Synthesis and Postfunctionalization of Well-Defined Star Polymers via ‘‘Double’’ Click Chemistry

合集下载

交叉脱氢偶联反应_郭兴伟

交叉脱氢偶联反应_郭兴伟
[ 5]
( 图式 1)。交叉脱
氢偶联反应不需要 使 用 带 有 官 能 团 的 反 应 底 物, 因 而省去了一步甚至 多 步 制 备 官 能 团 化 的 反 应 底 物, 进而实现了更短的 合 成 路 线 和 更 高 的 效 率, 为直接 利用简单的原料进 行 高 效 的 、 复杂的有机合成任务 提供了一 条 新 的 思 路 和 途 径
第 22 卷 第 7 期 2010 年 7 月




PROGRESS IN CHEMISTRY
Vol. 22 No. 7 Jul. ,2010
交叉脱氢偶联反应
郭兴伟
1
*
李志平
1
李朝军
2
( 1. 中国人民大学化学系
北京 100872 ; 2. Department of Chemistry ,
当使 用 四 氢 异 喹 啉 骨 架 作 为 反 应 底 物 时, 反应 选择性发生在苄位 C — H 键( 图式 5 ) 。
图式 1
交叉脱氢偶联的概念
[ 5]
Scheme 1
Conceptual approach of CDC[5 ]
2
2. 1
Cu 催化的 CDC 反应
sp 3 C — H-sp C — H 偶联 2004 年, 李 朝 军 课 题 组 首 次 报 道 了 CuBr 催 化
[ 6]
图式 4
胺 α -C — H 键炔基化的可能机理
[ 7 a]
Scheme 4
Proposed alkynylation of C — H bond adjacent to
。本综述将基于不
an nitrogen atom in amines[7 a ]

