函数的奇偶性题型解析(含标准答案)

合集下载

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析1.已知是定义在R上的奇函数,当时(m为常数),则的值为(). A.B.6C.4D.【答案】D【解析】因为是定义在R上的奇函数且当时,所以.则.【考点】函数奇偶性的应用.2.以下命题正确的是(1)若;(2)若,则必要非充分条件;(3)函数;(4)若奇函数满足,则函数图象关于直线对称.【答案】(1)(2).【解析】(1),,故正确;(2),,,所以必要非充分条件,故正确;(3)令,则在上为减函数,所以;(4)为奇函数,,又因为,则,即函数图像关于对称.【考点】函数的性质.3.设是定义在上的奇函数,当时,,则 .【答案】-3【解析】由奇函数的定义可知,【考点】奇函数的应用.4.若是定义在R上的奇函数,且满足,给出下列4个结论:(1);(2)是以4为周期的函数;(3);(4)的图像关于直线对称;其中所有正确结论的序号是 .【答案】①②③【解析】①因为是定义在R上的奇函数,所以,则;②,,即周期为4;③因为是定义在R上的奇函数,所以,又,;④因为是定义在R上的奇函数,所以的图像关于直线对称;故选①②③.【考点】函数的奇偶性、周期性.5.设函数.若,则.【答案】【解析】因为,所以,即有,而.【考点】初等函数的性质及函数部分奇、偶性.6.设函数,若是奇函数,则的值是 .【答案】.【解析】由题意可知,又∵是奇函数,∴.【考点】函数的奇偶性与分段函数.7.下列函数是奇函数的是()A.B.C.D.【答案】C【解析】根据奇偶函数的定义易知,A、B都满足,均为偶函数,C中,函数的定义域为,且,故C中的函数为奇函数,而D 中,定义域为,但,且,该函数为非奇非偶函数,综上可知,选C.【考点】函数的奇偶性.8.已知函数是定义在区间-2,2上的偶函数,当时,是减函数,如果不等式成立,则实数的取值范围()A.B.1,2C.D.【答案】【解析】根据题意知,函数在上单调递增,在上单调递减.首先满足,可得.根据函数是偶函数可知:,所以分两种情况:当时,根据不等式成立,有,解得;当时,根据不等式成立,有,解得;综上可得.【考点】偶函数性质.9.现有四个函数:①;②;③; ④的图象(部分)如下,但顺序被打乱,则按照从左到右的顺序对应的函数序号是()A.④①②③B.①④②③C.①④③②D.③④②①【答案】【解析】首先判断函数的奇偶性,显然①是偶函数, ②③奇函数, ④非奇非偶函数.所以从左到右①④②③或①④③②.③中当时,显然,当时,.所以其对应第四个图.所以从左到右①④②③.【考点】函数图像的观察,函数奇偶性的判断.10.设函数是定义在R上的偶函数,当时,,若,则实数的值为【答案】【解析】因为函数是定义在R上的偶函数,所以又因为当时,,所以【考点】偶函数性质11.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=()A.B.-C.D.-【答案】D【解析】由中,原函数为偶函数,导函数为奇函数;中,原函数为偶函数,导函数为奇函数;中,原函数为偶函数,导函数为奇函数;…,同此可以推断,偶函数的导函数为奇函数.若定义在上的函数满足,则函数为偶函数.又∵为的导函数,则奇函数,所以,即,故选D.【考点】1、归纳推理;2、函数的奇偶性.12.已知偶函数f(x)在[0,∞)上是增函数,则不等式的解集是【答案】【解析】根据偶函数的性质:,所以,函数在[0,∞)上是增函数,所以,,解得【考点】1.偶函数的性质;2.解不等式.13.已知函数f(x)=x3.(1)判断f(x)的奇偶性;(2)求证:f(x)>0.【答案】(1)偶函数(2)见解析【解析】(1)解∵2x-1≠0,∴函数f(x)的定义域为{x|x≠0}.∵f(-x)-f(x)= (-x)3-x3= (-x)3-x3=·x3-x3-·x3-x3=x3-x3=0,∴f(-x)=f(x),∴f(x)是偶函数.(2)证明由题意知x≠0,当x>0时,∵2x-1>0,x3>0,∴f(x)>0;当x<0时,∵-x>0,∴f(-x)=f(x)>0,∴f(x)>0.综上所述,f(x)>0.14.已知函数,,则。

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析

高二数学函数的奇偶性试题答案及解析1.是函数为偶函数的_________条件.【答案】充分必要【解析】当时,函数,为偶函数;当为偶函数时,由,即,即恒成立,,因此是函数为偶函数的充分必要条件.【考点】充分条件和必要条件2.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】令,当时,;当时,;即由于函数为R上的偶函数,所以,故选A.【考点】解关于分段函数不等式;函数性质应用;换元法3.已知函数是奇函数,且当时,,则=____________。

【答案】1;【解析】因为是奇函数,当时,,有,所以当时;所以;另解:;【考点】函数的奇偶性;4.设是定义在上的奇函数,当时,,则 .【答案】-3【解析】由奇函数的定义可知,【考点】奇函数的应用.5.已知是定义在上的奇函数,且时的图像如图所示,则()A.B.C.D.【答案】B【解析】由于是奇函数,,由图知,【考点】奇函数的应用和认识图的能力.6.若函数是奇函数,则的值为()A.1B.2C.3D.4【答案】B【解析】由函数是奇函数得:,又当时,函数,所以是奇函数,故选B.【考点】函数的奇偶性.7.已知定义在R上的奇函数有最小正周期2,且当时,.(1)求和的值;(2)求在[-1,1]上的解析式.【答案】(1);(2).【解析】解题思路:(1)利用周期性与奇偶性求解,即且解得;(2)利用奇偶性求解析式.规律总结:函数的单调性、奇偶性、周期性的综合运用,要记住一些常见结论,且要真正理解定义.试题解析: (1)∵是周期为2的奇函数,,.(2)由题意知,.当时,.由是奇函数,,综上,【考点】函数的奇偶性、周期性.8.已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.【答案】(1);(2);(3).【解析】(1)根据是定义在上的奇函数可知:,,从而可得;(2)根据根据是定义在上的奇函数可知:再结合在上的解析式,可以得到其在上的解析式:,将两者综合,即可得;(3)由(2)得到的解析式,可知需对的取值范围分类讨论,从而可以得到关于的不等式:当时,,解得,当时,,解得,因此区间.试题解析:(1)∵是奇函数,∴;(2)∵为奇函数,∴当时,,∴;(3)由(2)求得的解析式可知:当时,,解得,当时,,解得,∴区间.【考点】1.奇函数的性质;2.分类讨论的数学思想.9.已知函数y=f(x)是定义在上的奇函数,且当x>0时,f(x)=2x-1-3,则f(f(1))= 。

