最新北师大版七下数学期中模拟测试(含答案)
北师大版七年级下册数学《期中》考试题(含答案)

北师大版七年级下册数学《期中》考试题(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.下列图形中,不是轴对称图形的是( )A .B .C .D .3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3 B .M =﹣1,N =3 C .M =2,N =4 D .M =1,N =47.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为( )A .-3B .-2C .-1D .18.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a 、b 的代数式表示).3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如图,阴影部分的面积用整式表示为_________.5.若25.36=5.036,253.6=15.906,则253600=__________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB 型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m= ;(2)补全上表中的数据;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、B5、D6、B7、A8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、ab3、724、x2+3x+65、503.66、54°三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x2、m>﹣23、24°.4、(1)略(2)成立5、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。
北师大版七年级下册数学期中测试卷(含答案解析)

北师大版七年级下册期中数学试卷一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x32.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y24.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠45.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.229.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°二、填空12.计算:()2+(π+2015)0﹣|﹣2|=.13.△ABC中,∠A+∠B=2∠C,则∠C=.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以(只需写出一个).15.若a+b=5,ab=,则a2﹣b2=.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴=(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即=.在△ABC与△DEF中∠B=∠E(已知)=(已证)=(已证)∴△ABC≌△DEF.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:.参考答案与试题解析一、选择题1 .下列各题运算正确的是()A.x5+x5=x10B.x2•x6=x12 C.(2x2)3=6x6D.x5÷x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同类项、同底数幂的乘法和除法以及幂的乘方计算即可.【解答】解:A、x5+x5=2x5,错误;B、x2•x6=x8,错误;C、(2x2)3=8x6,错误;D、x5÷x2=x3,正确;故选D【点评】此题考查同类项、同底数幂的乘法和除法以及幂的乘方,关键是根据法则进行计算.2.下列多项式的乘法中,不能用平方差公式计算的是()A.(x﹣y)(﹣x+y)B.(﹣x+y)(x+y) C.(x﹣y)(﹣x﹣y)D.(x﹣y)(y+x)【考点】平方差公式.【分析】根据平方差公式的形式:(a+b)(a﹣b)=a2﹣b2,结合各选项进行判断即可.【解答】解:A、不能用平方差公式计算,故本选项正确;B、变换成(y﹣x)(y+x),能用平方差公式计算,故本选项错误;C、变换成﹣(x﹣y)(x+y),能用平方差公式计算,故本选项错误;D、能用平方差公式计算,故本选项错误;故选A.【点评】本题考查了平方差公式,注意掌握平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.3.下列各式中,计算正确的是()A.(2a+b)2=4a2+b2B.(﹣a+b)(a﹣b)=a2﹣b2C.(x+1)(﹣x﹣1)=x2﹣1 D.(﹣x﹣y)2=x2+2xy+y2【考点】完全平方公式;平方差公式.【分析】利用完全平方公式化简,即可得到结果.【解答】解:A、(2a+b)2=4a2+4ab+b2,错误;B、(﹣a+b)(a﹣b)=﹣a2+2ab﹣b2,错误;C、(x+1)(﹣x﹣1)=﹣x2﹣x﹣1,错误;D、(﹣x﹣y)2=x2+2xy+y2,正确;故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.如图,由∠1=∠2,则可得出()A.AD∥BC B.AB∥CD C.AD∥BC且AB∥CD D.∠3=∠4【考点】平行线的判定.【分析】∠1与∠2是直线AB、CD被直线AC所截形成的内错角,利用内错角相等,两直线平行求解.【解答】解:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).故选B.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.一个锐角为52°,则这个角的余角是()A.52°B.48°C.128°D.38°【考点】余角和补角.【分析】根据互余的两角之和为90°,可得这个角的余角.【解答】解:90°﹣52°=38°,则这个角的余角是38°.故选D.【点评】本题考查了余角的知识,关键是掌握互余的两角之和为90°.6.某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 94=9.4×10﹣7.故选A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.下列说法正确的是()A.一个角的补角定是锐角B.两直线被第三直线所截,同位角相等C.有两边与一角对应相等的两个三角形一定全等D.同角的余角相等【考点】余角和补角;同位角、内错角、同旁内角;全等三角形的判定.【分析】根据补角、同位角及全等三角形的判定定理,结合选项进行判断即可.【解答】解:A、一个角的补角定是锐角,说法错误,例如30°的补角是150°,为钝角,故本选项错误;B、只有两条平行线被被第三直线所截,同位角相等,故本选项错误;C、SSA不能判定三角形全等,故本选项错误;D、同角的余角相等,说法正确,故本选项正确.故选D.【点评】本题考查了余角和补角的知识,解答本题的关键是掌握同位角、互余和互补的定义.8.等腰三角形的一边长为4,另一边长为9,则它的周长为()A.13 B.17 C.17或者22 D.22【考点】等腰三角形的性质;三角形三边关系.【分析】分5是腰长和底边两种情况讨论求解即可.【解答】解:4是腰长时,三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,4是底边时,三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22,综上所述,该等腰三角形的周长为22.故选D.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.9.三角形的①中线、角平分线、高都是线段;②三条高必交于一点;③三条角平分线必交于一点;④三条高必在三角形内.其中正确的是()A.①②B.①③C.②④D.③④【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线、角平分线、高的定义对四个说法分析判断后利用排除法求解.【解答】解:①三角形的中线、角平分线、高都是线段,说法正确;②三角形的三条高所在的直线交于一点,三条高不一定相交,故三条高必交于一点的说法错误;③三条角平分线必交于一点,说法正确;④锐角三角形的三条高在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.故三条高必在三角形内的说法错误;故选:B.【点评】本题考查了三角形的角平分线、中线、高线,从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.熟记概念与性质是解题的关键.10.如图,在△ABC中,已知∠A=50°,OB、OC平分∠ABC和∠ACB,则∠BOC的度数是()A.72°B.54°C.46°D.115°【考点】三角形内角和定理.【分析】由三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,由角平分线的定义得出∠OBC+∠OCB=65°,再由三角形内角和定理即可求出∠BOC的度数.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵OB、OC分别平分∠ABC、∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°;故选:D.【点评】本题考查了三角形内角和定理、角平分线的定义;熟练掌握三角形内角和定理,并能进行推理计算是解决问题的关键.11.如图,CD=CE,AE=BD,∠ADC=∠BEC=100°,∠ACD=26°,则∠BCD的度数是()A.72°B.54°C.46°D.20°【考点】等腰三角形的性质.【分析】根据三角形的内角和和外角的性质得到∠BDC=80°,∠A=54°,通过△ACD≌△BCE,得到∠B=∠A=54°,根据三角形的内角和即可得到结论.【解答】解:∵∠ADC=100°,∠ACD=26°∴∠BDC=80°,∠A=54°,∵AE=BD,∴AD=BE,在△ACD与△BCE中,,∴△ACD≌△BCE,∴∠B=∠A=54°,∴∠BCD=180°﹣∠B﹣∠BDC=46°.故选C.【点评】本题考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.二、填空12.计算:()2+(π+2015)0﹣|﹣2|=﹣.【考点】实数的运算;零指数幂.