SiO2g-C3N4复合粉体制备及其光催化性能

SiO2g-C3N4复合粉体制备及其光催化性能

第40卷第8期2021年8月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.40㊀No.8August,2021SiO 2/g-C 3N 4复合粉体制备及其光催化性能徐泽忠1,邹㊀慧1,曹显志2,吴㊀阳3,韩成良4(1.合肥学院分析测试中心,合肥㊀230601;2.东南大学材料科学与工程学院,南京㊀211189;3.浙江工业大学化学工程学院,杭州㊀310006;4.合肥学院能源材料与化工学院,合肥㊀230601)摘要:以Stöber 法制备出的二氧化硅(SiO 2)微球和三聚氰胺为原料,两者按一定质量比混合后得到前驱体,通过煅烧该前驱体可成功获得SiO 2/g-C 3N 4复合粉体㊂利用XRD㊁SEM㊁UV-Vis 和BET 等表征手段对获得的复合粉体进行物相组成㊁形貌㊁可见光吸收性能以及比表面积大小等进行分析和测试㊂结果表明,改进的Stöber 法制备出的球形SiO 2平均粒径约为200nm,具有良好的分散性㊂SiO 2/g-C 3N 4复合粉体中SiO 2含量约为75%(质量分数)时,其比表面积最大,约为23.7m 2/g㊂同时,以罗丹明B 和亚甲基蓝为目标污染物,在可见光照射下,探究了不同g-C 3N 4负载量SiO 2/g-C 3N 4复合粉体的光催化性能㊂结果表明,随着复合粉体中g-C 3N 4含量的降低,复合粉体的可见光催化活性反而逐渐升高,g-C 3N 4含量约为25%(质量分数)时复合粉体光催化降解罗丹明B 和亚甲基蓝效果最好㊂原因可归结为,复合粉体的强吸附增强了可见光催化性能㊂关键词:SiO 2/g-C 3N 4复合粉体;光催化;Stöber 法;吸附中图分类号:TQ034㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2021)08-2748-07Synthesis and Photocatalytic Properties of SiO 2/g-C 3N 4Composite PowdersXU Zezhong 1,ZOU Hui 1,CAO Xianzhi 2,WU Yang 3,HAN Chengliang 4(1.Analysis and Testing Center of Hefei University,Hefei 230601,China;2.College of Materials Science and Engineering,Southeast University,Nanjing 211189,China;3.College of Chemical Engineering,Zhejiang University of Technology,Hangzhou 310006,China;4.Department of Chemical and Materials Engineering,Hefei University,Hefei 230601,China)Abstract :SiO 2/g-C 3N 4composite powders were successfully prepared by calcination of proper as-prepared silicon dioxide(SiO 2)and melamine (C 3H 6N 6)composite precursors.The phase composition,morphology,optical absorption performance,and specific surface area of the composite powders were carried out by X-ray diffraction (XRD),field emission scanning electron microscope (FE-SEM),ultraviolet-visible light absorption spectrum (UV-Vis)and BET method.Results show that the average particle size of spherical SiO 2prepared by modified Stöber method is about 200nm and it has good dispersibility.When the content of SiO 2is about 75%(mass fraction)in SiO 2/g-C 3N 4composite powder,the specificsurface area of composite powder is the largest,about 23.7m 2/g.At the same time,the photocatalytic properties ofSiO 2/g-C 3N 4composite powders with different g-C 3N 4loading content were investigated under visible light irradiation with Rhodamine B and methylene blue as the target pollutants.Results indicate that with the decrease of the content of g-C 3N 4in the composite powders,the visible light activity of the composite powder increases gradually.The composite powder withabout 25%(mass fraction)g-C 3N 4has the best photocatalytic degradation effect on Rhodamine B and methylene blue.Thereason is that the strong absorption of composite powders enhances the visible light photocatalytic property.Key words :silicon dioxide /graphitic carbon nitride composite powder;photocatalysis;Stöber method;absorption 收稿日期:2021-03-04;修订日期:2021-05-24基金项目:2018年合肥学院自然科学发展基金重点项目(18ZR08ZDB)作者简介:徐泽忠(1981 ),男,实验师㊂主要从事环境纳米材料及表征方面的研究㊂E-mail:xuzz@0㊀引㊀言随着我国印染和涂料行业的快速发展,工业废水的排放量也急剧增多,废水中的有机染料具有自降解速率极低㊁生化性质稳定以及具有一定毒性等特征,若不加以处理必然会对生态环境和人类生命健康造成危第8期徐泽忠等:SiO 2/g-C 3N 4复合粉体制备及其光催化性能2749㊀害[1-3]㊂利用光催化技术来有效降解工业废水中的污染源已经得到广泛且深入的研究㊂二氧化硅(SiO 2)因具有比表面积较大㊁化学性质稳定㊁生物相容性较好等优点常被用作复合载体和模板㊂石墨相氮化碳(g-C 3N 4),作为一种不含金属元素的半导体光催化剂,具有高热稳定性㊁良好耐酸碱和耐光腐蚀性能㊁较高光催化活性等性能,带隙宽度在2.8eV 左右,优异的理化性能和独特的电子能带结构使g-C 3N 4在光催化降解染料方面具有重要的应用价值㊂然而,纯g-C 3N 4的比表面积较小,光生电子和空穴对复合速度快,量子效率较低,限制了其光催化性能㊂活性吸附位点缺乏和光催化效率不高往往是限制单相光催化剂广泛应用的壁垒[4],具有可见光响应的半导体复合光催化剂能够克服某些单相光催化材料的一些本征缺陷㊂因此,如何有效利用g-C 3N 4是材料科学工作者一直研究的热点㊂近期,将光催化性能优异的g-C 3N 4半导体与其他材料相结合形成复合材料的研究较多㊂例如,研究发现通过静电相互作用制备的SiO 2/g-C 3N 4复合材料具有优异的可见光吸收性能和电化学性能[5-6]㊂其中,溶剂热法[7]制备的SiO 2/g-C 3N 4复合粉体对有机染料罗丹明B(RhB)和结晶紫(CV)的降解率可分别达到99%和98%㊂然而,已有的一些关于SiO 2/g-C 3N 4复合粉体的研究依然存在一些局限性,诸如需要特殊反应设备(高压反应釜)和特殊的溶剂等,导致在制备SiO 2/g-C 3N 4复合粉体时存在一定的安全隐患和成本高等问题㊂因此,采用操作简单㊁成本低㊁安全可靠的制备工艺来获得SiO 2/g-C 3N 4复合粉体乃是当前许多材料科学工作者研究的课题㊂本文首先采用技术成熟的Stöber 法成功得到了SiO 2微球;然后,将固态三聚氰胺粉体与制备出的SiO 2粉体按不同质量比混合得到不同前驱体;最后,通过煅烧前驱体法可成功获得不同组成的SiO 