函数奇偶性的六类经典题型

函数奇偶性的六类经典题型

奇偶性类型一:判断奇偶性[例1] 判断下列函数奇偶性(1)(且)(2)(3)(4)(5)解:(1)且∴奇函数(2),关于原点对称∴奇函数(3),关于原点对称∴既奇又偶(4)考虑特殊情况验证:;无意义;∴非奇非偶(5)且,关于原点对称∴为偶函数类型二:根据奇偶性求解析式1.函数f(x)在R上为奇函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________.解析:∵f(x)为奇函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f (x )=-f (-x )=-(-x +1), 即x <0时,f (x )=-(-x +1)=--x -1.答案:--x -1 2.求函数的解析式 (1)为R 上奇函数,时,,解:时,∴∴ (2)为R 上偶函数,时,解:时,∴类型三:根据奇偶性求参数1.若函数f(x)= xln (2a x +a=【解题指南】f(x)= xln (x+2a x +2ln()y x a x =+是奇函数,利用()()0f x f x -+=确定a 的值.【解析】由题知2ln()y x a x =+是奇函数,所以22ln()ln()x a x x a x ++-+=22ln()ln 0a x x a +-==,解得a =1. 答案:1.2.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =______.解析:由题意知,g (x )=(x +1)(x +a )为偶函数,∴a =-1. 答案:-13.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( )A.17 B .-1 C .1D .7解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.4.若函数f(x)=2x -|x +a|为偶函数,则实数a =______. (特殊值法) 解析:由题意知,函数f(x)=2x -|x +a|为偶函数,则f(1)=f(-1), ∴1-|1+a|=1-|-1+a|,∴a =0. 答案:05.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x , x ≤0,ax 2+bx , x >0为奇函数,则a +b =________.(待定系数法)解析:当x >0时,-x <0, 由题意得f (-x )=-f (x ), 所以x 2-x =-ax 2-bx , 从而a =-1,b =1,a +b =0. 答案:06.(1),为何值时,为奇函数; (2)为何值时,为偶函数。

高中数学高考总复习函数的奇偶性习题及详解

高中数学高考总复习函数的奇偶性习题及详解

高中数学高考总复习函数的奇偶性习题及详解一、选择题1.(文)以下函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,假设x =0在定义域内,那么应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,应选A.(理)以下函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.应选D.2.(2021·安徽理,4)假设f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,那么f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,应选A.3.(2021·河北唐山)f (x )与g (x )分别是定义在R 上奇函数与偶函数,假设f (x )+g (x )=log 2(x 2+x +2),那么f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2021·北京崇文区)f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,那么f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2021·山东日照)函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),假设f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2021·辽宁锦州)函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.假设g (x )=f (x )+2,那么g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,那么函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 那么f (x )=4-x 2-x ,f (x )+f (-x )=0,应选B.7.f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),那么a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .应选C.8.函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),那么f (2021)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2021)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,那么使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,应选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,那么f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,应选A.(理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是以下图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,应选C.二、填空题11.(文)f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),那么f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,那么f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2021·深圳中学)函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如下图,那么不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)假设f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.那么f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,那么f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2 x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2021·山东枣庄模拟)假设f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,那么a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,那么问题变得比拟简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2021·吉林长春质检)函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,那么使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2021·杭州外国语学校)f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)假设曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)假设当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2021·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2021).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)当x ∈[-2,0]时,-x ∈[0,2],由得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2021)+f (2021)+f (2021)+f (2021)=0.∴f (0)+f (1)+f (2)+…+f (2021)=0.17.(文)函数f (x )=1-42a x +a (a >0且a ≠1)是定义在(-∞,+∞)上的奇函数.(1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)假设f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2 x >03(x +1)2 x <0.(2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 假设m >0,那么n <0.那么F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 假设m <0,那么n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。

