B -=的充要条件是A B ⊂.证明:若()B A A B -=,则()A B A A B ⊂-⊂,故A B ⊂成立. 反之,若A B ⊂,则()()B A A B A B B -⊂-⊂,又x B ∀∈,若x A ∈,则()x B A A ∈-,若x A ∉,则()x B A B A A ∈-⊂-.总有()x B A A ∈-.故()B B A A ⊂-,从而有()B A A B -=。

证毕2. 证明c A B A B -=.证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂.另一方面,c x A B ∀∈,必有,c x A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 c A B A B ⊂-.综合上两个包含式得c A B A B -=. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂.证:若x A λλ∈∧∈,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈,这说明A B λλλλ∈∧∈∧⊂.定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=.证:若()x A B λλλ∈∧∈,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂.反过来,若()()x A B λλλλ∈∧∈∧∈则x A λλ∈∧∈或者x B λλ∈∧∈.不妨设x A λλ∈∧∈,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂.故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂.综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=.定理6中第二式()c c A A λλλλ∈∧∈∧=.证:()c x A λλ∈∧∀∈,则x A λλ∈∧∉,故存在'λ∈∧ ,'x A λ∉所以'c c x A A λλλ∈∧∉⊂从而有()c c A A λλλλ∈∧∈∧⊂.反过来,若c x A λλ∈∧∈,则'λ∃∈∧使'c x A λ∉,故'x A λ∉,x A λλ∈∧∴∉,从而()c x A λλ∈∧∈()c c A A λλλλ∈∧∈∧∴⊃. 证毕定理9:若集合序列12,,,,n A A A 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==(相应地)1lim n n n A ∞→∞==.证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==.故从定理8知11liminf n i m n m i mm A A A ∞∞∞→∞=====另一方面,m n ∀,令m i i mS A ∞==,从1m m A A +⊂对m N ∀∈成立知11111()()m i mi m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==.故定理8表明1111limsup liminf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========故1lim limsup liminf n n n m n n n m A A A A ∞→∞→∞→∞====.4. 证明()()A B B A B B -=-的充要条件是B =∅. 证:充分性若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅必要性 若()()A B B A B B -=-,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-即所以,x A B x B ∈∉这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n⎧⎫==⎨⎬⎩⎭01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭,问()()01,F A F A 是什么. 解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A nni ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭, 易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭. 令11;1,2,,;1,2,212B i C i i i⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭. {}{}{}1,F A S AK A B K C K A =∅==∅为的子集,或.证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭的任何子集()1F A .所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈,且()1A C F A ∈. 显S A ∈,故只用证A 的确是一个σ-域.(1) ,c c S S A ∅==∅∈,且B ∀的子集A ,若K =∅,则,c KA A A C ∅==(B A -是B 的子集,故()()cc A A C F A ∅=∈)又B ∀的子集A ,()cc c c A C A C A B ==. 显然是B 的子集,所以()()cc A C A B A =∅∈.又若n A 为B 的子集()1,2,3,,n n K C ==或∅. 则()111nn n n n n n A K A K A K ∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.这里1n n A A B ∞==⊂是B 的子集.1n n K K C ∞===或∅.所以()1n n n A K A ∞=∈.若n A 中除B 的子集外,还有S ,则()1n n n A K S A ∞==∈.若n A 中有∅,不影响1n n A B ∞=⊂.故A 是σ-域,且()1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf nnA A x x ϕϕ=(2)()()limsup limsup nnA A x x ϕϕ=证明:x S ∀∈,若()liminf nA x x ϕ∈则()liminf 1nA x ϕ=。

实变函数(曹广福)1到5章答案

实变函数(曹广福)1到5章答案

第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。

若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。

实变函数第一章答案

实变函数第一章答案
习题1.3
1.证明:平面上顶点坐标为有理点的一切三角形之集 是可数集.
证明因为有理数集 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以 中的每个元素由 中的六个相互独立的数所确定,即 所以 为可数集.
2.证明:由平面上某些两两不交的闭圆盘之集 最多是可数集.
区间 中的全体有理数之集的基数是 ,这是因为: .
2.用 表示 上的一切连续实值函数之集,证明:
(1)设 , ,则