2/g-C 3N 4复合粉体㊂该制备方法具有安全可靠和操作简单等优点,能较好地控制SiO 2和g-C 3N 4两相的比例,能在很大范围内调控复合粉体的质量分数㊂同时,该制备方法具有一定的普适性,有望用于制备其他SiO 2或g-C 3N 4复合粉体㊂1㊀实㊀验1.1㊀SiO 2/g-C 3N 4复合粉体制备在Stöber 法制备SiO 2过程中,通过改进㊁优化前驱体和反应溶剂的比例制得球形度高㊁粒径分布均匀的SiO 2微球㊂首先,在3份等量的SiO 2胶体溶液中分别加入0.5g㊁1.5g㊁2.5g 三聚氰胺固体得到反应前驱体;接着,将3份不同比例的样品超声均匀后转入恒温干燥箱干燥处理,干燥温度为120ħ,恒温干燥4h 后得到白色粉末;最后将反应前驱体放入管式炉中进行煅烧处理,升温速率设定为5ħ/min,煅烧温度为550ħ,在该温度下煅烧1h 即可得到目标产物㊂分别采用X 射线衍射仪(XRD )㊁冷场发射扫描电镜(FE-SEM)㊁全自动比表面与孔隙率测定仪(BET)㊁紫外可见分光光度计(UV-Vis)等对目标产物的物相组成㊁形貌结构和光学性能进行表征与分析㊂1.2㊀光催化降解染料为了研究获1.1节中得的SiO 2/g-C 3N 4复合粉体的光催化性能,分别准确称取3种不同比例的SiO 2/g-C 3N 4复合粉体各0.2g,超声分散于100mL 的亚甲基蓝(MB)溶液(初始浓度为5mg /L)中,在充分搅拌下暗反应30min,待吸附达到平衡后,取5mL 样品在300W 氙灯(PLS-SXE300,λ>420nm)可见光源下模拟太阳光进行光催化性能测试,每隔10min 取溶液离心处理后进行吸光度的测试㊂在其他实验条件均不改变的情况下,以100mL 的罗丹明B 溶液(初始浓度为5mg /L)为目标污染源进行重复实验㊂t 时刻所对应的亚甲基蓝的浓度(C t )可用式(1)估算㊂C t =C 0A t /A 0(1)式中:C 0为水体中亚甲基蓝初始浓度,mg /L;A 0为亚甲基蓝初始吸光度;A t 为t 时刻亚甲基蓝吸光度㊂2㊀结果与讨论2.1㊀物相分析图1是SO 2/g-C 3N 4复合粉体的XRD 谱㊂可以看出,不同质量比的SiO 2/g-C 3N 4复合粉体的衍射图谱中在2θ为12.6ʎ㊁22.8ʎ和27.4ʎ处均存在较为明显的特征衍射峰,这与g-C 3N 4标准谱(PDF#87-1526)以及SiO 2标准谱(PDF#14-0072)相符,说明实验得到的是SiO 2/g-C 3N 4复合粉体㊂同时还发现,随着复合粉体中2750㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷图1㊀SiO 2/g-C 3N 4复合粉体的XRD 谱Fig.1㊀XRD patterns of SiO 2/g-C 3N 4composite powdersg-C 3N 4质量分数的增加,27.4ʎ处g-C 3N 4特征衍射峰强度也逐渐增加㊂而SiO 2载体的衍射峰依然是较大的馒头峰,这与很多文献中报道的结果相一致[8]㊂2.2㊀形貌与组成分析不同质量比的SiO 2/g-C 3N 4复合粉体的微观形貌和化学组成分析结果如图2所示㊂在醇-水-低碱体系中采用Stöber 法制备的SiO 2微球平均粒径约为200nm (见图2(a )),球形度饱满㊂复合粉体中g-C 3N 4质量分数分别为25%㊁52%和64%时所得到的SiO 2/g-C 3N 4复合粉体形貌均由球状SiO 2和不规则的板状g-C 3N 4构成,但二者结合程度随g-C 3N 4质量分数增大而逐渐提高(见图2(b)~(d))㊂同时,对SiO 2质量分数为36%的复合粉体进行面扫描能谱分析可知,该粉体主要由Si㊁O㊁C㊁N 四种元素组成(见图2(e)),不含其他杂质元素,且元素定量分析结果表明C㊁N 元素的含量高于Si㊁O 元素(Cu 为载体组成)(见图2(f))㊂结合微观形貌与元素定量分析可知,复合粉体是以g-C 3N 4为主相,次相SiO 2微球紧实包裹或内嵌形成的,且g-C 3N 4在复合体系中的比例不仅会影响其与SiO 2微球的结合程度,同时也会进一步对复合粉体的光催化特性产生影响㊂图2㊀SiO 2/g-C 3N 4复合粉体微观形貌及其化学组成Fig.2㊀Morphology and chemical composition of SiO 2/g-C 3N 4composite powders第8期徐泽忠等:SiO 2/g-C 3N 4复合粉体制备及其光催化性能2751㊀2.3㊀N 2吸附特性及孔径分析图3为SiO 2/g-C 3N 4复合粉体氮吸附及产物孔径分布曲线㊂从图3可以看出,不同比例样品的氮气吸附-脱附曲线都是典型的Ⅳ类吸附-脱附等温线和H 2形回滞环[9](见图3(a)),说明所制备复合材料为介孔材料㊂从BET 分析看出,75%SiO 2/g-C 3N 4比表面积为23.720m 2/g,48%SiO 2/g-C 3N 4比表面积为13.616m 2/g,36%SiO 2/g-C 3N 4比表面积为9.091m 2/g,三个样品平均孔径约为2~50nm,其中4nm 孔径体积分数最多(见图3(b)~(d))㊂图3㊀SiO 2/g-C 3N 4复合粉体氮吸附及产物孔径分布曲线Fig.3㊀N 2absorption and pore size distribution curves of SiO 2/g-C 3N 4composite powders 2.4㊀紫外-可见漫反射光谱分析图4㊀SiO 2/g-C 3N 4复合粉体UV-Vis 谱Fig.4㊀UV-Vis spectra of SiO 2/g-C 3N 4composite powders 图4为SiO 2/g-C 3N 4复合粉体UV-Vis 谱㊂由图4可以看出,不同比例的SiO 2/g-C 3N 4复合粉体对可见-紫外光具有一定的反射和吸收作用,在400nm 至550nm 之间光的吸收作用比其他区间的效果好㊂三者都在463nm 附近呈现了陡峭的强吸收,这是属于g-C 3N 4的吸收[10],是电子由价带(VB )跃迁到导带(CB)而产生的㊂2.5㊀红外光谱分析图5为SiO 2/g-C 3N 4复合粉体红外光谱图㊂从图5中可以看出,波数在1226cm -1和1765cm -1之间的峰是g-C 3N 4中特有的碳氮杂环化合物的典型拉伸振动峰,798cm -1处是属于g-C 3N 4特殊的三嗪环单元的径向伸缩振动峰[11],在1074cm -1处出现的峰是SiO 2中Si O Si 的不对称伸缩振动峰[12],少量吸附的水2752㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷在2769cm -1至3459cm -1之间产生伸缩振动峰,该处的峰也证明了通过热缩聚法合成的g-C 3N 4并未完全缩聚,依然含有少量水(见图5)㊂2.6㊀热重分析图6为SiO 2/g-C 3N 4复合粉体的热重分析曲线㊂从图6中可以看出,在150~200ħ均有少量的质量损失,可能是因为样品中依旧含有少量的水分,水分在该温度下损失掉㊂在500~700ħg-C 3N 4分解造成了大量质量损失[13],剩余的物质是SiO 2,三者分别剩余75%㊁48%和36%(质量分数)㊂TG 分析法可以作为确定复合粉体中SiO 2和g-C 3N 4最终质量分数的方法㊂图5㊀SiO 2/g-C 3N 4复合粉体红外光谱Fig.5㊀FT-IR spectra of SiO 2/g-C 3N 4composite powders 图6㊀SiO 2/g-C 3N 4复合粉体的热重分析Fig.6㊀TG analysis of SiO 2/g-C 3N 4composite powders 2.7㊀光催化活性分析图7为SiO 2/g-C 3N 4复合粉体光催化降解有机染料动力曲线㊂从图7中可以明显看出,比表面积最大的图7㊀SiO 2/g-C 3N 4复合粉体光催化降解有机染料动力曲线Fig.7㊀Kinetic curves of photocatalytic degradation organic dyes by SiO 2/g-C 3N 4composite powders第8期徐泽忠等:SiO2/g-C3N4复合粉体制备及其光催化性能2753㊀75%SiO2/g-C3N4复合粉体对两份溶液的光催化效果最好(见图7(a)㊁(b))㊂进一步分析,光催化降解过程符合准一级动力学方程[14]ln(C0/C t)=kt(k为反应速率常数;t为光照时间),其中75%SiO2/g-C3N4复合粉体的反应速率常数最大,在罗丹明B中k=0.029min-1,在亚甲基蓝中k=0.017min-1(见图7(c)㊁(d))㊂2.8㊀光催化机理分析SiO2/g-C3N4复合粉体的光催化去除染料的机理可用图8表示㊂从图8中可以得知,复合粉体降解有机染料是通过复合粉体的表面增强吸附作用和g-C3N4的光催化作用二者协同来完成的[15]㊂吸附过程是光催化作用得以进行的第一步,因为75%SiO2/g-C3N4粉体的比表面积可达23.7m2/g,较大的比表面积使得复合粉体表面具有丰富的吸附孔,较强的吸附能力使得粉体表面能够最大容量吸附有机染料分子及分子团㊂同时,SiO2微球的光学透过性使得g-C3N4能够充分吸收可见光,光生电子和空穴能够有效分离,通过一系列的氧化还原反应使得有机染料得以降解[16]㊂图8㊀SiO2/g-C3N4复合粉体光催化降解染料示意图Fig.8㊀Illustration of photocatalytic degradation organic dyes by SiO2/g-C3N4composite powders3㊀结㊀论首先,采用改进的Stöber法可控制备出粒径约为200nm的球形SiO2高分散性粉体㊂接着,以三聚氰胺(C3H6N6)和SiO2粉体为前驱体,采用煅烧法成功制备不同负载量的SiO2/g-C3N4复合粉体㊂最后,研究不同负载量SiO2/g-C3N4复合粉体的可见光催化性能㊂结果表明,SiO2含量为75%,g-C3N4含量为25%时, SiO2/g-C3N4复合粉体的光催化性能最好,吸附增强光催化效应可归结为主要原因㊂参考文献[1]㊀于清波,王青海,赵青杨,等.SiO2/g-C3N4复合材料的制备及性能研究[J].