函数的奇偶性题型及解析

函数的奇偶性题型及解析

函数的奇偶性题型及解析1.给定四个函数;;y=x 3+1;其中是奇函数的有几个分析:利用奇函数的定义,对每个函数进行验证,可得结论. 解:∵,∴是奇函数;∵定义域不关于原点对称,∴不是奇函数;∵(﹣x )3+1≠﹣(x 3+1),∴不是奇函数;函数的定义域为{x|x ≠0},=,∴是奇函数综上,奇函数的个数为2个 2.若一个函数图象的对称轴是y 轴,则该函数称为偶函数.那么在下列四个函数:①y=2|x|;②y=6/x ;③y=x 2;④y=(x ﹣1)2+2中,其中是偶函数的有几个分析:对于y=2|x|分类讨论:当x >0,则y=2x ;当x <0,则y=﹣2x ,根据正比例函数的性质可判断y=2|x|的对称轴是y 轴;根据反比例函数得到y=6/x 关于直线y=x 和y=﹣x 对称;根据二次函数的性质得到y=x 2的对称轴为y 轴,y=(x ﹣1)2+2的对称轴为直线x=1,然后根据新定义进行判断.解:y=2|x|,当x >0,则y=2x ;当x <0,则y=﹣2x ,所以y=2|x|的对称轴是y 轴,该函数为偶函数;y=6/x 关于直线y=x 和y=﹣x 对称,所以y=不是偶函数;y=x 2的对称轴为y 轴,所以y=x 2为偶函数;y=(x ﹣1)2+2的对称轴为直线x=1,所以y=(x ﹣1)2+2不是偶函数,偶函数的个数为2个3.函数y=|x+3|﹣|3﹣x|是奇函数还是偶函数分析:根据函数奇偶性的定义进行判断即可.解:∵f (﹣x )=|﹣x+3|﹣|3+x|=﹣(|x+3|﹣|3﹣x|)=﹣f (x ),∴函数f (x )是奇函数,4.如果函数y=x 2﹣2ax+6是偶函数,求a 的值分析:运用偶函数的定义得出f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,得出2a=﹣2a ,即可解:∵函数y=x 2﹣2ax+6是偶函数,∴f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,2a=﹣2a ,解得a=05.①已知函数f (x )=ax 2+2x 是奇函数,求实数分析:由奇函数定义入手寻找特殊值是解决此问题的最简解法解:由奇函数定义有f (﹣x )=﹣f (x ),则f (﹣1)=a ﹣2=﹣f (1)=﹣(a+2),解得a=0 ②如果函数f (x )=+a 是奇函数,求a 的值 分析:函数的定义域为R ,利用奇函数f (0)=0,得到a解:因为函数的定义域为R ,并且函数是奇函数,所以f (0)=0,即1220++a=0,解得a=-1; ③已知f (x )=121-x +a 是奇函数,求a 的值及函数值域 分析:本题考察函数奇偶性的性质,由题意可得f (﹣1)+f (1)=0,可得a 值,再由定义域和反比例函数以及不等式的性质可得函数的值域 解:由2x ﹣1=≠0可得x ≠0,可得函数的定义域为{x|x ≠0},∵f (x )=121-x +a 是奇函数,∴f (﹣1)+f (1)=0,∴1211--+a+1211-+a=0,解得a=,∴f (x )=121-x +,∵x ≠0,∴2x >0且2x ≠1,∴2x ﹣1>﹣1且2x ﹣1≠0,∴121-x >0或121-x <﹣1,∴121-x +>或121-x +<﹣,∴函数的值域为(-∞,-)∪(,+∞)④函数y=f (x )是定义在[2a+1,a+5]上的偶函数,求a 的值分析:由偶函数的定义域关于原点对称得,2a+1+a+5=0,再求出a 的值解:∵偶函数的定义域关于原点对称,∴2a+1+a+5=0,解得a=﹣2,6.①已知函数y=f (x )是奇函数,当x <0时,f (x )=x 2+ax (a ∈R ),f (2)=6,求a分析:先根据函数的奇偶性求出f (﹣2)的值,然后将x=﹣2代入小于0的解析式,建立等量关系,解之即可. 解:∵函数y=f (x )是奇函数,∴f (﹣x )=﹣f (x ),而f (2)=6,则f (﹣2)=﹣f (2)=﹣6,将x=﹣2代入小于0的解析式得f (﹣2)=4﹣2a=﹣6,解得a=5②已知函数y=f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2﹣2x ,求f (﹣2)的值.分析:首先,根据函数y=f (x )是定义在R 上的偶函数,得到f (﹣2)=f (2)=22﹣2×2=0,从而得到结果.解:∵函数y=f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=22﹣2×2=0,∴f (-2)=0,∴f (-2)的值07.①已知函数f (x )是定义域为R 的奇函数,且当x >0时,f (x )=3x 2﹣5x+2,求f (x )在R 上的表达式.分析:设x <0,则﹣x >0.利用当x >0时,f (x )=3x 2﹣5x+2,可得f (﹣x )=3x 2+5x+2.再利用奇函数的性质即可得出解:设x <0,则-x >0.∵当x >0时,f (x )=3x 2﹣5x+2,∴f (﹣x )=3x 2+5x+2.∵函数f (x )是定义域为R 的奇函数,∴f (x )=﹣f (﹣x )=﹣3x 2﹣5x ﹣2,又f (0)=0.∴f (x )=⎪⎩⎪⎨⎧---=+-025300025322 x x x x x x x ②已知函数y=f (x )是偶函数,当x ≥0时,f (x )=x ﹣1,求f (x ﹣1)<0的解集分析:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),由x ≥0时,f (x )=x ﹣1可得x <0,f (x )=﹣x ﹣1即f (x )=,而f (x ﹣1)<0时,有﹣1<x ﹣1<1,解不等式可得解:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),∵x ≥0时,f (x )=x ﹣1,设x <0,则﹣x >0,f (﹣x )=﹣x ﹣1=f (x ),f (x )=,当f (x ﹣1)<0时,有﹣1<x ﹣1<1,∴0<x <28.(1)定义在[﹣1,1]上的奇函数y=f (x )是增函数,若f (a ﹣1)+f (4a ﹣5)>0,求a 的取值范围(2)定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求m 的取值范围 分析:(1)利用函数的奇偶性可把不等式f (a ﹣1)+f (4a ﹣5)>0化为f (a ﹣1)>f (5﹣4a ),根据单调性可去掉符号“f”,考虑到定义域即可求出a 的范围;(2)利用偶函数的性质,可得f (|1﹣m|)<f (|m|),根据定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,可得不等式组,即可得出结论.