【专题】计算题.【分析】原式第一项利用乘方的意义计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=+1﹣2=﹣﹣.故答案为:﹣【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.13.△ABC中,∠A+∠B=2∠C,则∠C=60°.【考点】三角形内角和定理.【分析】根据三角形的三个内角和是180°,结合已知条件求解.【解答】解:∵∠A+∠B+∠C=180°,∠A+∠B=2∠C,∴3∠C=180°,∠C=60°.故答案为60°.【点评】此题主要是三角形内角和定理的运用,注意整体代入求解.14.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=FE,要使△ABC≌△DEF,还需添加一个条件,这个条件可以AC=DF或∠A=∠D或∠B=∠E(只需写出一个).【考点】全等三角形的判定.【专题】开放型.【分析】若添的条件是AC=DF,利用SAS可得出△ABC≌△DEF;若添的条件是∠A=∠D,利用AAS可得出△ABC≌△DEF;若添的条件是∠B=∠E,利用ASA可得出△ABC≌△DEF.【解答】解:若添的条件为AC=DF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS);若添的条件是∠A=∠D,在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS);若添的条件是∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(ASA).故答案为:AC=DF或∠A=∠D或∠B=∠E.【点评】此题考查了全等三角形的判定,全等三角形的判定方法有:SSS;SAS;ASA;AAS,以及HL(直角三角形判定全等的方法),熟练掌握全等三角形的判定方法是解本题的关键.15.若a+b=5,ab=,则a2﹣b2=±20.【考点】因式分解-运用公式法;完全平方公式.【专题】计算题.【分析】将a+b=5两边平方,把ab=代入求出a2+b2的值,利用完全平方公式求出a﹣b的值,原式利用平方差公式分解,将各自的值代入计算即可求出值.【解答】解:已知等式a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,把ab=代入得:a2+b2=25﹣=,∴(a﹣b)2=a2+b2﹣2ab=﹣=16,即a﹣b=±4,则原式=(a+b)(a﹣b)=±20,故答案为:±20.【点评】此题考查了因式分解﹣运用公式法,以及完全平方公式,熟练掌握公式是解本题的关键.三、解答题16.计算:(1)(a﹣b)(a+2b)(2)(x﹣y)2﹣(x+y)(x﹣y)(3)(m+2n﹣3)(m+2n+3)(4)20152﹣2013×2017 (用乘法公式)【考点】整式的混合运算.【分析】(1)直接利用多项式乘法求出即可;(2)直接利用平方差公式以及完全平方公式化简求出即可;(3)直接利用平方差公式以及完全平方公式化简求出即可;(4)首先利用平方差公式得出即可.【解答】解:(1)(a﹣b)(a+2b)=a2﹣2ab﹣ab﹣2b2=a2﹣2b2﹣3ab;(2)(x﹣y)2﹣(x+y)(x﹣y)=x2+y2﹣xy﹣(x2﹣y2)=x2+y2﹣xy﹣x2+y2=2y2﹣xy;(3)(m+2n﹣3)(m+2n+3)=(m+2n)2﹣9=m2+4n2﹣4mn﹣9;(4)20152﹣2013×2017=20152﹣(2015﹣2)(2015+2)=20152﹣(20152﹣4)=4.【点评】此题主要考查了整式的混合运算,正确利用乘法公式是解题关键.17.已知:|x+2|+(y﹣1)2=0,化简:[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy),再求这个代数式化简后的值.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据绝对值和偶次方的非负性求出x、y的值,再化简代数式,最后代入求出即可.【解答】解:∵|x+2|+(y﹣1)2=0,∴x+2=0,y﹣1=0,∴x=﹣2,y=1,[(xy+2)(xy﹣2)+(3xy﹣2)2]÷(2xy)=[x2y2﹣4+9x2y2﹣12xy+4]÷(2xy)=(10x2y2﹣12xy)÷(2xy)=5xy﹣6=5×(﹣2)×1﹣6=﹣16.【点评】本题考查了绝对值,偶次方,整式的混合运算和求值的应用,能正确根据整式的运算法则进行计算是解此题的关键,注意:运算顺序.18.完成推理填空如图,已知A、C、F、D在同一直线上,BC∥EF,AF=DC,∠B=∠E,说明:∠A=∠D.解:∵CB∥EF(已知)∴∠BCF=∠EFC(两直线平行,内错角相等)∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义)∴∠ACB=∠DFE等式的性质∵AF=DC(已知)∴AF﹣CF=DC﹣CF(等式性质)即AC=.DF在△ABC与△DEF中∠B=∠E(已知)∠ACB=∠DFE(已证)AC=DF(已证)∴△ABC≌△DEF AAS.【考点】全等三角形的判定与性质.【专题】推理填空题.【分析】首先证明∠ACB=∠DFE,然后根据等式的性质证明AC=DC,则利用AAS即可证得△ABC≌△DEF,从而证明.【解答】解:∵CB∥EF(已知),∴∠BCF=∠EFC(两直线平行,内错角相等),∵∠ACB+∠BCF=∠DFE+∠EFC=180°(平角定义),∴∠ACB=∠DFE 等式的性质,∵AF=DC(已知),∴AF﹣CF=DC﹣CF(等式性质),即AC=DF,在△ABC与△DEF中,∴△ABC≌△DEF (AAS).【点评】本题考查了全等三角形的判定,注意全等三角形的判定条件是三角形中对应相等的边和对应相等的角.19.如图:已知AB=CD,AB∥CD,试说明△ABO≌△DCO.【考点】全等三角形的判定.【专题】证明题.【分析】根据平行线的性质求出∠A=∠D,∠B=∠C,根据全等三角形的判定定理ASA推出即可.【解答】解:∵AB∥CD,∴∠A=∠D,∠B=∠C,在△ABO和△DCO中∴△ABO≌△DCO.【点评】本题考查了全等三角形的判定,平行线的性质的应用,能熟练地运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等的判定定理除了具有以上定理外,还有HL定理.20.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC,BC、DE交于点O.求证:(1)△ABC≌△AED;(2)OB=OE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由∠BAD=∠EAC可知∠BAC=∠EAD,所以有可证△ABC≌△AED (SAS);(2)由(1)知∠ABC=∠AED,AB=AE可知∠ABE=∠AEB,所以∠OBE=∠OEB,则OB=OE.【解答】证明:(1)∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,即∠BAC=∠EAD.在△ABC和△AED中,∴△ABC≌△AED(SAS).(2)∵由(1)知△ABC≌△AED∴∠ABC=∠AED,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE﹣∠ABC=∠AEB﹣∠AED,∴∠OBE=∠OEB.∴OB=OE.【点评】本题考查三角形全等的性质和判定方法,也涉及到等腰三角形的性质,判定两个三角形全等的一般方法有:ASA、SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN过点C,且AD⊥MN于点D,BE⊥MN 于点E,(1)这时,DE、AD、BE的数量关系是:DE=AD+BE.并写出图中的一对全等三角形:答△ADC≌△CEB;(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE又怎么样的数量关系?答:DE=BE ﹣AD.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN 于E,由此即可证明△ADC≌△CEB,然后利用全等三角形的性质即可解决问题;(2)由于△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以证明△ADC≌△CEB,然后利用全等三角形的性质也可以解决问题;(3)当直线MN绕点C旋转到图(3)的位置时,仍然△ADC≌△CEB,然后利用全等三角形的性质可以得到DE=BE﹣AD.【解答】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又∵直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE﹣CD=AD﹣BE;(3)如图3,∵△ABC中,∠ACB=90°,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD﹣CE=BE﹣AD;DE、AD、BE之间的关系为DE=BE﹣AD.【点评】本题考查了三角形全等的判定与性质,关键是利用全等三角形对应线段相等,将有关线段进行转化.。
北师大版七年级第二学期期中测试数学试卷-带参考答案