(2)公式
定义了单射 ;
(3) .
证明(1)必要性.显然.
充分性.假设 成立.因为 ,存在有理数列 ,使得 ,由 ,可得
及 .
又因为 为有理点列,所以有 ,故 ,都有 .
(2) ,设 ,即
6.证明:单调函数的不连续点之集至多是可数集.
证明不妨设函数 在 单调递增,则 在 间断当且仅当
.
于是,每个间断点 对应一个开区间 .
下面证明:若 为 的两个不连续点,则有 .
事实上,任取一点 ,使 ,于是

从而 对应的开区间 与 对应的开区间 不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.
充分性.假设 成立,则 ,于是有 ,即
(3)必要性.假设 ,即 若 取 则 于是 但 与 矛盾.
充分性.假设 成立,显然 成立,即 .
3.证明定理1.1.6.
定理1.1.6 (1)如果 是渐张集列,即 则 收敛且
(2)如果 是渐缩集列,即 则 收敛且
证明(1)设 则对任意 存在 使得 从而 所以 则 又因为 由此可见 收敛且
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实变函数论课后答案第一章2(p20-21)
第一章第二节
1. 证明平面上坐标为有理数的点构成一可数集合。

证明:将全体有理数排成一列 12
,n
r r r ,则平面上的有理点
)({}1
,;,j j Q Q r s r Q s Q A ∞=⨯=
∈∈=
,其中)({},;1,2,
j i
j
A r r i n
=
=为可列集,故作
为可数个j A 的并1
j j Q Q A ∞=⨯=为可数集。