解:(1)∵函数y=f (x )是奇函数,f (a ﹣1)+f (4a ﹣5)>0,∴f (a ﹣1)>f (5﹣4a ),∵定义在[﹣1,1]上的函数y=f (x )是增函数,∴,∴;(2)∵偶函数f (x ),f (1﹣m )<f (m ),∴f (|1﹣m|)<f (|m|),∵定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,∴,∴9.(1)已知定义在[﹣2,2]上的奇函数,f (x )在区间[0,2]上单调递减,若f (m )+f (m ﹣1)>0,求实数m 的取值范围;(2)已知定义在[﹣2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求实数m 的取值范围.分析:(1)根据定义域得出m 的范围为﹣1≤m ≤2,由奇函数的性质,结合单调性可知m <1﹣m ,得出m 的范围;(2)根据定义域得出m 的范围为﹣1≤m ≤2,由偶函数的性质可知距离y 轴越进,函数值越大,得出|1﹣m|>|m|,进而求出m 的范围.解:(1)定义在[﹣2,2]上的奇函数,∴﹣1≤m ≤2,∵f (m )+f (m ﹣1)>0,∴f (m )>﹣f (m ﹣1)=f (1﹣m ),∴m <1﹣m ,∴m <,∴﹣1≤m <(2)已知定义在[﹣2,2]上的偶函数,f (x )在区间[0,2]上单调递减,∴﹣1≤m ≤2,∵f (1﹣m )<f (m ), ∴|1﹣m|>|m|,∴m <,∴﹣1≤m <10.函数y=﹣x2+2ax+1在﹣1≤x≤2上的最大值是4,求a的值分析:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,分对称轴在闭区间的左侧、中间、右侧三种情况,分别求得函数的最大值.解:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,当a<﹣1时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递减,故函数的最大值为f(﹣1)=﹣1﹣2a+1=4,解得a=﹣2;当﹣1≤a≤2时,函数的最大值为f(a)=a2+1=4,解得a=;当a≥2时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递增,故函数的最大值为f(2)=﹣4+4a+1=4,解得a=,舍去.综合知:a的值为﹣2或.11.已知函数f(x)的定义域是一切实数,对定义域内的任意x1,x2,都有f(x1+x2)=f(x1)+f(x2),且当x >0时f(x)>0.(1)试判断f(x)的奇偶性;(2)试判断f(x)的单调性,并证明.分析:(1)利用赋值法先求出f(0)=0,然后根据函数奇偶性的定义进行判断即可得到f(x)的奇偶性;(2)结合函数单调性的定义即可判断f(x)的单调性.解:(1)令x1=0,x2=0,则f(0)=f(0)+f(0),解得f(0)=0,令x1=x,x2=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),则函数为奇函数.(2)函数在定义域上为增函数.证明:当x1<x2时,则x2﹣x1>0,此时f(x2﹣x1)>0则f(x2)﹣f(x1)=f (x2)+f(﹣x1)=f(x2﹣x1)>0,可得f(x2)>f(x1)由此,得到y=f(x)是R上的增函数12.已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1?x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,(1)求证:f(x)是偶函数;(2)证明f(x)在(0,+∞)上是增函数;分析:(1)先令x1=x2=1,得到f(1)=0,再令x1=x2=﹣1,得f(﹣1)=0.然后用主条件证明f(﹣x)=f(﹣1?x)=f(﹣1)+f(x)=f(x)得证.(2)先任取两个变量,界定大小,再作差变形看符号.解:(1)证明:令x1=x2=1,得f(1)=2f(1),∴f(1)=0.令x1=x2=﹣1,得f(﹣1)=0.∴f(﹣x)=f(﹣1?x)=f(﹣1)+f(x)=f(x),∴f(x)是偶函数(2)证明:设x2>x1>0,则f(x2)﹣f(x1)=f(x1?)﹣f(x1)=f(x1)+f()﹣f(x1)=f().∵x2>x1>0,∴>1.∴f()>0,即f(x2)﹣f(x1)>0.∴f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数13.已知定义域为x∈R|x≠0的函数f(x)满足;①对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0;②当x>0时,f(x)=x2﹣2.(Ⅰ)求f(x)定义域上的解析式;(Ⅱ)解不等式:f(x)<x.分析:(I)根据条件①变形,得到f(x)在定义域内是奇函数,设x小于0,得到﹣x大于0,代入②中f(x)的解析式中化简后即可得到x小于0时f(x)的解析式,综上,得到f(x)在x大于0和小于0上的分段函数解析式;(II)当x大于0时和小于0时,把(I)得到的相应的解析式代入不等式中,分别求出相应的解集,然后求出两解集的并集即为原不等式的解集解:(I)∵对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0,∴f(﹣x)=﹣f(x),故f(x)在其定义域为{x∈R|x≠0}内是奇函数,∵当x>0时,f(x)=x2﹣2,设x<0,所以﹣x>0,∴f(﹣x)=﹣f(x)=x2﹣2,即f(x)=2﹣x2,则;(II)∵当x>0时,x2﹣2<x,化简得(x﹣2)(x+1)<0,解得:﹣1<x<2,所以不等式的解集为0<x<2;当x<0时,2﹣x2<x,化简得:(x﹣1)(x+2)>0,解得:x>1或x<﹣2,所以不等式的解集为x<﹣2,综上,不等式f(x)<x的解集为{x|0<x<2或x<﹣2}14. 已知定义域为R的函数f(x)满足:①f(x+y)=f(x)?f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2),求证:(1)f(0)=1;(2)f(x)>0.分析:(1)令x=y=0,求出f(0),注意条件②的运用,舍去一个;(2)将x,y均换成,得到f(x)=f2()即f(x)≥0,注意运用条件②,舍去f(x)=0,即可得证.证明:(1)令x=y=0则f(0)=f2(0),∴f(0)=0或f(0)=1,若f(0)=0则令y=0,即有f(x)=f(x)?f (0)=0对x∈R均成立,与②矛盾,故f(0)≠0,若f(0)=1,则f(x)=f(x)成立,∴f(0)=1;(2)将x,y均换成,则f(x)=f2()即f(x)≥0,若f(x)=0这与②矛盾,∴f(x)>0成立。