北师大版七年级第二学期期中测试数学试卷-带参考答案一、选择题(每题3分,共30分 ) 1.下列各式不是方程的是( )A .x 2+x =0B .x +y =0C.1x +xD .x =02.若a >b >0,则下列不等式一定成立的是( )A .a -1<b -1B .-a >-bC .a +b >2bD .|a |<|b |3.解一元一次方程12(x +1)=-13x 时,去分母正确的是( )A .3(x +1)=2xB .3(x +1)=xC .x +1=2xD .3(x +1)=-2x4.一个不等式的解集在数轴上表示如图,则这个不等式可以是( )(第4题)A .x +3>0B .x -3<0C .2x ≥6D .3-x <05.利用代入法解方程组⎩⎨⎧y =2x +1①,x -y =-1②,将①代入②得( )A .x -2x +1=-1B .x +2x -1=-1C .x -2x -1=-1D .x +2x +1=-16.关于x 的方程3x +5=0与3x =1-3m 的解相同,则m 等于( )A .-2B .2C .-43D.437.在等式y =kx +b 中,当x =1时,y =-2;当x =-1时,y =-4.则2k +b 的值为( ) A .1B .-1C .-2D .-38.8个一样大小的小长方形恰好可以拼成一个大的长方形,如图甲所示,若拼成如图乙所示的正方形,中间还留下一个洞,恰好是边长为2厘米的小正方形.设一个小长方形的长为x 厘米,宽为y 厘米,则所列二元一次方程组正确的是( )(第8题)A.⎩⎨⎧3x =5y 2y =x +2B.⎩⎨⎧5x =3y 2x =y +2C.⎩⎨⎧3x =5y 2x =y +2D.⎩⎨⎧5x =3y 2y =x +29.甲、乙两车从A 地出发到B 地,甲比乙早行驶1 h ,比乙晚到2 h ,甲全程用时6 h ,则从乙出发到甲、乙两车相遇用时( ) A .1 hB .1.5 hC .2 hD .2.5 h10.已知关于x 的不等式组⎩⎨⎧x -a ≥2,2-3x >-7的整数解有5个,则a 的取值范围是( )A .-5≤a ≤-4B .-5<a ≤-4C .-5<a <-4D .-5≤a <-4二、填空题(每题3分,共15分)11.x 的平方与y 的平方的和一定是非负数,用不等式表示为________. 12.若(m +1)x |m |>2是关于x 的一元一次不等式,则m =______.13.若x ,y 满足二元一次方程组⎩⎨⎧x +2y =3,2x +y =3,则x 与y 的关系是________(写出一种关系即可).14.若方程x +y =3,x -y =1和x +2my =0有公共解,则m 的值为________. 15.已知5只碗摞起来的高度是13 cm ,9只碗摞起来的高度是20 cm ,若一摞碗的高度不超过30 cm ,最多能摞______只碗. 三、解答题(共75分)16.(8分)(1)解方程:x +2x +16=1-2x -13;(2)解方程组:⎩⎨⎧8x +5y =2,①4x -3y =-10.②第 3 页 共 9 页17.(9分)阅读下面解题过程,再解题.已知a >b ,试比较-2 024a +1与-2 024b +1的大小. 解:因为a >b ①所以-2 024a >-2 024b ② 故-2 024a +1>-2 024b +1③.(1)上述解题过程中,从第________步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.18.(8分)解下列不等式(组): (1)3(4x +2)>4(2x -1);(2)⎩⎪⎨⎪⎧3x +6≥5(x -2),①x -52-4x -33<1.②19.(9分)某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15 g,一颗小元宵要用肉馅10 g.现共有肉馅2 100 kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?20.(9分)一个两位数,个位上的数字与十位上的数字之和为6,把这个两位数加上18后,比十位数字大56,请利用二元一次方程组求这个两位数.21.(10分)如图,直线l上有A,B两点,AB=18 cm,O是线段AB上的一点,OA=2OB.(1)OA=________cm,OB=________cm.(2)若动点P,Q分别从点A,B同时出发,向右运动,点P的速度为2 cm/s,点Q的速度为1 cm/s.设运动时间为t s.当t为何值时,2OP-OQ=3 cm?(第21题)22.(10分)读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.某校为提高学生的阅读品味,现决定购买获得茅盾文学奖的甲,乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元;购买3本甲种书和2本乙种书共需165元.(1)求甲,乙两种书的单价分别为多少元;(2)若学校决定购买以上两种书的总费用不超过3 200元,那么该校最多可以购买甲种书多少本?23.(12分)阅读材料:第 5 页共9 页我们把关于x ,y 的两个二元一次方程x +ky =b 与kx +y =b (k ≠1)叫做互为共轭二元一次方程,像x +4y =5与4x +y =5这样的方程是互为共轭二元一次方程;像二元一次方程组⎩⎨⎧x +4y =5,4x +y =5这样由互为共轭二元一次方程组成的方程组叫做共轭二元一次方程组.(1)若关于x ,y 的方程组⎩⎨⎧x +2y =b +2,()1-a x +y =3为共轭二元一次方程组,则a =________,b =________.(2)解共轭二元一次方程组:⎩⎨⎧x +4y =5①,4x +y =5②.解:①+②,得x +y =2③.①-③,得y =1.②-③,得x =1. 所以⎩⎨⎧x =1,y =1是方程组的解.仿照上面方程组的解法解方程组:⎩⎨⎧y -3x =6①,x -3y =6②;(3)发现:若共轭二元一次方程组⎩⎨⎧x +ky =b ,kx +y =b 的解是⎩⎨⎧x =m ,y =n ,则m ,n 之间的数量关系是________.第 7 页 共 9 页答案一、1.C 2.C 3.D 4.B 5.C 6.B 7.B 8.A 9.A 10.B二、11.x 2+y 2≥012.1 易错点睛:易忽略x 的系数不为0而致错. 13.x +y =2(答案不唯一)14.-1 点拨:根据题意,得⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.将⎩⎨⎧x =2,y =1代入x +2my =0,解得m =-1. 15.14 点拨:设一只碗的高度是x cm ,每摞起来一只碗增加y cm ,则⎩⎨⎧x +(5-1)y =13,x +(9-1)y =20,解得⎩⎪⎨⎪⎧x =6,y =74.设能摞m 只碗,所以6+74(m -1)≤30,m ≤1457,所以最多能摞14只碗.三、16.解:(1)去分母,得6x +(2x +1)=6-2(2x -1) 去括号,得6x +2x +1=6-4x +2 移项,得6x +2x +4x =6+2-1 合并同类项,得12x =7 系数化为1,得x =712.(2)①-②×2,得11y =22,解得y =2 把y =2代入①,得8x +10=2,解得x =-1 故方程组的解为⎩⎨⎧x =-1,y =2.17.解:(1)②(2)错误的原因是不等式的两边都乘以-2 024,不等号的方向没有改变. (3)因为a >b ,所以-2 024a <-2 024b 所以-2 024a +1<-2 024b +1. 18.解:(1)3(4x +2)>4(2x -1)12x +6>8x -4,12x -8x >-4-6,4x >-10. x >-2.5.(2)解不等式①,得x ≤8,解不等式②,得x >-3 所以不等式组的解集是-3<x ≤8.19.解:(1)设生产大元宵要用肉馅x kg ,根据题意,得8×1 000x15=4×1 000(2 100-x )10.解得x =900.所以小元宵要用肉馅2 100-900=1 200(kg).答:大元宵和小元宵分别用900 kg ,1 200 kg 肉馅,才能使生产出的元宵刚好配套装袋.(2)设能生产m 袋元宵,根据题意,得(4×15+8×10)m ≤2 100×1 000,解得m ≤15 000 所以m 可取的最大值为15 000. 答:最多能生产15 000袋元宵.20.解:设这个两位数的十位数字为x ,个位数字为y 依题意得⎩⎨⎧x +y =6,10x +y +18=x +56.解得⎩⎨⎧x =4,y =2.答:这个两位数为42. 21.解:(1)12;6(2)当点P 在点O 左侧时,2OP -OQ =3 cm 即2(12-2t )-(6+t )=3,解得t =3. 当点P 在点O 右侧时,2OP -OQ =3 cm 即2(2t -12)-(6+t )=3,解得t =11. 所以当t 为3或11时,2OP -OQ =3 cm.22.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意,得⎩⎨⎧2x +y =100,3x +2y =165,解得⎩⎨⎧x =35,y =30.答:甲种书的单价是35元,乙种书的单价是30元.(2)设该校购买甲种书m 本,则购买乙种书(100-m )本,根据题意,得35m +30(100-m )≤3 200第 9 页 共 9 页 解得m ≤40,所以m 的最大值为40. 答:该校最多可以购买甲种书40本. 23.解:(1)-1;1(2)①+②,得-x -y =6③.①+③,得-4x =12,所以x =-3.②+③,得-4y =12 所以y =-3,所以方程组的解为⎩⎨⎧x =-3,y =-3.(3)m =n。
北师大版七年级下册数学《期中考试题》(带答案)

北师大版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x += 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .16.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a += .12.某计算程序编辑如图所示,当输入x = 时,输出的3y =.13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则3∠= ︒.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是 (填”甲”或”乙” );②甲的行驶速度是 (公里/分);③乙的行驶速度是 (公里/分).15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠= .16.若22(3)16x m x +-+是完全平方式,则m 的值等于 .17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是 .三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-;(2)62543512()8(2)()2x x x x x --+÷-.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案.25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 ;(2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.计算2(2)x 的结果是( )A .22xB .24xC .4xD .2x【解析】2222(2)24x x x =⨯=.故选:B .2.下列语句不是命题的是( )A .连结ABB .对顶角相等C .相等的角是对顶角D .同角的余角相等 【解析】A 、连结AB ,不是命题,符合题意;B 、对顶角相等,是命题,不符合题意; C 、相等的角是对顶角,是命题,不符合题意;D 、同角的余角相等,是命题,不符合题意; 故选:A .3.下列运算不正确的是( )A .235a a a =B .3412()y y =C .33(2)8x x -=-D .3362x x x +=【解析】A .23235a a a a +==,故本选项不合题意;B .343412()y y y ⨯==,故本选项不合题意;C .3333(2)(2)8x x x -=-=-,故本选项不合题意;D .3332x x x +=,故本选项符合题意.