化工新型材料,2016,44(5):106-108.YU Q B,WANG Q H,ZHAO Q Y,et al.Synthesis and property of SiO2/g-C3N4composite[J].New Chemical Materials,2016,44(5):106-108(in Chinese).[2]㊀PRAKASH K,KUMAR P S,LATHA P,et al.Design and fabrication of a novel metal-free SiO2/g-C3N4nanocomposite:a robust photocatalystfor the degradation of organic contaminants[J].Journal of Inorganic and Organometallic Polymers and Materials,2018,28(1):268-278. [3]㊀侯建华,蔡㊀瑞,沈㊀明,等.多孔纳米片状石墨相氮化碳的制备及其可见光催化[J].无机化学学报,2018,34(3):467-474.HOU J H,CAI R,SHEN M,et al.Preparation and visible light photocatalysis of porous nanosheet graphitic carbon nitride[J].Chinese Journal of Inorganic Chemistry,2018,34(3):467-474(in Chinese).[4]㊀王晓雪,高建平,赵瑞茹,等.g-C3N4纳米管的制备及其光催化降解性能[J].无机化学学报,2018,34(6):1059-1064.WANG X X,GAO J P,ZHAO R R,et al.Preparation and photocatalytic performance of g-C3N4nanotubes[J].Chinese Journal of Inorganic Chemistry,2018,34(6):1059-1064(in Chinese).[5]㊀CHANG M J,CUI W N,LIU J,et al.Fabrication and photocatalytic properties of flexible g-C3N4/SiO2composite membrane by electrospinningmethod[J].Journal of Materials Science:Materials in Electronics,2018,29(8):6771-6778.[6]㊀余竞雄,崔㊀敏,陈倩倩,等.以SiO2为模板制备高比表面积g-C3N4光催化剂[J].浙江师范大学学报(自然科学版),2017,40(1):36-42.YU J X,CUI M,CHEN Q Q,et al.Preparation of high surface area g-C3N4photocatalyst with SiO2as a template[J].Journal of Zhejiang Normal University(Natural Sciences),2017,40(1):36-42(in Chinese).2754㊀新型功能材料硅酸盐通报㊀㊀㊀㊀㊀㊀第40卷[7]㊀AZAMI M S,JALIL A A,HITAM C N C,et al.Tuning of the electronic band structure of fibrous silica titania with g-C3N4for efficient Z-schemephotocatalytic activity[J].Applied Surface Science,2020,512:145744.[8]㊀KANG S,JANG J,PAWAR R C,et al.Direct coating of a g-C3N4layer onto one-dimensional TiO2nanocluster/nanorod films for photoactiveapplications[J].Dalton Transactions,2018,47(21):7237-7244.[9]㊀LU L Y,WANG G H,ZOU M,et al.Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4hybrids as an effective Z-schemeheterojunction photocatalyst[J].Applied Surface Science,2018,441:1012-1023.[10]㊀MEI J,ZHANG D P,LI N,et al.The synthesis of Ag3PO4/g-C3N4nanocomposites and the application in the photocatalytic degradation ofbisphenol A under visible light irradiation[J].Journal of Alloys and Compounds,2018,749:715-723.[11]㊀ZHANG R,WANG Y,ZHANG Z Y,et al.Highly sensitive acetone gas sensor based on g-C3N4decorated MgFe2O4porous microspherescomposites[J].Sensors,2018,18(7):2211.[12]㊀PHAM T T,SHIN E W.Thermal formation effect of g-C3N4structure on the visible light driven photocatalysis of g-C3N4/NiTiO3Z-schemecomposite photocatalysts[J].Applied Surface Science,2018,447:757-766.[13]㊀AKBARZADEH R,FUNG C S L,RATHER R A,et al.One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4micro-flower composite forthe visible light degradation of ibuprofen[J].Chemical Engineering Journal,2018,341:248-261.[14]㊀XIAO M,LUO B,WANG S C,et al.Solar energy conversion on g-C3N4photocatalyst:light harvesting,charge separation,and surface kinetics[J].Journal of Energy Chemistry,2018,27(4):1111-1123.[15]㊀LIU G,QIAO X,GONDAL M A,et parative study of pure g-C3N4and sulfur-doped g-C3N4catalyst performance in photo-degradation ofpersistent pollutant under visible light[J].Journal of Nanoscience and Nanotechnology,2018,18(6):4142-4154.[16]㊀JIN L,ZHOU X S,NING X M,et al.Boosting visible light photocatalytic performance of g-C3N4nanosheets by combining with LaFeO3nanoparticles[J].Materials Research Bulletin,2018,102:353-361.。