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析

高三数学函数的奇偶性试题答案及解析1.已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,(x+1),则f(-2012)+f(2013)=________________.f(x)=log2【答案】1【解析】试题分析:∵函数f(x)是(-∞,+∞)上的偶函数,∴f(-x)=f(x),又∵对于x≥0都有f(x+2)=f(x),∴T=2∴f(-2012)+f(2013)=f(2012)+f(2013)=f(1006×2)+f(1006×2+1)=f(0)+f(1)=log21+log22=1.故答案为:1.【考点】函数的周期性2.已知,分别是定义在上的偶函数和奇函数,且,则.【答案】.【解析】∵,∴,又∵,分别是定义在上的偶函数和奇函数,∴,,∴,∴.【考点】函数的奇偶性.3.已知定义在上的函数是奇函数且满足,,数列满足,且,(其中为的前项和),则( ).A.B.C.D.【答案】C【解析】由定义在上的函数是奇函数且满足知,= = =,所以= = = =,所以的周期为3,由得,,当n≥2时,=,所以=,所以=-3,=-7,=-15,=-31,=-63,所以 ====3,故选C.【考点】函数的奇偶性、周期性,数列的递推公式,转化与化归思想4.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是()A.是偶函数B.是奇函数C.是奇函数D.是奇函数【答案】C【解析】设,则,因为是奇函数,是偶函数,故,即是奇函数,选C.【考点】函数的奇偶性.5.已知为偶函数,当时,,则不等式的解集为()A.B.C.D.【答案】A【解析】先画出当时,函数的图象,又为偶函数,故将轴右侧的函数图象关于轴对称,得轴左侧的图象,如下图所示,直线与函数的四个交点横坐标从左到右依次为,由图象可知,或,解得,选A.【考点】1、分段函数;2、函数的图象和性质;3、不等式的解集.6.若是偶函数,则____________.【答案】【解析】因为函数为偶函数,所以,故填.【考点】奇偶性对数运算7. [2013·重庆高考]已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log10))=5,则f(lg(lg2))=2()A.-5B.-1C.3D.4【答案】C【解析】∵f(x)=ax3+bsinx+4,①∴f(-x)=a(-x)3+bsin(-x)+4,即f(-x)=-ax3-bsinx+4,②①+②得f(x)+f(-x)=8,③又∵lg(log10)=lg()=lg(lg2)-1=-lg(lg2),2∴f(lg(log10))=f(-lg(lg2))=5,2又由③式知f(-lg(lg2))+f(lg(lg2))=8,∴5+f(lg(lg2))=8,∴f(lg(lg2))=3.故选C.8.已知函数y=f(x)是定义在R上且以3为周期的奇函数,当x∈时,f(x)=ln(x2-x+1),则函数f(x)在区间[0,6]上的零点个数为()A.3B.5C.7D.9【答案】C【解析】当x∈时,-x∈,f(x)=-f(-x)=-ln(x2+x+1);则f(x)在区间上有3个零点(在区间上有2个零点).根据函数周期性,可得f(x)在上也有3个零点,在上有2个零点.故函数f(x)在区间[0,6]上一共有7个零点.9.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|-g(x)是奇函数【答案】A【解析】由题意知f(x)与|g(x)|均为偶函数.A项,偶+偶=偶;B项,偶-偶=偶,错;C项与D项分别为偶+奇=偶,偶-奇=奇,均不恒成立.10.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(﹣1)=()A.﹣3B.﹣1C.1D.3【答案】A【解析】因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=﹣1,所以当x≥0时,f(x)=2x+2x﹣1,又因为f(x)为定义在R上的奇函数,所以f(﹣1)=﹣f(1)=﹣(21+2×1﹣1)=﹣3,故选A.11.已知定义在R上的奇函数和偶函数满足 (,且),若,则()A.2B.C.D.【答案】B【解析】由条件,,即,由此解得,,所以选B.12.已知是奇函数,且,若,则= .【答案】【解析】因为为奇函数,所以.∵,∴,∴.13.设是上的奇函数,且,下面关于的判定:其中正确命题的序号为_______.①;②是以4为周期的函数;③的图象关于对称;④的图象关于对称.【答案】①②③【解析】∵,∴,即的周期为4,②正确.∴(∵为奇函数),即①正确.又∵,∴的图象关于对称,∴③正确,又∵,当时,显然的图象不关于对称,∴④错误.14.已知函数是定义在上的偶函数,且对任意,都有,当时,,设函数在区间上的反函数为,则的值为()A.B.C.D.【答案】D【解析】由得,所以函数周期为,所以时,,所以=,又函数为偶函数,所以时,则=.令==19,解得=,从而=,故选D.【考点】1、反函数;2、函数奇偶性的性质;3、函数的周期性.15.设偶函数满足,则( )A.B.C.D.【答案】B【解析】的解集为,因为是偶函数,关于轴对称,所以的解集为或,那么的解集为或,故解集为或,故选B.【考点】1.函数的奇偶性;2.解不等式.16.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2-4x,则不等式f(x)>x的解集用区间表示为________.【答案】(-5,0)∪(5,+∞)【解析】作出f(x)=x2-4x(x>0)的图象,如图所示.由于f(x)是定义在R上的奇函数,利用奇函数图象关于原点对称,作出x<0的图象.不等式f(x)>x表示函数y=f(x)的图象在y=x的上方,观察图象易得,原不等式的解集为(-5,0)∪(5,+∞)17.若函数f(x)=(a+)cosx是奇函数,则常数a的值等于()A.-1B.1C.-D.【答案】D【解析】设g(x)=a+,t(x)=cosx,∵t(x)=cosx为偶函数,而f(x)=(a+)cosx为奇函数,∴g(x)=a+为奇函数,又∵g(-x)=a+=a+,∴a+=-(a+)对定义域内的一切实数都成立,解得:a=.18.设a为实数,函数f(x)=x3+ax2+(a-2)x的导数是f′(x),且f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A.y=-2x B.y=3xC.y=-3x D.y=4x【答案】A【解析】由已知得f′(x)=3x2+2ax+a-2为偶函数,∴a=0,∴f(x)=x3-2x,f′(x)=3x2-2.又f′(0)=-2,f(0)=0,∴y=f(x)在原点处的切线方程为y=-2x.19.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】{x|-7<x<3}【解析】当x≥0时,f(x)=x2-4x<5的解集为[0,5),又f(x)为偶函数,所以f(x)<5的解集为(-5,5).由于f(x)向左平移两个单位即得f(x+2),故f(x+2)<5的解集为{x|-7<x<3}.20.