(第20页定理5)。

2. 以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素. 证明:设
这里Λ为某指标集。

则我们可在任意I α∈A 这一开区间中选定一个有理数r α,与之对应,从而给出一个对应,
A Q I r αα
→→
由于I α互不相交,当αβαβ∈Λ≠,,时,显然r r αβ≠,故上述对应是11-的. 故A 与有理数集的一个子集对等,所以A 的势最多与Q 的势相同,不会超过Q 的势, 故A 要么为有限,要么为可数集.
3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ. 事实上,∀ n 阶有理数
()()12
,,,,n
i n i i n i X x a x a Q a a a ==∈∑令与之对应,这一对应显然是11-的,即
0,m m
m Q Q Q Q ∀⨯⨯
=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用
归纳法,设k
k
Q Q Q Q =⨯⨯
是可数集,,
待证1
k k Q Q Q +=⨯是可数集,
.
将Q 中的点排成一列12,,m γγγ,将k
Q 中的点排成一列12
,,m
l l l ,
则1
1
k k
j j Q
Q Q A ∞+==⨯=
,其中(){},,,1,2,3,
j i j A l i j γ==显然为可数集,故
1
1
k j j Q
A ∞+==
也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多
项式
{}0
n n ∞
=全体阶有理多项式作为可数集的并也是可数集.
4. 如果()f x 是(),-∞∞上的单调函数,则()f x 的不连续点最多有可数多个.
证明:我们在数学分析中知道(),-∞∞上的单调函数的不连续点,只能是跳跃间断点,其任取(),-∞∞上的单调函数()f x ,设其可能的间断点为{};,A x αα=∈ΛΛ 为某指标集,在
x A α∀∈,令()()lim ,lim ,x x
x x
f x y f x y αααα+
-
+-→→==则,y y αα+-=故A α∀∈,有一1R 上的
开区间()
,y y αα-+
与之对应.
不妨设x x αβ>,设0δ∃>使x x αβδδ->+,()()
,,,x x x y x x ααββδδ∀∈-∀∈+, 有()()f x f y ≥,故()()lim lim x x
x x
f x y y f x αααα-
+
-
+
→→=≥=,
所以()(),,y y y
y αα
α
β-+
-
+=∅..
故()f x 的间断点的集合A 与1
R 上的一族互不相交的开区间11-对应,而后者的势为0ℵ,故()f x 的间断点至多为可数多个.
5.设A 是一无穷集合,证明必有A A *
⊂,使~A A *
,且A A *
-可数. 证明:若A 为可数集,则不妨设{};1,2,
i A a i n
==,令{}2;1,2,i A a i
n
*==,则
~A A *,且{}21,1,2,
,
i A A a i n *+-==.
显然仍为可数集,故此时结论成立.
若A 为无穷集,且不是可数集,则由P19定理1,A 中包含一个可数子集B ,令A A B *
=-
,则由于A 是无穷集,且不是可数集,A B -是无穷集. 由P21定理7和B 为可数集知:.A A
B
A *
*= 证毕
6. 若A 为一可数集合,则A 的所有有限子集构成的集合也是可数集.
证明:由第一,第三题的证明已知,m m
m N Q Q Q Q ∀∈⨯⨯
⨯=(Q 为有理数集).由于A
是可数集,故m 个由全体A 中的一个元素组成的集合{}{}
1;A a a A N =∈,1A 是可数集.
由全体A 中的两个元素组成的集合{}{}221
2
1
2
,;,A a a a a
A N =
∈,2A 是可数集
若{}{}1
2
,,
,;,1,2,
m m i A a a a a A i n =
∈=,
记A 中的m 个元素组成的子集全体,则m
m m A N N N N ⨯⨯
⨯=
故是可数集.
显然A 的所有有限子集构成的集合可表示为
1
m m A ∞=,m A 为可数集,故1
m m A ∞=作为可数个可
数集的并也是可数集.
注意:A 的全体子集构成的集合不是可数集.
7. 若A 是有非蜕化的(即左,右端点不相等的)开区间组成的不可数无穷集合,则有0δ>,使A 中无穷多个区间的长度大于δ.
证明:设Λ为一指标集,{}
;,A I I ααα=∈Λ为非蜕化的开区间, 记I α的长度为I α.
若本题的结论不成立,则n N ∀∈,只有有限个12
,,n m I I I ∈Λ,使1
,I n
α>
{
}
12,,n n m A I I I =记,由于A 中的区间都是非蜕化的,,0I A I αα∀∈>,
{}1
;0n n A A I I αα∞==
=>
由于n A 是有限集,故作为可数个可数集的并,A 也是可数集,这与A 是不可数无穷集矛盾. 故0,δ∃>,使A 中有无穷多个区间的长度大于0δ>. 事实上,A 中有不可数无穷多个区间的长度大于δ.
8. 如果空间中的长方形(){}1
2
1
2
1
2
,,;,,I x y z a x a b y b c z c =
<<<<<<,中的
121212,,,,,a a b b c c ()121212,,a a b b c c <<<都是有理数,则称I 为有理长方形,证明全体有
理长方形构成一可数集合.
证明:由前面题3,6中已知m
m
Q Q Q Q =⨯⨯
⨯是可数集(Q 为有理数组成的集合)
设{};A I I =为有理长方形,任取(){}1
2
1
2
1
2,,;,,I x y z a x a b y b c
z c A =
<<<<<<∈,
记之为()1212126
,,,,,121212,,,,,,a a b b c c I a a b b c c Q ∈. 与之对应,由于两有理长方形1
21212
1
2
1
2
1
2
,,,,,,,,,,,a a
b b
c c a a b b c c I I 相等
112211221122,,,,,a a a a b b b b c c c c ⇔======,故上述对应是单射,
故A 与6
Q 这一可数集的一个子集Q 11-对应.
反过来,01111,
,r I r Q ∈与Q 显然11-对应,故6Q 与01111,
,r I r Q ⎧⎫∈⎨⎬⎩

11-对应
所以6Q 与A 的一个子集对等. 由Berrstein 定理 6A Q 对等
所以A 是可数集.。

相关文档
最新文档