故选:D . 4.已知α∠与β∠互补,150α∠=︒,则β∠的余角的度数是( )A .30︒B .60︒C .45︒D .90︒【解析】α∠与β∠互补,180αβ∴∠+∠=︒,150α∠=︒,18030βα∴∠=︒-∠=︒,β∴∠的余角为:903060︒-︒=︒,故选:B .5.当3x =时,函数2y x =-的值是( )A .2-B .1-C .0D .1【解析】当3x =时,函数2321y x =-=-=,故选:D .6.某种商品的售价为每件150元,若按现售价的8折进行促销,设购买x 件需要y 元,则y 与x 间的函数表达式为( )A .0.8y x =B .30y x =C .120y x =D .150y x =【解析】每件商品的实际售价为:1500.8120⨯=(元),y ∴与x 间的函数表达式为:120y x =.故选:C . 7.若2()(3)x px q x -+-展开后不含x 的一次项,则p 与q 的关系是( )A .3p q =B .30p q +=C .30q p +=D .3q p =【解析】232232()(3)333(3)(3)3x px q x x x px px qx q x p x p q x q -+-=--++-=+--++-,结果不含x 的一次项,30q p ∴+=.故选:C .8.如图,已知//AB CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若145∠=︒,235∠=︒,则3(∠= )A .65︒B .70︒C .75︒D .80︒ 【解析】//AB CD ,145C ∴∠=∠=︒,3∠是CDE ∆的一个外角,32453580C ∴∠=∠+∠=︒+︒=︒,故选:D .9.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y (元)与通话时间t (分钟)之间的函数图象是图中的( )A .B .C .D .【解析】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.40.4(010)y t t ∴=-,故只有选项D 符合题意.故选:D .10.运用乘法公式计算2(2)a -的结果是( )A .244a a -+B .224a a -+C .24a -D .244a a --【解析】原式244a a =-+,故选:A .二.填空题(共7小题,满分28分,每小题4分)11.已知2m a =,5n a =,则m n a +=__________.【解析】5210m n m n a a a +==⨯=,故答案为:10.12.某计算程序编辑如图所示,当输入x =__________时,输出的3y =.【解析】当3x 时,3y =3,解得12x =;当3x <时,3y =即353x +=,解得:23x =-.故答案为:12或23-. 13.如图,直线a ,b 被直线c 所截,若//a b ,1110∠=︒,240∠=︒,则__________︒.【解析】//a b ,41110∴∠=∠=︒,342∠=∠-∠,31104070∴∠=︒-︒=︒,故答案为:70.14.甲骑自行车、乙骑摩托沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图所示.根据图象可知:①先出发的是__________(填”甲”或”乙” )②甲的行驶速度是__________(公里/分)③乙的行驶速度是__________(公里/分)【解析】(1)甲先出发,10分钟后乙出发;(2)甲20分钟行驶了4公里,则甲的速度40.220==(公里/分);(3)乙10分钟行驶了4公里,则甲的速度40.410==(公里/分). 故答案为甲;0.2;0.4. 15.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则AOC DOB ∠+∠=__________.【解析】设AOD a ∠=,90AOC a ∠=︒+,90BOD a ∠=︒-,所以9090180AOC BOD a a ∠+∠=︒++︒-=︒. 故答案为:180︒.16.若22(3)16x m x +-+是完全平方式,则m 的值等于__________.【解析】22(3)16x m x +-+是完全平方式,2(3)24m x x ∴-=±,解得:7m =或1-,故答案为:7或1-.17.设2017a x =-,2019b x =-,2018c x =-,若2234a b +=,则2c 的值是__________.【解析】2017a x =-,2019b x =-,2234a b +=,22(2017)(2019)34x x ∴-+-=,22(20181)(20181)34x x ∴-++--=,22(2018)2(2018)1(2018)2(2018)134x x x x ∴-+-++---+=, 22(2018)32x ∴-=,2(2018)16x ∴-=,又2018c x =-,216c ∴=.故答案为:16.三.解答题(共3小题,满分18分,每小题6分)18.计算:(1)96()()()x y y x x y -÷-÷-(2)62543512()8(2)()2x x x x x --+÷-【解析】(1)原式96222()()()()2x y x y x y x y x xy y =-÷-÷-=-=-+; (2)原式62512567767128(8)()2282104x x x x x x x x x x =--+÷-=---=--.19.若2210x x --=,先化简,后求出2(1)(2)x x x -+-的值.【解析】2(1)(2)x x x -+- 22212x x x x =-++-2241x x =-+,2210x x --=,221x x ∴-=,∴原式222412(2)12113x x x x =-+=-+=⨯+=.20.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.【解析】设这个角为x ︒,则它的余角为90x ︒-︒,补角为180x ︒-︒,根据题意,得180103(90)x x ︒-︒+︒=⨯︒-︒,解得40x =,答:这个角为40度.四.解答题(共3小题,满分24分,每小题8分)21.已知:如图,//AC BD ,A D ∠=∠,求证:E F ∠=∠.【解析】证明://AC BD ,12∴∠=∠.又A D ∠=∠,1180A E ∠+∠+∠=︒,2180D F ∠+∠+∠=︒,E F ∴∠=∠.22.如图,某中学校园内有一块长为(3)a b +米,宽为(2)a b +米的长方形地块,学校计划在中间留一块边长为()a b +米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a 、b 的代数式表示)(2)当2a =,4b =时,求绿化的面积.【解析】(1)依题意得:2(3)(2)()a b a b a b ++-+22226322a ab ab b a ab b =+++---2(53)a ab =+平方米.答:绿化面积是2(53)a ab +平方米;(2)当2a =,4b =时,原式202444=+=(平方米).答:绿化面积是44平方米.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?【解析】如果//PQ MN ,那么AB 与CD 平行.理由如下: 如图,//PQ MN ,EAQ ACN ∴∠=∠. 又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共2小题,满分20分,每小题10分)24.某市A ,B 两个蔬菜基地得知四川C ,D 两个灾民安置点分别急需蔬菜240t 和260t 的消息后,决定调运蔬菜支援灾区,已知A 蔬菜基地有蔬菜200t ,B 蔬菜基地有蔬菜300t ,现将这些蔬菜全部调运C ,D 两个灾区安置点从A 地运往C ,D 两处的费用分别为每吨20元和25元,从B 地运往C ,D 两处的费用分别为每吨15元和18元.设从B 地运往C 处的蔬菜为x 吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x 的值:(2)设A ,B 两个蔬菜基地的总运费为w 元,求出w 与x 之间的函数关系式,并求总运费最小的调运方案; (3)经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(0)m >,其余线路的运费不变,试讨论总运费最小的调动方案. 【解析】(1)填表如下:依题意得:20(240)25(40)1518(300)x x x x -+-=+- 解得:200x =两个蔬菜基地调运蔬菜的运费相等时x 的值为200.(2)w 与x 之间的函数关系为:20(240)25(40)1518(300)29200w x x x x x =-+-++-=+由题意得:240040003000x x x x -⎧⎪-⎪⎨⎪⎪-⎩,40240x ∴,在29200w x =+中,20>,w ∴随x 的增大而增大,∴当40x =时,总运费最小,此时调运方案为:(3)由题意得(2)9200wm x=-+,02m ∴<<,(2)中调运方案总费用最小; 2m =时,在40240x 的前提下调运方案的总费用不变; 215m <<时,240x =总费用最小,其调运方案如下:25.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F(1)当PMN ∆所放位置如图①所示时,则PFD ∠与AEM ∠的数量关系为 90PFD AEM ∠+∠=︒ ; (2)当PMN ∆所放位置如图②所示时,求证:90PFD AEM ∠-∠=︒;(3)在(2)的条件下,若MN 与CD 交于点O ,且30DON ∠=︒,15PEB ∠=︒,求N ∠的度数.【解析】(1)作//PG AB ,如图①所示:则//PG CD ,1PFD ∴∠=∠,2AEM ∠=∠,1290P ∠+∠=∠=︒,1290PFD AEM ∴∠+∠=∠+∠=︒,故答案为:90PFD AEM ∠+∠=︒; (2)证明:如图②所示://AB CD ,180PFD BHF ∴∠+∠=︒,90P ∠=︒,290BHF ∴∠+∠=︒,2AEM ∠=∠,90BHF PHE AEM ∴∠=∠=︒-∠,90180PFD AEM ∴∠+︒-∠=︒,90PFD AEM ∴∠-∠=︒;(3)如图③所示:90P ∠=︒,90901575PHE FEB ∴∠=︒-∠=︒-︒=︒, //AB CD ,75PFC PHE ∴∠=∠=︒,PFC N DON ∠=∠+∠,753045N ∴∠=︒-︒=︒.。
北师大版七年级下学期期中考试数学试卷含答案