已知是定义域为R的奇函数,当x≤0时,,则不等式的解集是()A.(5,5)B.(1,1)C.(5,+)D.(l,+)【答案】C【解析】因为是定义在R上的奇函数,所以对于任意实数x,都有且.又当时,则当时,,有,所以:,则,解不等式,即或或得,选C.【考点】函数的奇偶性,分段函数,一元二次不等式的解法.21.设函数()(Ⅰ)若函数是定义在R上的偶函数,求a的值;(Ⅱ)若不等式对任意,恒成立,求实数m的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)函数是定义在R上的偶函数,则恒成立,代入解析式得:,.即对任意都成立,由此得,.(Ⅱ)不等式对任意,恒成立,则小于等于的最大值,而.所以对任意恒成立,令,这是关于的一次函数,故只需取两个端点的值时不等式成立即可,即,解之即可得实数m的取值范围.试题解析:(Ⅰ)由函数是定义在R上的偶函数,则恒成立,即,所以,所以恒成立,则,故. 4分(Ⅱ).所以对任意恒成立,令,由解得,故实数m的取值范围是. 12分【考点】1、函数的奇偶性;2、不等式恒成立问题.22.函数f(x)是偶函数,则下列各点中必在y=f(x)图象上的是( )A.B.C.D.【答案】A【解析】由于函数上必过点.又因为函数是偶函数所以函数经过点 .又因为.所以函数一定经过和.故选A.本小题关键是考查函数的的奇偶性问题.【考点】1.函数的奇偶性.2.函数的对称性问题.23.已知函数是上的奇函数,且的图象关于直线对称,当时,,则 .【答案】-1【解析】∵的图象关于直线对称,∴,又是上的奇函数,∴,∴,即4为的周期,∴.由时,,得,由,得,∴,故答案为.【考点】函数的奇偶性、周期性24.已知函数.(1)当时,判断的奇偶性,并说明理由;(2)当时,若,求的值;(3)若,且对任何不等式恒成立,求实数的取值范围.【答案】(1)既不是奇函数,也不是偶函数;(2)所以或;(3)当时,的取值范围是,当时,的取值范围是;当时,的取值范围是.【解析】(1)时,为确定的函数,要证明它具有奇偶性,必须按照定义证明,若要说明它没有奇偶性,可举一特例,说明某一对值与不相等(不是偶函数)也不相反(不是奇函数).(2)当时,为,这是含有绝对值符号的方程,要解这个方程一般是分类讨论绝对值符号里的式子的正负,以根据绝对值定义去掉绝对值符号,变成通常的方程来解.(3)不等式恒成立时要求参数的取值范围,一般要把问题进行转化,例如分离参数法,或者转化为函数的最值问题.即为,可以先把绝对值式子解出来,这时注意首先把分出来,然后讨论时,不等式化为,于是有,即,这个不等式恒成立,说明,这时我们的问题就转化为求函数的最大值,求函数的最小值.试题解析:(1)当时,既不是奇函数也不是偶函数(2分)所以既不是奇函数,也不是偶函数(4分)(2)当时,,由得(1分)即(3分)解得(5分)所以或(6分)(3)当时,取任意实数,不等式恒成立,故只需考虑,此时原不等式变为(1分)即故又函数在上单调递增,所以;(2分)对于函数①当时,在上单调递减,,又,所以,此时的取值范围是(3分)②当,在上,,当时,,此时要使存在,必须有,此时的取值范围是(4分)综上,当时,的取值范围是当时,的取值范围是;当时,的取值范围是(6分)【考点】(1)函数的奇偶性;(2)含绝对值的方程;(2)含参数的不等式恒成立问题.25.如图,直角坐标平面内的正六边形ABCDEF,中心在原点,边长为a,AB平行于x轴,直线(k为常数)与正六边形交于M、N两点,记的面积为S,则关于函数的奇偶性的判断正确的是()A.一定是奇函数B.—定是偶函数C.既不是奇函数,也不是偶函数D.奇偶性与k有关【答案】B【解析】:∵当直线与边重合时,,当直线与重合时,,∴,∵正六边形即是中心对称图形又是轴对称图形,∴函数为偶函数.【考点】1.函数的奇偶性;2.数形结合思想.26.设函数是偶函数,则实数的值为___________.【答案】-1.【解析】因是偶函数,则,所以.【考点】函数的奇偶性.27.设是周期为2的奇函数,当时,=,则=.【答案】【解析】由是周期为2的奇函数可知,.【考点】函数的周期性与奇偶性.28.已定义在上的偶函数满足时,成立,若,,,则的大小关系是()A.B.C.D.【答案】C【解析】构造函数,由函数是R上的偶函数,函数是R上的奇函数可得是R上的奇函数,又当时,所以函数在时的单调性为单调递减函数;所以在时的单调性为单调递减函数,因为,,,故,即:,故选C.【考点】函数奇偶性的性质,简单复合函数的导数,函数的单调性与导数的关系.29.已知m为常数,函数为奇函数.(1)求m的值;(2)若,试判断的单调性(不需证明);(3)若,存在,使,求实数k的最大值.【答案】(1);(2)在R上单调递增;(3).【解析】(1)由奇函数的定义得:,将解析式代入化简便可得m的值;(2),结合指数函数与反比例函数的单调性,便可判定的单调性;(3)对不等式:,不宜代入解析式来化简,而应将进行如下变形:,然后利用单调性去掉,从而转化为:.进而变为:.由题设知:.这样只需求出的最大值即可.将配方得:.所以在时,取得最大值,最大值为10.∴,从而.试题解析:(1)由,得,∴,即,∴. 4分(2),在R上单调递增. 7分(3)由,得, 9分即.而在时,最大值为10.∴,从而 12分【考点】1、函数的奇偶性和单调性;2、二次函数的最值;3、不等关系.30.已知函数是上的偶函数,若对于,都有,且当时,,则=____________.【答案】1【解析】由题意可知函数的周期,于是,又函数是上的偶函数,所以,则.【考点】周期函数、奇偶性.31.若函数满足,且时,,则函数的图象与函数的图象的交点的个数为()A.3B.4C.6D.8【答案】C【解析】由题意知,函数是个周期为2的周期函数,且是个偶函数,在一个周期上,图象是两条斜率分别为1和-1的线段,且,同理可得到在其他周期上的图象.函数也是个偶函数,先看在[0,+∞)上的交点个数,则它们总的交点个数是在[0,+∞)上的交点个数的2倍,在(0,+∞)上,,图象过(1,0),和(4,1),是单调增函数,与交与3个不同点,∴函数的图象与函数的图象的交点的个数为6个,故选.【考点】函数的奇偶性、周期性,对数函数的图象和性质.32.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则 ( )A.函数f(x)g(x)是偶函数B.函数f(x)g(x)是奇函数C.函数f(x)+g(x)是偶函数D.函数f(x)+g(x)是奇函数【答案】B【解析】令,由于函数为奇函数,,由于函数为偶函数,则,,故函数为奇函数,故选;对于函数,取,,则,此时函数为非奇非偶函数,故、选项均错误.【考点】函数的奇偶性33.已知是定义域为实数集的偶函数,,,若,则.如果,,那么的取值范围为( )A.B.C.D.【答案】B【解析】∵,,,则,∴定义在实数集上的偶函数在上是减函数.∵, ∴, 即.∴或解得或.∴.故选B.【考点】函数的奇偶性、单调性.34.函数()【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.35.已知函数是上的偶函数,若对于,都有,且当时,,则的值为A.B.C.1D.2【答案】C【解析】根据题意,由于函数是上的偶函数,若对于,都有,可知函数的周期为2,且当时,,那么则有,故可知答案为C。