固相多肽合成树脂的特征和进展

固相多肽合成树脂的特征和进展

固相多肽合成树脂的特征和进展Camarero.JA和Cotton GJ等[14]报道,在一个3-巯基-3戊酮酰胺-PEG-聚-(N, N-二甲基丙烯酰胺)共聚物上载体(HS-PEGA)上,通过最优化的Boc-SPPS,可以从固相载体上直接得到未保护的多肽。

这种方法降低了操作中的损失,明显提高了整个的化学偶联效率。

他们合成了几个15-47个残基的肽,并且这种方法可以扩展到用来实现顺序的分子内络合,允许进入大得多的聚合肽和蛋白质系统。

[4] Chemical Approaches to the Synthesis of Peptide and Proteins,Paul Lloyd-Williams, Fernando Albericio, Ernest Giralt, 1997[5] Winger TM, Ludovice PJ, Chaikof EL, convenient rout to thiol terminated peptides for conjugation and surface functionalization strategies, Bioconjug Chem 1995 May-Jun;6(3);[6] Henning DS, Lajoie GA, Brown GR, St-Pierre LE,St-Pierre S,Polymer resins with amino acid containing pendants for sorption of biliubin. I. Comparison of Merrifield and polyamide resins, nt J Artif Organ 1984[7] Synthesis notes, 1996[8] Sparrow JT, Knieb-Cordonier NG, Objeyseskere NU, McMurrayJS , Large-pore polydimethylacrylamide resin solid-phase peptide synthesis; applications in Fmoc chemistry, Pept Res 1996 Nov-Dec; 96(6);[9] Kanda P, Kennedy RC, Sparrow JT, Synthesis of polyamide supports for use in peptide synthesis and as peptide-resin conjugatesfor antibody production, Int J Pept Protein Res 1991 Oct;38(4);[10] Haynie SL, Crum GA Doele BA , Antimicrobial activities of amphiphilc peptide covalently bonded to a water-insoluble resin,Antimicrob Agents Chemother 1995 Feb; 39(2);[11] Kates SA McGuinness BF, Blackburn C, etc,“high-load” polyethylene glycol-polystyrene( PEG-PS) graft supports for solid-phase synthesis, Biopolymers, 1998,4(3);[12] Auzanneau FI, Meldal M, Bock K, synthesis,Characterization and biocompatibility of PEGA resins, J.Pept Sci 1995Jan-Feb;1(1);[13] Renil M, Ferreras M , Delaisee JM, Foged NT, Meldal M,PEGA supports for combinatorial peptide synthesis and solid-phase enzymatic library assays, J Pept Sci 1998 May ,4(3);[14] Camarero JA, Cotton GJ,Adeva A, Muir TW, Chemical ligation of unprotected peptides directly from a solid support, J Pept Res 1998Apr; 51(4);[15] Tegge W , Frank R, Peptide synthesis on Sepharose beads, J Pept Res 1997 Apr;49(4);[16] Mcmurray JS, The use of polyacrylamide-based peptide synthesis resins for the generation of antipeptide antibodies,Biopolymers 1998,47(5);[17] Buettner JA, Dadd CA, Baumbach GA, Masecar BL, Hammond DJ, Chemically derived peptide libraries: a new resin and methodology for lead identification . Int J Pept Protein Res 1996 Jan-Feb;47(1-2);[18] Sebestyen F, SzendreiG, Mak M,etc, Coloured Peptides: synthesis, properties and use in preparation pf peptide sub-library kits, J Pept Sci, 1998 Jun, 4(4);[19] Mery J, Brugidou J, Derancourt J, Disulfide bond as peptide-resin linkage in Boc-Bzl SPPS.for potential biochemical applications, Pept Res 1992 Jul-Aug, 5(4);[20] Lloyd-Williams P, Albericio F, Giralt E, convergent solid-phase peptide synthesis.VIII.Synthesis, using a photolabile resin ,and purification of a methionine-containing protected peptide , Int J Pept Protein Res 1991 Jan;37(1);[21] Englebretsen DR, Fmoc SPPS using Perloza beaded cellulose,Int J Pept Protein Res, 1994 Jun, 43(6);[22] Englebretsen DR, Harding DR, Solid-phase synthesis of a peptide-ligand affinity matrix for isolation of chymosin, Pept Res,1993 Nov-Dec, 6(6);[23] Zuckermann RN, Banville SC, Automated peptide-resin deprotection/cleavage by a robotic workstation, Pept Res 1992 Mar-Jun;5(3);。