21北师大版七年级下学期期中考试试卷数学试题考试时间:90分钟 满分:100分一、 选择题(每小题2分,共20分) 1、下列运算正确的是( )A .1055a a a =+B .2446a a a =⨯C .a a a =÷-10D .044a a a =- 2、如图,下列推理错误的是( )A .∵∠1=∠2,∴c ∥dB .∵∠3=∠4,∴c ∥dC .∵∠1=∠3,∴ a ∥bD .∵∠1=∠4,∴a ∥b3、下列关系式中,正确的是( )A . ()222b 2ab a b a +-=+ B. ()222b a b a -=-C . ()222b a b a +=+ D. ()()22b a b a b a -=-+4、下列各式中不能用平方差公式计算的是( ) A 、))((y x y x +-- B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+5、汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量 Q (升)与行驶时间t (时)的关系用图象表示应为图中的是( )6、若23,24m n ==,则322m n -等于( )A 、1B 、98C 、278D 、27167、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、120°8、如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )cdA .30° B.25° C.20° D.15° 9、下列说法中,正确的是 ( )A.内错角相等.B.同旁内角互补.C.同角的补角相等.D.相等的角是对顶角. 10、如图,下列条件中,能判定DE ∥AC 的是 ( ) A. ∠EDC=∠EFC B. ∠AFE=∠ACD C. ∠1=∠2 D. ∠3=∠4二、填空题(每小题2分,共20分)11、用科学计数法表示0.0000907 =12、一个角的补角是它的余角的4倍,则这个角是_________度。
北师大版数学七年级下册期中考试试卷含答案

北师大版数学七年级下册期中考试试题一、单选题(每小题3分,共27分)1.下列运算正确的是()A.x2+x3=x5B.x2•x3=x6C.(3x3)2=6x6D.x6÷x3=x32.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣63.计算(a﹣b)2的结果是()A.a2﹣b2B.a2﹣2ab+b2C.a2+2ab﹣b2D.a2+2ab+b24.如果一个角的补角是150∘,那么这个角的余角的度数是()A.30∘B.60∘C.90∘D.120∘5.两直线被第三条直线所截,则()A.内错角相等B.同位角相等C.同旁内角互补D.以上结论都不对6.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路7.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是()A.46°B.23°C.26°D.24°8.设(5a+3b)2=(5a-3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab9.一辆汽车在广场上行驶,两次转弯后要想行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A .第一次向右拐50°,第二次向左拐130°B .第一次向左拐30°,第二次向右拐30°C .第一次向右拐50°,第二次向右拐130°D .第一次向左拐50°,第二次向左拐130°二、填空题10.若22()3a -=- ,b=(﹣1)﹣1,0()2c π=-,则a 、b 、c 从小到大的排列是_____<_____<_____.11.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.12.已知3m =4,3n =5,3m ﹣n 的值为_____.13.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升________ 元.14.若2m =3,4n =8,则23m ﹣2n+3的值是_____.15.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=_____. 16.已知x 2+3x ﹣1=0,求:x 3+5x 2+5x+18的值_______________.17.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值为_____.18.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.三、解答题19.计算下列各题(1)(x 3)2.(﹣x 4)3 (2)(65x 5y 4﹣910x 4y 3)35÷x 3y 3(3)2mn.[(2mn )2﹣3n (mn+m 2n )] (4)(2a+1)2﹣(2a+1)(2a ﹣1) (5)102+21()30-×(π﹣3.14)0﹣|﹣302|20.化简求值:(x+2y )2﹣(x+y )(3x ﹣y )﹣5y 2,其中x=2,y=12.21.已知(x 3+mx+n )(x 2﹣3x+1)展开后的结果中不含x 3、x 2项,求m+n 的值.22.如图,∠l=∠2,DE ⊥BC ,AB ⊥BC ,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE ⊥BC ,AB ⊥BC (已知)∴∠DEB=∠ABC=90° ( )∴∠DEB+( )=180°∴DE ∥AB ( )∴∠1=∠A ( )∠2=∠3( )∵∠l=∠2(已知)∴∠A=∠3( )23.已知x+y=6,xy=5,求下列各式的值:(1)22x y(2)(x﹣y)2 (3)x2+y224.如图,AB//DE,∠1=∠ACB,AC平分∠BAD,试说明AD//BC.25.已知:如图,AB∥CD,求:(1)在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠E n﹣1+∠E n+∠D=?26.甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)27.如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系?请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).参考答案1.D【解析】【分析】根据同类项,同底数幂的乘法法则,幂的乘方法则,同底数幂的乘法法则一一判断即可.【详解】A 、不是同类项,不能合并. 此选项错误.B 、235,x x x ⋅=此选项错误;C 、()23639x x =此选项错误;D 、633,x x x ÷= 此选项正确.故选D .【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,熟记它们的运算法则是解题的关键.2.C【解析】根据绝对值小于1 的正数用科学计数法表示使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000573=5.73×610-.故选C.3.B【解析】分析:根据完全平方公式进行计算即可.详解:原式222.a ab b =-+故选B.点睛:考查完全平方公式,熟记公式是解题的关键.4.B【解析】设这个角为x 度,180-x=150,x=30,那么它的余角=90-x=60,故选B.5.D【解析】A 、B 、C 是在这两直线平行的情况下才正确的,而题中没有这一条件,故都不正确,故选D6.B【解析】【分析】A 、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A 不正确;B 、观察函数图象,求出小王在朋友家停留的时间,故B 正确;;C 、先求出小王回家所用时间,比较后可得出C 不正确;D 、题干中未给出路况如何,故D 不正确.综上即可得出结论.【详解】解:A 、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),∵100<200,∴小王去时的速度小于回家的速度,A 不正确;B 、∵30−20=10(分),∴小王在朋友家停留了10分,B 正确;C 、40−30=10(分),∵20>10,∴小王去时所花时间多于回家所花时间,C 不正确;D 、∵题干中未给出小王去朋友家的路有坡度,∴D 不正确.故选:B .【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键. 7.C【解析】AB //CD ,∠AGE=128M 12818012852CHG EHD ∴∠=︒∴∠=︒-︒=︒HM 平分∠EHD 26MHD ∴∠=︒ 故选C.8.B【解析】【详解】∵()()225353a b a b A +=-+ ,∴22222530925309a ab b a ab b A ++=-++,∴A=60ab .故选B.9.B【解析】由题意可知两次拐弯后的方向和原来的方向平行,根据同位角相等两直线平行得出答案为B 10.b c a【解析】分析:先对3个式子进行运算,然后比较大小即可. 详解:22239.324a -⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭()111,1,b c =-=-= .b c a ∴<<故答案为:,,.b c a点睛:考查负整数指数幂和0次幂,熟练掌握它们的运算是解题的关键.11.±1【解析】分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可.详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1,解得:k =±1, 故答案是:±1.点睛:考查完全平方公式,熟记公式是解题的关键.12.45【解析】分析:根据同底数幂的除法进行运算即可.详解:3435m n ==,,433345.5m n m n -∴=÷=÷= 故答案为:4.5点睛:考查同底数幂的除法法则,熟记法则并根据法则计算是解题的关键.13.7.09【解析】由图像可得,100升汽油共用709元,所以这种汽油的单价为每升7.09元.14.27【解析】分析:根据幂的相关运算进行运算即可.详解:2348m n ==,,()332332333222224238827.m n m n m n -+∴=÷⋅=÷⋅=÷⨯=故答案为:27.点睛:考查同底数幂的除法法则,熟记法则并根据法则计算是解题的关键.15.60°或120°【解析】分析:根据平行线的性质:两直线平行,同位角相等即可解答此题.详解:如图:当α=∠2时,2160,∠=∠=当β=∠2时,18060120β∠=-=,故答案为60或120.点睛:考查平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键. 16.20.【解析】分析:由2310x x +-=,得231x x +=,,再进一步把325518x x x +++分解因式凑出23x x +解决问题即可.