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)

高中必修一函数的奇偶性详细讲解及练习(详细答案)首先,画出函数y=-x^2+2|x|+3的图像,然后确定函数的单调区间。

当x≥0时,y=-x^2+2x+3=-(x-1)+4;当x<0时,y=-x^2-2x+3=-(x+1)^2+4.因此,在区间(-∞,-1]和[1,+∞)上,函数是增函数;在[-1,1]上,函数是减函数。

需要注意的是,函数单调性是针对某个区间而言的,对于单独一个点没有增减变化,因此对于区间端点只要函数有意义,都可以带上。

接下来,考虑函数f(x)=x^2+2(a-1)x+2在区间(-∞,4]上是减函数的情况下,求实数a的取值范围。

首先,要充分运用函数的单调性,以对称轴为界线这一特征。

将f(x)=x^2+2(a-1)x+2写成[x+(a-1)]^2-(a-1)^2+2的形式,可以发现其对称轴是x=1-a。

因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.最后,判断函数f(x)=-2的奇偶性和函数f(x)=(x-1)的奇偶性。

对于第一个函数,其定义域为R,因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x),因此f(x)为奇函数。

对于第二个函数,其定义域为{x|-1≤x<1},不关于原点对称,因此f (x)既不是奇函数,也不是偶函数。

判断函数的奇偶性时,需要先求出函数的定义域,并考查定义域是否关于原点对称。

然后计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f (-x)=-f(x)之一是否成立。

如果f(-x)与-f(x)的关系不明确,可以考查f(-x)±f(x)是否成立,从而判断函数的奇偶性。

最后,对于函数f(x)=|x|/x,需要判断其奇偶性并确定其在(-∞,+∞)上是增函数还是减函数。

由于f(x)的定义域为R,且f(-x)=f(x),因此f(x)为偶函数。

函数的奇偶性题型及解析

函数的奇偶性题型及解析

函数的奇偶性题型及解析1.给定四个函数;;y=x 3+1;其中是奇函数的有几个? 分析:利用奇函数的定义,对每个函数进行验证,可得结论. 解:∵,∴是奇函数;∵定义域不关于原点对称,∴不是奇函数;∵(﹣x )3+1≠﹣(x 3+1),∴不是奇函数;函数的定义域为{x|x ≠0},=,∴是奇函数综上,奇函数的个数为2个2.若一个函数图象的对称轴是y 轴,则该函数称为偶函数.那么在下列四个函数:①y=2|x|;②y=6/x ;③y=x 2;④y=(x ﹣1)2+2中,其中是偶函数的有几个?分析:对于y=2|x|分类讨论:当x >0,则y=2x ;当x <0,则y=﹣2x ,根据正比例函数的性质可判断y=2|x|的对称轴是y 轴;根据反比例函数得到y=6/x 关于直线y=x 和y=﹣x 对称;根据二次函数的性质得到y=x 2的对称轴为y 轴,y=(x ﹣1)2+2的对称轴为直线x=1,然后根据新定义进行判断.解:y=2|x|,当x >0,则y=2x ;当x <0,则y=﹣2x ,所以y=2|x|的对称轴是y 轴,该函数为偶函数;y=6/x关于直线y=x 和y=﹣x 对称,所以y=6/x 不是偶函数;y=x 2的对称轴为y 轴,所以y=x 2为偶函数;y=(x ﹣1)2+2的对称轴为直线x=1,所以y=(x ﹣1)2+2不是偶函数,偶函数的个数为2个3.函数y=|x+3|﹣|3﹣x|是奇函数还是偶函数?分析:根据函数奇偶性的定义进行判断即可.解:∵f (﹣x )=|﹣x+3|﹣|3+x|=﹣(|x+3|﹣|3﹣x|)=﹣f (x ),∴函数f (x )是奇函数,4.如果函数y=x 2﹣2ax+6是偶函数,求a 的值分析:运用偶函数的定义得出f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,得出2a=﹣2a ,即可解:∵函数y=x 2﹣2ax+6是偶函数,∴f (﹣x )=f (x ),即x 2+2ax+6=x 2﹣2ax+6恒成立,2a=﹣2a ,解得a=05.①已知函数f (x )=ax 2+2x 是奇函数,求实数分析:由奇函数定义入手寻找特殊值是解决此问题的最简解法解:由奇函数定义有f (﹣x )=﹣f (x ),则f (﹣1)=a ﹣2=﹣f (1)=﹣(a+2),解得a=0②如果函数f (x )=+a 是奇函数,求a 的值分析:函数的定义域为R ,利用奇函数f (0)=0,得到a解:因为函数的定义域为R ,并且函数是奇函数,所以f (0)=0,即1220++a=0,解得a=-1;③已知f (x )=121-x +a 是奇函数,求a 的值分析:本题考察函数奇偶性的性质,由题意可得f (﹣1)+f (1)=0,可得a 值,再由定义域和反比例函数以及不等式的性质可得函数的值域解:由2x ﹣1=≠0可得x ≠0,可得函数的定义域为{x|x ≠0},∵f (x )=121-x +a 是奇函数,∴f (﹣1)+f (1)=0,∴1211--+a+1211-+a=0,解得a=,④函数y=f (x )是定义在[2a+1,a+5]上的偶函数,求a 的值分析:由偶函数的定义域关于原点对称得,2a+1+a+5=0,再求出a 的值解:∵偶函数的定义域关于原点对称,∴2a+1+a+5=0,解得a=﹣2,6.①已知函数y=f (x )是奇函数,当x <0时,f (x )=x 2+ax (a ∈R ),f (2)=6,求a分析:先根据函数的奇偶性求出f (﹣2)的值,然后将x=﹣2代入小于0的解析式,建立等量关系,解之即可. 解:∵函数y=f (x )是奇函数,∴f (﹣x )=﹣f (x ),而f (2)=6,则f (﹣2)=﹣f (2)=﹣6,将x=﹣2代入小于0的解析式得f (﹣2)=4﹣2a=﹣6,解得a=5②已知函数y=f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2﹣2x ,求f (﹣2)的值.分析:首先,根据函数y=f (x )是定义在R 上的偶函数,得到f (﹣2)=f (2)=22﹣2×2=0,从而得到结果.解:∵函数y=f (x )是定义在R 上的偶函数,∴f (-2)=f (2)=22﹣2×2=0,∴f (-2)=0,∴f (-2)的值07.①已知函数f (x )是定义域为R 的奇函数,且当x >0时,f (x )=3x 2﹣5x+2,求f (x )在R 上的表达式.分析:设x <0,则﹣x >0.利用当x >0时,f (x )=3x 2﹣5x+2,可得f (﹣x )=3x 2+5x+2.再利用奇函数的性质即可得出解:设x <0,则-x >0.∵当x >0时,f (x )=3x 2﹣5x+2,∴f (﹣x )=3x 2+5x+2.∵函数f (x )是定义域为R的奇函数,∴f (x )=﹣f (﹣x )=﹣3x 2﹣5x ﹣2,又f (0)=0.∴f (x )=⎪⎩⎪⎨⎧---=+-02530025322 x x x x x x x ②已知函数y=f (x )是偶函数,当x ≥0时,f (x )=x ﹣1,求f (x ﹣1)<0的解集分析:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),由x ≥0时,f (x )=x ﹣1可得x <0,f (x )=﹣x ﹣1即f (x )=,而f (x ﹣1)<0时,有﹣1<x ﹣1<1,解不等式可得解:由函数y=f (x )为偶函数可得f (﹣x )=f (x ),∵x ≥0时,f (x )=x ﹣1,设x <0,则﹣x >0,f (﹣x )=﹣x ﹣1=f (x ),f (x )=,当f (x ﹣1)<0时,有﹣1<x ﹣1<1,∴0<x <28.(1)定义在[﹣1,1]上的奇函数y=f (x )是增函数,若f (a ﹣1)+f (4a ﹣5)>0,求a 的取值范围(2)定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求m 的取值范围 分析:(1)利用函数的奇偶性可把不等式f (a ﹣1)+f (4a ﹣5)>0化为f (a ﹣1)>f (5﹣4a ),根据单调性可去掉符号“f”,考虑到定义域即可求出a 的范围;(2)利用偶函数的性质,可得f (|1﹣m|)<f (|m|),根据定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,可得不等式组,即可得出结论.解:(1)∵函数y=f (x )是奇函数,f (a ﹣1)+f (4a ﹣5)>0,∴f (a ﹣1)>f (5﹣4a ),∵定义在[﹣1,1]上的函数y=f (x )是增函数,∴,∴;(2)∵偶函数f (x ),f (1﹣m )<f (m ),∴f (|1﹣m|)<f (|m|),∵定义在[﹣2,2]上的偶函数f (x )在区间[0,2]上单调递减,∴,∴9.