形貌可控有机多孔聚合物:合成、功能化和应用

形貌可控有机多孔聚合物:合成、功能化和应用

㊀第40卷㊀第9期2021年9月中国材料进展MATERIALS CHINAVol.40㊀No.9Sep.2021收稿日期:2021-05-29㊀㊀修回日期:2021-08-05基金项目:国家自然科学基金资助项目(21574042,51273066)第一作者:张㊀慧,女,1990年生,讲师,Email:huizhang@通讯作者:黄㊀琨,男,1975年生,教授,博士生导师,Email:khuang@DOI :10.7502/j.issn.1674-3962.202105035形貌可控有机多孔聚合物:合成㊁功能化和应用张㊀慧1,张㊀丽2,余海涛2,黄㊀琨2(1.上海海洋大学海洋生态与环境学院,上海201306)(2.华东师范大学化学与分子工程学院,上海200241)摘㊀要:有机多孔聚合物具有高的比表面积㊁优异的化学稳定性和丰富的构建方法,在吸附㊁分离和多相催化等多个领域具有广阔的应用前景㊂材料的结构㊁形貌在很大程度上决定了材料性能㊂为拓展有机多孔聚合物在更多领域的应用,形貌可控的有机多孔聚合物逐渐成为新的研究方向㊂通过合理的结构设计和采用不同的化学修饰方法,可获得具有不同形貌与性能的有机多孔聚合物,它们在不同方面展现出较好的应用潜力㊂针对形貌可控有机多孔聚合物的国内外研究现状,综述了形貌可控有机多孔聚合物的合成策略㊁功能化方法和应用领域,并对其今后的发展趋势做出了展望㊂关键词:形貌可控;有机多孔聚合物;材料合成;功能化;应用领域中图分类号:TB383.4;TQ317㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)09-0697-15Morphologically Controllable Organic Porous Polymers :Synthesis ,Functionalization and ApplicationZHANG Hui 1,ZHANG Li 2,YU Haitao 2,HUANG Kun 2(1.College of Marine Ecology and Environment,Shanghai Ocean University,Shanghai 201306,China)(2.School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200241,China)Abstract :Based on the high surface area,excellent chemical stability and various preparation methods,organic porouspolymers have broad application prospects in many fields including adsorption,separation and heterogeneous catalysis.The structure and morphology of the materials determine material properties to a great degree.To expand the application of organ-ic porous polymers in more fields,organic porous polymers with controllable morphology have gradually become a new re-search anic porous polymers with different morphologies and properties can be obtained with reasonable struc-tural design and various chemical modification methods,which shows good application potential in different aspects.In this paper,the synthesis strategy,functionalization methods and application of morphologically controllable organic porous poly-mers are reviewed based on the research situation at home and abroad,and the future development trends are also put for-ward.Key words :controllable morphology;organic porous polymers;material synthesis;functionalization;application area1㊀有机多孔聚合物概述近年来,一类由C,H,O,N 和B 等轻质元素组成的新型多孔材料 有机多孔聚合物(porous organic poly-mers,POPs)成为多孔材料领域的研究前沿[1]㊂与传统的无机多孔材料和金属-有机骨架材料相比,有机多孔聚合物除了具有多孔材料的高比表面积和可调控的孔结构特性,更重要的是有机合成方法的多样性为有机分子前驱体与分子网络的构建提供了丰富的合成路径和构建方式㊂例如碳-碳偶联反应㊁点击化学和氧化聚合等合成方法被成功地用于制备有机多孔聚合物㊂同时,也可以通过目的性地引入功能化的有机分子前驱体使最终的材料具有相应的性质,通过调节前驱体的结构来调控材料的孔性质㊂其次,一些有机多孔聚合物可以溶解于溶剂中,并在溶剂条件下处理加工而不破坏孔结构,可以利用聚合物材料易加工的特点,把有机多孔聚合物制成薄膜[2,3],这将大大增强其应用范围,这是一些无机多孔博看网 . All Rights Reserved.中国材料进展第40卷材料所不具备的特性㊂在大多数情况下,与通过非共价键连接成的分子网络结构较为脆弱相比,有机多孔聚合物都是通过共价键连接,在材料微孔性质得到保持的同时,分子网络结构更加稳固㊂近年来,有机多孔材料已经被应用于气体存储㊁多相催化和有机光电等领域[4-7],并且有望在许多方面取代传统的无机多孔材料,从而引起了人们广泛的研究兴趣㊂2㊀形貌可控有机多孔聚合物研究现状有机多孔聚合物按照其结构特点可以分为以下4种类型:超交联聚合物(HCPs)[8]㊁共价有机框架(COFs)[9]㊁自具微孔聚合物(PIMs)[10]和共轭微孔聚合物(CMPs)[11]㊂随着对有机多孔聚合物材料研究的深入,各种新单体㊁新方法制备的新型材料不断出现,为了拓展其应用,人们关注的重点也转移到材料的功能化研究上来,应用的范围也从传统的吸附㊁分离和催化延伸到有机光电㊁储能和传感等新兴领域㊂但是,现有的一些策略制备的功能化有机多孔聚合物多为粉末固体,且形貌不可控㊂众所周知,材料的微㊁纳形貌是影响材料性能的一个重要因素㊂华中科技大学谭必恩课题组通过一种简单的乳液聚合将聚苯乙烯壳层包裹在二氧化硅纳米颗粒上,随后通过超交联反应并刻蚀二氧化硅核,得到了具有高比表面积的有机微孔聚合物空心微囊㊂相比于实心的超交联纳米颗粒,这种具有独特孔结构的中空微囊空腔可以作为储存药物的载体,从而大大提高纳米颗粒对于布洛芬的吸附量,并能通过孔径调节达到对药物控制释放的效果[12]㊂韩国成均馆大学Son课题组则通过Sonogashira偶联反应制备得到了有机微孔聚合物纳米球和纳米管,并分别以它们为模板合成出Co3O4空心纳米球和Fe2O3纳米管,这些具有特殊形貌的无机纳米材料在催化和电化学方面展现出优异的性