详解:∵2310x x +-=,∴231x x +=,322225518(3)25182518,x x x x x x x x x x x +++=++++=+++22(3)1821820x x =++=+=,故答案为:20.点睛:本题考查因式分解的应用,关键是凑出()23x x +这个因式是解题的关键. 17.3【解析】【分析】根据a =2009x +2007,b =2009x +2008,c =2009x +2009,得到a −b =−1,a −c =−2,b −c =−1,把所2222221[()()()]2a b c ab bc ac a b a c b c ++---=-+-+-代入求解即可. 【详解】∵a =2009x +2007,b =2009x +2008,c =2009x +2009∴a −b =−1,a −c =−2,b −c =−1,∴222,a b c ab bc ac ++--- 2221(222222),2a b c ab bc ac =++--- 2222221(222),2a ab b a ac c b bc c =-++-++-+ ()()()22222211[()()()][121] 3.22a b a c b c =-+-+-=⨯-+-+-= 故答案为3.【点睛】考查了完全平方公式的运用,观察所求式子并转化为完全平方公式是解决本题的关键. 18.∠A+∠C ﹣∠P=180°【解析】【详解】如图所示,作PE ∥CD ,∵PE ∥CD ,∴∠C+∠CPE=180°,又∵AB ∥CD ,∴PE ∥AB ,∴∠A=∠APE ,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.19.(1) ﹣x 18;(2)2x 2y-32x;(3) 2m 3n 3﹣6m 2n 3;(4)4a+2;(5)100.【解析】分析:(1)根据积的乘方和同底数幂的乘法可以解答本题;(2)根据整式的除法可以解答本题;(3)根据单项式乘多项式、同底数幂的乘法可以解答本题;(4)根据完全平方公式、平方差公式可以解答本题;(5)根据负整数指数幂、零指数幂、绝对值可以解答本题.详解:(1)原式()61218x x x ;=⋅-=-(2)原式=232.2x y x =-(3)原式()222222433,mn m n mn m n =⋅--()22223,mn m n mn =⋅-332326.m n m n =-(4)原式2244141,a a a =++-+42a =+;(5)原式=100+900×1-900, =100+900-900,=100.点睛:考查整式的混合运算,零指数幂,负整数指数幂,根据运算法则进行运算即可. 20.-10.【解析】【分析】先分别利用完全平方公式、多项式乘多项式法则进行展开,然后再合并同类项,最后把x 、y 的数值代入进行计算即可得.【详解】原式=(x 2+4xy+4y 2)-(3x 2+2xy-y 2)-5y 2=x 2+4xy+4y 2-3x 2-2xy+y 2-5y 2=-2x 2+2xy ,当x=−2,y=12时,原式=-8-2=-10. 【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式、多项式乘多项式的法则是解题的关键.21.-4.【解析】分析:原式利用多项式乘以多项式法则计算,根据结果中不含3x 和2x 项,求出m 与n 的值即可.详解:32()(31),x mx n x x ++-+ 543322333,x x x mx mx mx nx nx n =-++-++-+54323(1)(3)(3)x x m x m n x m n x n =-+++-++-+因为展开后的结果中不含3x 、2x 项所以1+m =0,−3m +n =0,所以m =−1 , n =−3 .m +n =−1+(−3 )=−4.故答案为 4.-点睛:考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.22.理由见解析.【解析】分析:先根据垂直定义得到90DEC ABC ∠=∠=,则利用平行线的判定可得DE ∥AB ,然后根据平行线得性质得到∠2=∠3,∠1=∠A ,再利用等量代换可得3A ∠=∠.详解:∵DE ⊥BC ,AB ⊥BC (已知)∴90DEC ABC ∠=∠= (垂直的定义),∴()180,DEB ABC ∠+∠=∴DE ∥AB (同旁内角互补相等,两直线平行),∴∠1=∠A (两直线平行,同位角相等),由DE ∥BC 还可得到:∠2=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知)∴∠A =∠3(等量代换).故答案为:垂直的定义;∠ABC ;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.点睛:本题主要考查了学生对两线平行的判定,两线平行的性质的掌握,如果两条直线被第三条直线所截,内错角相等、同位角相等、同旁内角互补,则这两条直线平行,若果两直线平行,则内错角相等、同位角相等、同旁内角互补,本题属于基础题,根据上述的性质和定理可以求解本题.23.(1)125;(2)16;(3)26. 【解析】分析:根据完全平方公式,即可解答.详解:∵x +y =6,xy =5, (1)222()261255x y x y xy +⨯+===;(2)222()()464516.x y x y xy -=+-=-⨯=(3)2222()262526.x y x y xy +=+-=-⨯=点睛:考查完全平方公式,熟记公式是解题的关键.24.证明见解析.【解析】【分析】根据AB ∥DE 可得∠1=∠BAC ,再根据∠1=∠ACB ,可得∠BAC=∠ACB ,再根据∠CAB=12∠BAD ,利用等量代换可得∠DAC=∠ACB ,根据内错角相等可得两直线平行. 【详解】∵AB ∥DE ,∴∠BAC=∠1,∵∠1=∠ACB ,∴∠ACB=∠BAC ,∵∠CAB=12∠BAD , ∴∠ACB=∠DAC ,∴AD ∥BC .【点睛】本题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.25.(1)180°;(2)360°.(3)180°•(n+1).【解析】分析:(1)由AB ∥CD ,利用“两直线平行,同旁内角互补”即可得出180B D ∠+∠=︒;(2)在图(2)中,过点E 1作11E F ∥CD ,则11E F ∥AB ,利用“两直线平行,同旁内角互补”即可得出1111180180B BE F D DE F ∠+∠=︒∠+∠=︒、,进而即可得出1360B BE D D ∠+∠+∠=︒;(3)在图(3)中,过点E 1作11E F ∥CD ,过点E 2作22E F ∥CD ,…,过点E n 作n n E F ∥CD ,利用“两直线平行,同旁内角互补”即可得出11180B BE F ∠+∠=︒ 、112122180F E E E E F ∠+∠=︒、…、180n n F E D D ∠+∠=︒, 进而即可得出()121232111801n n n n n B BE E E E E E E E E E D D n ---∠+∠+∠+⋯+∠+∠+∠=︒⋅+.详解:(1)∵AB ∥CD ,∴180B D ∠+∠=︒;(2)在图(2)中, 过点E 1作11E F ∥CD ,则11E F ∥AB ,∴1111180180B BE F D DE F ∠+∠=︒∠+∠=︒、,∴1360B BE D D ∠+∠+∠=︒;(3)在图(3)中, 过点E 1作11E F ∥CD ,过点E 2作22E F ∥CD ,…,过点E n 作n n E F ∥CD , ∴11180B BE F ∠+∠=︒ 、112122180F E E E E F ∠+∠=︒、…、180n n F E D D ∠+∠=︒, ∴()121232111801n n n n n B BE E E E E E E E E E D D n ---∠+∠+∠+⋯+∠+∠+∠=︒⋅+.点睛:考查了平行线的判定与性质,作出辅助线是本题解题的关键.26.见解析【解析】【分析】(1)因为当y =0时,x 甲=0,x 乙=10,所以甲先出发了10分钟,又因当y =6时,x 甲=30,x 乙=25,所以乙先到达了5分钟;(2)都走了6公里,甲用了30分钟,乙用了25-10=15分钟,由此即可求出各自的速度; (3)根据图象,可知当10<x<25分钟时两人均行驶在途中【详解】解:(1)甲先出发,先出发10分钟.乙先到达终点,先到达5分钟.(2)甲的速度为:V 甲61212== (千米/小时),乙的速度为:V 乙624251060==-(千米/时), ()3根据图象,可知当1025x <<分钟时两人均行驶在途中点睛:考查了学生识别函数图象的能力.做题的关键是看懂图象.27.(1)∠α+∠β=∠γ.(2)①P 在A 点左边时,∠α﹣∠β=∠γ;②P 在B 点右边时,∠β﹣∠α=∠γ.【解析】分析:(1)根据平行线的性质可求出它们的关系,从点P 作平行线,平行于AC ,根据两直线平行内错角相等可得出.(2)分类讨论,①点P 在点A 左边,②点P 在点B 右边.详解:(1)如图,过点P 做AC 的平行线PO ,∵AC ∥PO ,∴∠β=∠CPO ,又∵AC ∥BD ,∴PO ∥BD ,∴∠α=∠DPO ,∴∠α+∠β=∠γ.(2)①P 在A 点左边时,∠α−∠β=∠γ;②P 在B 点右边时,∠β−∠α=∠γ.(提示:两小题都过P 作AC 的平行线).点睛:主要考查了平行线的性质:两直线平行,内错角相等.作出辅助线是解决本题的关键.。
北师大版初中数学七年级(下)期中模拟试卷(含答案)