(1)已知定义在[﹣2,2]上的奇函数,f (x )在区间[0,2]上单调递减,若f (m )+f (m ﹣1)>0,求实数m 的取值范围;(2)已知定义在[﹣2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1﹣m )<f (m ),求实数m 的取值范围.分析:(1)根据定义域得出m 的范围为﹣1≤m ≤2,由奇函数的性质,结合单调性可知m <1﹣m ,得出m 的范围;(2)根据定义域得出m 的范围为﹣1≤m ≤2,由偶函数的性质可知距离y 轴越进,函数值越大,得出|1﹣m|>|m|,进而求出m 的范围.解:(1)定义在[﹣2,2]上的奇函数,∴﹣1≤m ≤2,∵f (m )+f (m ﹣1)>0,∴f (m )>﹣f (m ﹣1)=f (1﹣m ),∴m <1﹣m ,∴m <1/2,∴﹣1≤m <1/2(2)已知定义在[﹣2,2]上的偶函数,f (x )在区间[0,2]上单调递减,∴﹣1≤m ≤2,∵f (1﹣m )<f (m ), ∴|1﹣m|>|m|,∴m <1/2,∴﹣1≤m <1/210.函数y=﹣x2+2ax+1在﹣1≤x≤2上的最大值是4,求a的值分析:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,分对称轴在闭区间的左侧、中间、右侧三种情况,分别求得函数的最大值.解:二次函数y=﹣x2+2ax+1 的对称轴方程为x=a,当a<﹣1时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递减,故函数的最大值为f(﹣1)=﹣1﹣2a+1=4,解得a=﹣2;当﹣1≤a≤2时,函数的最大值为f(a)=a2+1=4,解得a=;当a≥2时,函数y=﹣x2+2ax+1在区间[﹣1,2]上单调递增,故函数的最大值为f(2)=﹣4+4a+1=4,解得a=,舍去.综合知:a的值为﹣2或.11.已知函数f(x)的定义域是一切实数,对定义域内的任意x1,x2,都有f(x1+x2)=f(x1)+f(x2),且当x >0时f(x)>0.(1)试判断f(x)的奇偶性;(2)试判断f(x)的单调性,并证明.分析:(1)利用赋值法先求出f(0)=0,然后根据函数奇偶性的定义进行判断即可得到f(x)的奇偶性;(2)结合函数单调性的定义即可判断f(x)的单调性.解:(1)令x1=0,x2=0,则f(0)=f(0)+f(0),解得f(0)=0,令x1=x,x2=﹣x,则f(x﹣x)=f(x)+f(﹣x)=f(0)=0,即f(﹣x)=﹣f(x),则函数为奇函数.(2)函数在定义域上为增函数.证明:当x1<x2时,则x2﹣x1>0,此时f(x2﹣x1)>0则f(x2)﹣f(x1)=f (x2)+f(﹣x1)=f(x2﹣x1)>0,可得f(x2)>f(x1)由此,得到y=f(x)是R上的增函数12.已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且当x>1时f(x)>0,f(2)=1,(1)求证:f(x)是偶函数;(2)证明f(x)在(0,+∞)上是增函数;分析:(1)先令x1=x2=1,得到f(1)=0,再令x1=x2=﹣1,得f(﹣1)=0.然后用主条件证明f(﹣x)=f(﹣1•x)=f(﹣1)+f(x)=f(x)得证.(2)先任取两个变量,界定大小,再作差变形看符号.解:(1)证明:令x1=x2=1,得f(1)=2f(1),∴f(1)=0.令x1=x2=﹣1,得f(﹣1)=0.∴f(﹣x)=f(﹣1•x)=f(﹣1)+f(x)=f(x),∴f(x)是偶函数(2)证明:设x2>x1>0,则f(x2)﹣f(x1)=f(x1•)﹣f(x1)=f(x1)+f()﹣f(x1)=f().∵x2>x1>0,∴>1.∴f()>0,即f(x2)﹣f(x1)>0.∴f(x2)>f(x1).∴f(x)在(0,+∞)上是增函数13.已知定义域为x∈R|x≠0的函数f(x)满足;①对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0;②当x>0时,f(x)=x2﹣2.(Ⅰ)求f(x)定义域上的解析式;(Ⅱ)解不等式:f(x)<x.分析:(I)根据条件①变形,得到f(x)在定义域内是奇函数,设x小于0,得到﹣x大于0,代入②中f(x)的解析式中化简后即可得到x小于0时f(x)的解析式,综上,得到f(x)在x大于0和小于0上的分段函数解析式;(II)当x大于0时和小于0时,把(I)得到的相应的解析式代入不等式中,分别求出相应的解集,然后求出两解集的并集即为原不等式的解集解:(I)∵对于f(x)定义域内的任意实数x,都有f(﹣x)+f(x)=0,∴f(﹣x)=﹣f(x),故f(x)在其定义域为{x∈R|x≠0}内是奇函数,∵当x>0时,f(x)=x2﹣2,设x<0,所以﹣x>0,∴f(﹣x)=﹣f(x)=x2﹣2,即f(x)=2﹣x2,则;(II)∵当x>0时,x2﹣2<x,化简得(x﹣2)(x+1)<0,解得:﹣1<x<2,所以不等式的解集为0<x<2;当x<0时,2﹣x2<x,化简得:(x﹣1)(x+2)>0,解得:x>1或x<﹣2,所以不等式的解集为x<﹣2,综上,不等式f(x)<x的解集为{x|0<x<2或x<﹣2}14. 已知定义域为R的函数f(x)满足:①f(x+y)=f(x)•f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2),求证:(1)f(0)=1;(2)f(x)>0.分析:(1)令x=y=0,求出f(0),注意条件②的运用,舍去一个;(2)将x,y均换成,得到f(x)=f2()即f(x)≥0,注意运用条件②,舍去f(x)=0,即可得证.证明:(1)令x=y=0则f(0)=f2(0),∴f(0)=0或f(0)=1,若f(0)=0则令y=0,即有f(x)=f(x)•f (0)=0对x∈R均成立,与②矛盾,故f(0)≠0,若f(0)=1,则f(x)=f(x)成立,∴f(0)=1;(2)将x,y均换成,则f(x)=f2()即f(x)≥0,若f(x)=0这与②矛盾,∴f(x)>0成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性题型解析(含答案)
————————————————————————————————作者:————————————————————————————————日期:
函数的奇偶性
一、单选题(共10道,每道10分)
1.设函数的定义域为,且是奇函数,则实数a的值是( )
A. B.1
C. D.3
答案:C
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
2.已知函数是偶函数,那么是( )
A.奇函数
B.偶函数
C.既奇且偶函数
D.非奇非偶函数
答案:A
解题思路:
试题难度:三颗星知识点:函数奇偶性的判断
3.已知是定义在上的奇函数,则下列函数:①;
②;③;④.其中为奇函数的是( )
A.①③
B.②③
C.①④
D.②④
答案:D
解题思路:
试题难度:三颗星知识点:函数奇偶性的判断
4.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:奇偶性与单调性的综合
5.已知在上是奇函数,且,当时,,则的值为( )
A.-2
B.2
C.-98
D.98
答案:A
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
6.已知函数是偶函数,且,则的值为( )
A.-1
B.1
C.-5
D.5
答案:D
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
7.定义在R上的偶函数在区间[0,+∞)单调递增,则( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:奇偶性与单调性的综合
8.若奇函数在[2,5]上是增函数,且最小值是1,则在[-5,-2]上是( )
A.增函数且最小值是-1
B.增函数且最大值是-1
C.减函数且最小值是-1
D.减函数且最大值是-1
答案:B
解题思路:
试题难度:三颗星知识点:奇偶性与单调性的综合
9.已知函数是定义在上的奇函数,当时,,则当时,的表达式为( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质
10.当x≥0时,为偶函数,则的解析式是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:函数奇偶性的性质。

相关文档
最新文档