能[13,14]㊂现有的研究工作表明,有机多孔聚合物的微观形貌不仅可以对其性质产生重要的影响,而且也可以作为模板制备不同形貌的无机纳米材料㊂本文将从合成方法㊁功能化及应用等方面对形貌可控的有机多孔聚合物进行概述㊂2.1㊀形貌可控有机多孔聚合物合成方法目前,国内和国际上对形貌可控有机多孔聚合物的制备方法有诸多报道,主要集中在硬模板法㊁单体直接合成法㊁单分子软模板法和自组装法㊂2.1.1㊀硬模板法硬模板法是指以某一类物质作为空间填充物,除去该物质后可得到相应孔结构的合成方法,是目前制备具有特定形貌的有机多孔聚合物最常用且成熟的方法之一㊂通过硬模板法,可以较好地控制有机多孔聚合物的微观形貌,并且可大批量制备结构完整㊁稳定性好的有机多孔聚合物㊂目前,被开发出的模板剂包括SiO2纳米粒子㊁介孔SiO2㊁沸石及交联聚合物等,模板去除后均可得到有序的孔状结构㊂Asher等[15]以单分散SiO2颗粒为硬模板,通过分散聚合在外层包覆聚合物,后续利用氢氟酸(HF)去除SiO2模板,从而得到单分散的空心聚合物粒子,空心核的尺寸及壳层厚度可以在一定范围内进行调控㊂贵州师范大学庄金亮课题组[16]以SiO2纳米球为模板,利用2,2,6,6-四甲基哌啶氧化物(TEMPO)自由基修饰的小分子单体与四(4-苯乙炔基)甲烷之间的Sona-gashira偶联反应在SiO2纳米球的表面包覆一层孔状聚合物材料,随后通过HF刻蚀掉内部的SiO2模板,制备了TEMPO自由基功能化的聚合物空心纳米球(图1)㊂中山大学吴丁财课题组[17]则使用内部包覆Ag纳米粒子的SiO2纳米球为模板,通过原子转移自由基聚合(ATRP)反应在球外表面接枝聚苯乙烯壳层,再通过类似的超交联和SiO2刻蚀处理,合成出包覆Ag纳米粒子功能化的微孔有机聚合物纳米球复合材料(图2)㊂复旦大学郭佳课题组[18]利用具有不同形貌的聚甲基丙烯酸(PMAA)微球作为自牺牲模板,在PMAA表面进行炔基和卤素的Sonogashira偶联反应,通过一步法合成具有多种纳米结构的共轭微孔聚合物微胶囊(包括空心㊁花状㊁响铃等结构)㊂Son课题组[19-21]分别以SiO2纳米球㊁Fe3O4纳米球和多面体金属-有机框架(MOF)材料为模板,利用Sonogashira偶联反应,制备出具有不同形貌特征的中空共轭微孔聚合物功能化材料㊂随后,他们又利用多面体MOF材料ZIF-8为模板,以1,4-二碘苯和4-(4-乙炔基苯基)甲烷为结构单体,通过类似的Sono-gashira偶联反应,在ZIF-8表面合成出共轭微孔聚合物材图1㊀SiO2模板法制备TEMPO自由基功能化的中空有机纳米球[16]Fig.1㊀Synthesis of TEMPO radical-functionalized hollow organic nanosphere by SiO2template method[16]896博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用图2㊀硬模板法制备Ag 纳米粒子功能化的微孔有机聚合物纳米球复合材料[17]Fig.2㊀Ag nanoparticles-functionalized microporous organic polymer nan-oparticles composite materials via hard template method [17]料,然后用冰乙酸刻蚀掉内部的ZIF-8模板,最后通过后修饰法,用氯磺化反应制备出磺酸功能化的中空共轭微孔聚合物纳米材料(图3)[22]㊂然而,硬模板法中的模板制备和去除造成了反应步骤繁琐㊁资源浪费和环境污染等问题,而且在模板的去除过程中,容易导致材料形貌的破坏㊂因此,开发更为简单易行且能有效控制形貌的方法成为有机多孔聚合物研究的一个重要方向㊂2.1.2㊀单体直接合成法单体直接合成法是通过单体小分子之间的化学反应,一步合成制备出各种形貌的有机多孔聚合物,这种方法的特点是简单㊁易规模化㊂如图4所示,陕西师范大学蒋加兴课题组[23]用芳香族小分子苯㊁蒽㊁菲为结构单元,通过傅克烷基化反应,制备出了纳米管形貌的超交联有机微孔聚合物,并对其进行进一步碳化处理制得管状碳纳米材料㊂图3㊀硬模板法制备磺酸功能化的中空共轭微孔聚合物纳米材料[22]Fig.3㊀Synthesis of sulfoacid functionalized hollow conjugated micro-porous polymer nanomaterials by hard template method [22]㊀㊀大连化学物理研究所邓伟桥课题组[24]以特殊结构的炔基苯和溴苯为反应单体,利用Sonogashira 交叉偶联反应,通过一步反应制备出比表面积高达1368m 2㊃g-1的共轭微孔聚合物纳米管,这种管状材料对CO 2和I 2展现出了高的吸附率㊂韩国釜山大学Kim 课题组[25]则以苯甲醇㊁1,4-苯二甲醇㊁1,4-二氯甲苯等为单体,开创性地提出了路易斯酸-碱相互作用诱导自组装机理,通过一步超交联反应制备出了不同形貌(空心球和纳米管)的超交联有机微孔聚合物(图5)㊂图4㊀芳香族小分子一步超交联法制备管状有机微孔聚合物[23]Fig.4㊀Construction of tubular organic mircroporous polymer via one-step hyper-crosslinking reaction of small aromatic molecule [23]996博看网 . All Rights Reserved.中国材料进展第40卷图5㊀一步超交联反应制备不同形貌有机微孔聚合物[25]Fig.5㊀Synthesis of organic microporous polymer with different morphology via one-step hyper-crosslinking reaction [25]㊀㊀Son 课题组[26]以3,5-二(4-溴苯基)吡啶和四(4-乙炔基苯基)甲烷为结构单体,通过类似的一步Sonogashira偶联反应,直接制得了比表面积为580m 2㊃g -1的纳米管状共轭微孔聚合物(图6)㊂2020年,南京邮电大学黄维课题组[27]在这方面同样做了出色的工作㊂他们以有机小分子为原料,通过水热反应制备出具有均匀且可控空心球结构的三维COFs 材料,该材料在气体吸附和电化学应用上均表现出优异的性能㊂单体直接合成法虽具有方法简单㊁可规模化制备等优势,但该方法的材料可控性较差,反应条件较苛刻,将限制其在实际生产中的应用㊂特别地,单体直接合成法中可控形貌的形成机理还未得到深入研究,难以实现材料形貌的多样化和可设计性㊂2.1.3㊀单分子软模板法单分子软模板法是利用一种特殊结构的聚合物分子刷作为单分子软模板,制备出空心/非空心结构的纳米管/线状有机多孔聚合物㊂聚合物瓶状分子刷是一种具有特殊拓扑结构的大分子,其高密度支链间的空间位阻效应使大分子主链趋于伸展状态,在溶液中呈纳米尺度的柱状形貌,可以方便地作为一种单分子软模板用于制备纳米材料[28]㊂如图7所示,Matyjaszewski 等较早开展了这方面的研究[29],他们设计㊁合成了支链末端修饰有苯基的单组分聚苯乙烯瓶状分子刷,以聚苯乙烯瓶状分子刷为软模板,利用傅克烷基化超交联瓶状分子刷,最终制备出具有微孔㊁介孔和大孔特征的有机纤维状多孔材料㊂图6㊀一步直接合成法制备纳米管状共轭微孔聚合物[26]Fig.6㊀One-step syntehsis of conjugated microporous polymer (CMPs)nanotube [26]07博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用图7㊀超交联聚苯乙烯瓶状分子刷合成有机纤维状多孔材料[29]Fig.7㊀Synthesis