北师大版初中数学七年级(下)期中模拟试卷一.选择题(共10小题)1.下列各式中,计算正确的是()A.a6÷a2=a3 B.(2a2)3=6a6C.a3•(﹣a2)=﹣a5 D.2.下列运算中,正确的是()A.(a+3)(a﹣3)=a2﹣3B.(3b+2)(3b﹣2)=3b2﹣4C.(x+2)(x﹣3)=x2﹣6D.(3m﹣2n)(﹣2n﹣3m)=4n2﹣9m23.如果关于x的多项式(2x﹣m)与(x+5)的乘积中,常数项为15,则m的值为()A.3B.﹣3C.10D.﹣l04.点P为直线m外一点,点A,B,C为直线m上三点,P A=4厘米,PB=5厘米,PC=2厘米,则点P到直线m 的距离()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米5.下列说法正确的个数是()①对顶角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直A.1B.2C.3D.46.2018年10月,历时九年建设的港珠澳大桥正式通车,住在珠海的小亮一家,决定自驾去香港旅游,经港珠澳大桥去香港全程108千米,汽车行进速度v为110千米/时,若用s(千米)表示小亮家汽车行驶的路程,行驶时间用t(小时)表示,下列说法正确的是()A.s是自变量,t是因变量B.s是自变量,v是因变量C.t是自变量,s是因变量D.v是自变量,t是因变量7.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.两车到第3秒时行驶的路程相等B.在4至8秒内甲的速度都大于乙的速度C.乙前4秒行驶的路程为48米8.2018年端午节,在大明湖举行第七届会民健身运动会龙舟赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)时间x(min)之间的关系如图所示,下列说法中正确的有()①乙队比甲队提前0.25min到达终点②当乙队划行110m时,仍在甲队后面;③当乙队划行200m时,已经超过甲队④0.5min后,乙队比甲队每分钟快40mA.1个B.2个C.3个D.4个9.如图,将一张三角形纸片ABC的三角折叠,使点A落在△ABC的A′处折痕为DE,若∠A=α,∠CF A′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=180°﹣α﹣βB.γ=α+2βC.γ=2α+βD.γ=α+β10.如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PQ B.MO C.P A D.MQ9题图10题图二.填空题(共8小题)11.已知x=﹣2,y=,化简(x+2y)2﹣(x+y)(x﹣y)=.12.要使(x2+nx+3)(﹣2x3)的展开式中不含x4项,则n的值为.13.如图,AB∥CD,∠ABN=∠NBM,∠CDN=∠MDN,∠M=160°,则∠N=.14.如图,AB、CD被直线EF所截,则∠3与是同旁内角.15.汽车离开甲站10km后,以60km/h的速度匀速前进了th,则汽车离开甲站所走的路程s(km)与时间t(h)之间的关系式是.16.如图为撕去了一个角后的三角形纸片,其中△ABC中∠A=40°,∠B=60°,则撕去的角∠C的度数是.17.如图,已知Rt△ACB中,∠ACB=90°,点P是边AB上一点,点M,N分别是边BC和BC延长线上的点,∠MPB=∠NP A,∠PNB=∠FNG,线段PM的延长线和射线NF的反向延长线交于点Q,若∠CAB=50°,则∠Q=.18.如图,正方形ABCD的边长为a,P为正方形边上一动点,运动路线是A﹣D﹣C﹣B﹣A,设P点经过的路程为x,以点A,P,D为顶点的三角形的面积是y,图象反映了y与x的关系,当S△ADP=S正方形ABCD时,x=.三.解答题(共6小题)19.计算:(1)3x(2x﹣3)(2)(a+b)(3a﹣2b)(3)(4a2﹣6ab+2a)÷2a (4)20192﹣2017×2021(用乘法公式)20.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE,∠AED=60°.(1)求证:∠ABC=∠ADC;(2)求∠CDE的度数.21.如图所示,直线a∥b.直线c与直线a,b分别相交于点A、点B,AM⊥b,垂足为点M,若∠1=58°,求∠2的度数.22.如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积Vcm3也随之发生了变化.(1)在这个变化中,自变量是,因变量是;(2)写出体积V与半径r的关系式;(3)当底面半径由1cm到10cm变化时,通过计算说明圆柱的体积增加了多少cm3.23.已知AD∥BC,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24.如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足D,延长CE与外角∠ABG的平分线交于点F.(1)若∠A=60°,求∠DCE和∠F的度数;(2)若∠A=n°(0<n<90)直接写出用含n的代数式表示∠DCE和∠F.(3)在图中画△FCB高FH和∠DCB的角平分线交于点Q,在(2)的条件下求∠CQH的度数,请直接写出∠CQH的度数.参考答案一.选择题(共10小题)1.解:A、a6÷a2=a4,错误;B、(2a2)3=8a6,错误;C、a3•(﹣a2)=﹣a5,正确;D、,错误;故选:C.2.解:A.错误;应为(a+3)(a﹣3)=a2﹣9B.错误;应为(3b+2)(3b﹣2)=9b2﹣4C.错误;选项不符合平方差公式,应为(x+2)(x﹣3)=x2+x﹣6D.正确;(3m﹣2n)(﹣2n﹣3m)=(3m﹣2n)•(﹣1)•(3m+2n)=4n2﹣9m2故选:D.3.解:(2x﹣m)•(x+5)=2x2+10x﹣mx﹣5m,∵常数项为15,∴﹣5m=15,∴m=﹣3.故选:B.4.解:∵点P为直线m外一点,点A,B,C为直线m上三点,P A=4厘米,PB=5厘米,PC=2厘米,因为垂线段最短,所以点P到直线m的距离小于等于2厘米.故选:D.5.解:①对顶角相等,正确;②等角的补角相等,正确;③两直线平行,同旁内角互补,故③错误;④在同一平面内,过一点有且只有一条直线与已知直线垂直,正确.综上,正确的选项有3个.故选:C.6.解:行驶的路程随行驶时间用t的变化而变化,则t是自变量,s是因变量,故选:C.7.解:A、由于甲的图象是过原点的直线,所以可得v=4t(v、t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,符合题意;B、在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,不符合题意;C、根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,不符合题意;D、根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32米/秒,则每秒增加(32÷8)=4(米/秒),不符合题意,故选:A.8.解:①由横坐标看出乙队比甲队提前0.25min到达终点,此结论正确;②乙AB段的解析式为y=240x﹣40,当y=110时,x=;甲的解析式为y=200x,当x=时,y=125,当乙队划行110m时,此时落后甲队15m,此结论正确;③乙AB段的解析式为y=240x﹣40,当y=200时,x=1;甲的解析式为y=200x,当y=200时,x=1时,当乙队划行200m时,此时正赶上甲队,此结论错误;④乙AB段的解析式为y=240x﹣40,乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,此结论正确;故选:C.由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选:C.10.解:要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,故选:A.二.填空题(共8小题)11.解:原式=x2+4xy+4y2﹣(x2﹣y2)=x2+4xy+4y2﹣x2+y2=5y2+4xy,当x=﹣2,y=时,原式=5×﹣4=,故答案为:12.解:(x2+nx+3)(﹣2x3)=﹣2x5﹣2nx4﹣6x3,∵(x2+nx+3)(﹣2x3)的展开式中不含x4项,∴﹣2n=0,∴n=0,故答案为:0∵AB∥CD,∴AB∥ME∥CD,∴∠ABM+∠BMD+∠CDM=180°×2=360°,又∵∠BMD=160°,∴∠ABM+∠CDM=200°,又∵∠ABN=∠NBM,∠CDN=∠MDN,∴∠NBM+∠NDM=×200°=150°,∴四边形BMDN中,∠N=360°﹣150°﹣160°=50°,故答案为:50°.14.解:∠3与∠2是同旁内角.故答案为:∠2.15.解:根据题意,得s=10+60t.故答案为:s=10+60t.16.解:∵∠C=180°﹣∠A﹣∠B,∠A=40°,∠B=60°,∴∠C=180°﹣40°﹣60°=80°,故答案为80°.17.解:延长NP到K.∵∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,设∠NP A=∠QPB=∠BPK=x,∠PNB=∠FNG=∠QNB=y,∵∠KPB=∠PNB+∠PBN,∠KPM=∠PNQ+∠Q,∴x=y+40°,2x=2y+∠Q,∴x﹣y=40°,∴∠Q=2(x﹣y)=80°,故答案为80°.18.解:当点P由点A向点D运动,即0≤x≤4时,y的值为0,可得a=4,∵S△ADP=S正方形ABCD,∴当点P在DC上时,DP=;当P的AB上时,∵AP==2,∴BP=4﹣2=2,∴当S△ADP=S正方形ABCD时,x=4+2或4×3+2,解得x=6或14.故答案为:6或14三.解答题(共6小题)19.解:(1)原式=6x2﹣9x;(2)原式=3a2+3ab﹣2ab﹣2b2=3a2+ab﹣2b2;(3)原式=2a﹣3b+1;(4)原式=20192﹣2017×2021=20192﹣(2019﹣2)(2019+2)=20192﹣(20192﹣22)=20192﹣20192+22=4.20.(1)证明:∵AB∥CD,∴∠ABC=∠DCE,∵AD∥BC,∴∠ADC=∠DCE,∴∠ABC=∠ADC,(2)设∠CDE=x,则∠ADC=2x,∵AB∥CD,∴∠BAD=180°﹣2x,∵AE平分∠BAD,∴∠EAD=∠BAD=90°﹣x,∵AD∥BC,∴∠BEA=∠EAD=90°﹣x,∴∠BED+∠ADE=180°,∴90°﹣x+60°+3x=180°,∴x=15°,∴∠CDE=15°.21.解:∵a∥b,∴∠ABM=∠1=58°,∴∠2=90°﹣∠1,=90°﹣58°=32°.22.解:(1)在这个变化过程中,自变量是r,因变量是V.故答案为:r,V;(2)圆柱的体积V与底面半径r的关系式是V=3πr2.(3)(π×102﹣π×12)×3=297π(cm3).所以当底面半径由1cm到10cm变化时,通过计算说明圆柱的体积增加了297πcm3.23.(1)证明:∵AE平分∠BAD,∴∠BAE=∠EAD,∵AD∥BC,∴∠AEB=∠EAD,∴∠BAE=∠BEA;(2)①证明:∵AD∥BC,AB∥CD,∴∠BAD+∠ABC=180°,∠BAD+∠ADC=180°,∴∠ABC=∠ADC;②解:∵∠ADE=3∠CDE,设∠CDE=x,∴∠ADE=3x,∠ADC=2x,∵AB∥CD,∴∠BAD+∠ADC=180°,∴∠DAB=180°﹣2x,∵∠DAE=∠BAE=∠BEA=90°﹣x,又∵AD∥BC,∴∠BED+∠ADE=180°,∵∠AED=50°,即90°﹣x+50°+3x=180°,解得:x=15°,∴∠CDE=15°,∠ADE=45°,∵AD∥BC,∴∠CED=180°﹣∠ADE=135°.24.解:(1)∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣30°=15°,∵∠ABG=∠A+∠ACB=150°,∵BF平分∠ABG,∴∠FBG=∠ABG=75°,∵∠FBG=∠F+∠FCB,∴∠F=75°﹣45°=30°.(2)∵CD⊥AB,∠A=n°,∴∠ADC=90°,∠ACD=90°﹣n°,∵CF平分∠ACB,∠ACB=90°,∴∠ACE=∠FCB=∠ACB=45°,∴∠DCE=∠ACE﹣∠ACD=45°﹣90°+n°=n°﹣45°,∵∠ABG=∠A+∠ACB=90°+n°,∵BF平分∠ABG,∴∠FBG=∠ABG=45°+n°∵∠FBG=∠F+∠FCB,∴∠F=n°.(3)如图,∵FH⊥CG,∴∠FHC=90°,∵∠A+∠ACD=90°,∠ACD+∠DCB=90°∵∠A=∠DCB=n°,∵CQ平分∠DCB,∴∠QCH=n°,∴∠CQH=90°﹣n°.。
最新(北师大版)七年级下学期期中考试数学试卷(附答案)

七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.用100元钱在网上书店恰好可购买m本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式()A. y=n(100m +0.6) B. y=n(100m)+0.6C. y=n(100m+0.6)D. y=100mn+0.62.已知火车站托运行李的费用C和托运行李的质量P(P为整数)的对应关系如下表所P(kg)12345…C(元)2 2.53 3.54…则C与P之间的关系式为()A. C=0.5(P−1)B. C=2P−0.5C. C=2P+0.5D. C=2+0.5(P−1)3.如图,直线a,b相交于点O.如果∠1+∠2=60∘,那么∠3是()A. 150∘B. 120∘C. 60∘D. 30∘4.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A. 2条B. 3条C. 4条D. 5条5.计算(−3a2)2÷a2的结果是()A. −9a2 B. 6a4 C. 3a2D. 9a26.一个多项式除以2x2y,其商为(4x3y2−6x3y+2x4y2),则这个多项式为()A. 2xy−3x+x2yB. 8x6y2−12x6y+4x8y2C. 2x−3xy+x2yD. 8x5y3−12x5y2+4x6y37.某科研小组在网上获取了声音在空气中传播的速度与空气温度之间的关系的一些():温度(℃)−20−100102030声速(m/s)318324330336342348下列说法中错误的是()A. 在这个变化过程中,自变量是温度,因变量是声速B. 温度越高,声速越快C. 当空气温度为20℃时,5s内声音可以传播1740mD. 温度每升高10℃,声速增加6m/s8.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,下图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的关系的图象.下列说法错误的是()A. 乙先出发的时间为0.5小时B. 甲的速度是80千米/小时C. 甲出发0.5小时后两车相遇D. 甲到B地比乙到A地早1小时129.已知点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交,那么符合以上条件的图形是()B.A.C. D.10.若∠1与∠2是内错角,∠1=30°,则∠2=()A. 30°B. 150°C. 30°或150°D. 大小不能确定×103)=106;③−3xy·11.下列等式:①3a3·(2a2)2=12a12;②(2×103)×(12(−2xyz)2=12x3y3z2;④4x3·5x4=9x12,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个12.在数学课上,老师讲了单项式与多项式相乘.放学后,小丽回到家拿出课堂笔记,认真地复习老师课上讲的内容,她突然发现一道题:−3x2(2x−+1)=−6x3+3x2y−3x2,那么方框中的是()A. −yB. yC. −xyD. xy13.已知2m=3,3m=2,则6m等于()A. 1B. 1.5C. 5D. 614.如图,描述同位角、内错角、同旁内角关系不正确的是()A. ∠1与∠4是同位角B. ∠2与∠4是同旁内角C. ∠3与∠4是同旁内角D. ∠2与∠3是内错角15.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是()A.B.C.D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是________.(把你认为正确结论的序号都填上)17.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.18.一块长方形草坪的面积为4a2−6ab+2a,若它的一条边长为2a,则它的周长是.19.如图所示,直线a,b,c两两相交,∠1=3∠3,∠2=75∘,则∠4=.20.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.三、解答题(本大题共7小题,共80.0分)21.(8分)先化简,再求值:(a+3)2−(a+1)(a−1)−2(2a+4),其中a=−1.222.(8分)如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=116°,求∠AOD的度数.23.(12分)下图为小强在早晨8时从城市出发到郊外所走的路程与时间的变化图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 黔西×中七年级数学下册期中模拟测试
班级:七( )班 姓名: 学号: 得分:
一、选择题(每小题3分,共30分)
1、下列计算正确的是 ( )
A 、
5322a b a =+ B 、a a a =÷44 C 、632a a
a =⋅ D 、()632a a -=- 2、下面每组数分别是三根小木棒的长度, 它们能摆成三角形的是 ( )
A 、5, 1, 3
B 、2, 3, 4
C 、3, 3, 7
D 、2, 4, 2
3、如果两个不相等的角互为补角,那么这两个角 ( )
A 、都是锐角
B 、都是钝角
C 、一个锐角,一个钝角
D 、以上答案都不对
4、用科学计数法表示0.0000907的结果正确的是 ( )
A 、4101.9-⨯
B 、5101.9-⨯
C 、5100.9-⨯
D 、51007.9-⨯
5、如图:已知,∠1=∠2,那么下列结论正确的是 ( )
A 、∠C=∠D
B 、AD ∥BC
C 、AB ∥C
D D 、∠3=∠4
6、下列各式中不能用平方差公式计算的是
( )
A 、))((y x y x +--
B 、))((y x y x --+-
C 、))((y x y x ---
D 、))((y x y x +-+
7、下列说法中,正确的有 ( )
(1)两条直线被第三条直线所截,同位角相等;
(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
(3)相等的两个角是对顶角;
(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离;
A 、0个
B 、1个
C 、2个
D 、3个
8、下列关系式中,正确的是 ( )
A 、()222b a b a -=-
B 、()()22b a b a b a +=-+
C 、()222b a b a +=+
D 、()222b 2ab a b a ++=+
9、一定在△ABC 内部的线段是 ( )
A .任意三角形的一条中线、二条角平分线、三条高
B .钝角三角形的三条高、三条中线、一条角平分线
C .锐角三角形的三条高、三条角平分线、三条中线
D .直角三角形的三条高、三条角平分线、三条中线
10、等腰三角形的一边长为5cm ,另一边长为6cm ,那么它的周长为 ( )
A 、16cm
B 、17cm
C 、16cm 或17cm
D 、16或17
二、填空题(每小题3分,共30分)
11、计算:=⨯9981002 12、()=-425
y x 13、若4a 2+ka +9是一个完全平方式,则k =
14、一个角与它的补角之差是20º,则这个角的大小是
15、如图1,∠EAD=∠DCF ,要得到AB//CD ,则需要的条件
(填一个你认为正确的条件即可)
图1
16、如图2,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若
∠1=72°,则∠2=________度.
17、已知()10
=-n m ,则m n .(填“>”“<”或“≠” )
18、五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成
________个三角形.
19、一个三角形的三个内角的度数的比是2:2:1,这个三角形是______三角形.
20、在△ABC 中,∠A=400,O 是∠ABC 和∠ACB 的角平分线的交点,则
∠BOC=__________
三、解答题(共40分)
21、计算(每小题4分,共12分)
(1)(-1)2004+(-12
)-2 -(3.14-π)0 (2)2)3()32)(32(b a b a b a -+-+
(3)()
()xy xy y x y x 2862432-÷-+- (4)2003200720052⨯-
22、(5分)已知一个角的补角等于这个角的余角的4倍, 求这个角的度数。
23、(7分)化简再求值:()()x x y x x 2122++-+,其中
251=x ,25-=y 。
24、(6分)已知:如图,AB ∥CD ,∠A = ∠D ,试说明 AC ∥DE 成立的理由。
四、探索题(10分)
25、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形,然
后按图b 的形状拼成一个正方形。
(1)你认为图b 中的阴影部分的正方形的边长等于___________
(2)请用两种不同的方法 求图b 中阴影部分的面积。
方法1:
方法2:
(3)
观察图b ,你能写出下列三个代数式之间的等量关系吗? 代数式:
()(). , ,22mn n m n m -+
(4)根据(3)题中的等量关系,解决如下问题:
若5,7==+ab b a ,则2)(b a -= 。
图b
答案:
1、D ;
2、B ;
3、C;
4、D;
5、C;
6、A;
7、C;
8、D;
9、C; 10、C;
二、填空题
11、999996;12、x20y8;13、±12;14、1000;15、∠B=∠EAD;16、54;
17、≠;18、3 ;19、锐角;20、1100;;
三、解答题
21、(1)4;(2)5a 2 –6ab;(3)、x – 3x2y3+ 4;(4)4
22、解:设这个角的度数为x,则180-x=4(90-x),解得x=600
23、解:原式=2xy – 1 代人得-3.
24、解:∵A B∥CD
∴∠B=∠DCE
∵∠A=∠D
∴∠ACB=∠E
∴AC∥DE
四、探索题
25、(1)m – n ;
(2)(m- n)2 ; (m + n)2– 4mn ;
(3) (m - n)2 = (m + n)2– 4mn ;
(4) 29.。