of organic fibrous porous material by hyper-crosslinking of bottle-shaped polystyrene molecular brush [29]㊀㊀为获得具有更为多样的结构㊁形貌的有机多孔聚合物,华东师范大学黄琨课题组通过分子设计合成出具有核壳结构的双组分聚合物分子刷,以聚合物分子刷为模板,通过傅克烷基化反应实现超交联得到以有机纳米管为结构单元的有机多孔聚合物(图8)[30]㊂超交联反应产生的HCl 可使聚乳酸嵌段降解为低聚乳酸或乳酸,无需额外的模板去除步骤,为制备形貌可控的有机多孔聚合物提供了一种新颖的研究思路㊂图8㊀超交联核壳瓶状聚合物分子刷制备管状有机多孔聚合物材料[30]Fig.8㊀Synthesis of tubular organic porous polymer materials by hyper-crosslinking of core-shell polymer bottlebrushes [30]单分子软模板法提供了一种在单分子水平上控制制备管/线状有机多孔聚合物材料新的合成策略,并且利用可控自由基聚合可以方便地实施功能化㊂然而,在上述工作中,聚合物分子刷的合成步骤较为繁琐,限制了其作为前驱体在有机多孔聚合物工业化合成中的进一步应用㊂2.1.4㊀自组装法自组装法是以嵌段聚合物为组装单元,在溶液里通过自组装或先组装后固形反应形成不同形貌的有机多孔聚合物㊂如果选择的嵌段聚合物中有可降解聚合物链段,则可降解的聚合物链段可以充当自牺牲模板,在随后的反应步骤中去除自牺牲模板得到具有中空形貌的有机多孔聚合物㊂与硬模板法相比,自组装法步骤较少,更为简易,并且可通过嵌段聚合物分子设计的多样性,有效调控有机多孔聚合物的微观形貌和结构组成,成为了近年来较为流行的一种制备策略㊂吴丁财课题组预先合成出一种由聚苯乙烯和聚丙烯酸组成的嵌段共聚物,该嵌段聚合物作为前驱体在特定的混合溶剂中实现自组装形成胶束,通过超交联反应胶束外层的聚苯乙烯组分构成微孔结构,从而形成形貌可控的有机多孔聚合物(图9)[31]㊂图9㊀自组装法制备球形有机多孔聚合物纳米网络[31]Fig.9㊀Synthesis of spherical organic porous polymer nano network [31]黄琨课题组近来也开发出了一种以嵌段聚合物为前驱体,通过超交联诱导自组装方法制备形貌可控的有机多孔聚合物的新方法[32]㊂如图10所示,以聚乳酸-b -聚苯乙烯(PLA-b -PS)二嵌段共聚物为软模板,利用超交联诱导自组装技术制备出以中空纳米球为结构单元的有机多孔聚合物㊂该合成策略有效地简化了有机多孔材料的合成路线,并可通过调节嵌段聚合物的结构组成有效地控制有机多孔聚合物的微观形貌,进一步拓展了具有空心结构的形貌可控有机多孔聚合物的制备方法㊂107博看网 . All Rights Reserved.中国材料进展第40卷图10㊀超交联诱导自组装制备中空有机多孔纳米球[32]Fig.10㊀Preparation of hollow organic porous nanosphere via hyper-crosslinking derivated self-assembly [32]㊀㊀黄琨课题组还开发出一种三苯基膦介导的超交联自组装策略,以含三苯基膦的两嵌段共聚物为基础,一步合成出具有蜂窝型双连续结构的膦掺杂有机多孔聚合物材料[33]㊂该方法通过引入含杂原子配体,不仅可调控特殊蜂窝型形貌的形成,而且可以作为强配体对贵金属进行配位固载㊂这一合成策略可进一步优化有机多孔材料的形貌设计,从而提升其整体应用性能,使其能够在更多领域中发挥更好的作用㊂随着对形貌可控有机多孔聚合物的研究不断深入,其合成方法得到了较好的发展,由制备步骤相对繁琐的硬模板法,逐步优化为简单高效的单体直接合成法㊁单分子软模板法和自组装法㊂特别是,前驱体由结构相对复杂的聚合物分子刷发展为结构简单且易功能化的嵌段聚合物,为有机多孔聚合物的工业化应用提供了基础条件㊂2.2㊀形貌可控有机多孔聚合物的功能化为了使形貌可控的有机多孔聚合物具有更为多样的应用性,一般是通过不同形式的功能化赋予有机多孔聚合物特定的性能㊂从合成方法的角度来看,有机多孔聚合物的功能化方法可大致分为后修饰法㊁预合成法㊁与金属或无机纳米粒子复合和碳化等方法㊂以下将简要分析这些功能化手段在有机多孔聚合物制备中的应用㊂2.2.1㊀后修饰法后修饰法是指在有机多孔聚合物构建完成后通过化学修饰对其进行功能化的方法㊂一般地,后修饰法主要发生在固液两相的界面上,是在有机多孔聚合物表面修饰功能化活性位点,该方法在有机多孔材料功能化方面得到了较为广泛的应用㊂黄琨课题组以含有对氯甲基功能嵌段的聚合物分子刷为前驱体,利用超交联反应得到了一种带氯甲基的有机多孔材料Cl-MONNs㊂如图11所示,通过后修饰反应将氯转化成了叠氮基团并利用点击反应将小分子催化剂简便有效地负载于有机多孔材料上,制备出有机多孔材料负载的固相有机催化剂TEMPO-MONNs,实现了功能化有机多孔材料在非均相催化中的应用[34]㊂2021年,黄琨课题组以含有聚乳酸和聚苯乙烯组分的嵌段共聚物为软模板,采用超交联诱导自组装技术制图11㊀后修饰法制备有机多孔材料负载的有机非均相催化剂[34]Fig.11㊀Synthesis of organic porous materials-based organic heterogeneous catalysts via post-modification method [34]207博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用备出以中空纳米球为结构单元的有机多孔聚合物㊂在此基础上,采用后修饰策略,使得中空纳米球外层的环氧基团与乙二胺发生开环反应,并最终获得乙二胺改性的中空有机多孔纳米微球(图12)㊂该功能化方法可有效地在纳米球表面修饰大量氨基,为后续的重金属吸附去除应用提供丰富的活性位点[35]㊂图12㊀乙二胺改性的中空有机多孔纳米微球的制备示意图[35]Fig.12㊀Scheme of preparation of ethylenediamine-modified hollow organic porous nanospheres [35]㊀㊀Son 课题组以SiO 2为硬模板制备出具有中空结构的有机微孔聚合物[36]㊂然后,通过后修饰法,在氯磺酸作用下,成功将功能化基团磺酸基负载于有机微孔聚合物上,合成了磺酸修饰的功能化有机微孔聚合物(图13)㊂利用类似的合成策略可制备出具有多层球壳的中空有机纳米材料,该材料在药物释放应用中表现出较高的药物负载量和药物释放速率㊂2017年,谭必恩课题组利用硬模板法和超交联反应相结合的策略,制备出具有中空结构的有机多孔聚合物[37]㊂随后,通过两步化学反应在有机多孔材料上成功修饰磺酸基和氨基,制备出酸碱双功能化的有机多孔材料(图14)㊂该功能化有机多孔聚合物在 一锅法 串联反应中表现出较好的催化性能㊂鉴于方法简单㊁操作性强等优势,后修饰法在有机多孔材料功能化方面得到了广泛的应用,在实际生产中具有很好的应用潜力㊂然而,采用后修饰法得到的功能化有机多孔聚合物中活性位点分布不均,功能化程度难以精准控制,这些不足在一定程度上限制了后修饰法在有机多孔聚合物功能化领域的应用㊂2.2.2㊀预合成法预合成法与后修饰法不同,是指由已预先合成的或已有的活性基团构建功能化有机多孔聚合物的方法,无后期化学修饰的过程㊂基于聚合物基的有机多孔材料采用预合成法进行功能化的方法可概括为两种:共聚合法和共交联法㊂图13㊀后修饰法合成磺酸功能化的有机微孔聚合物[36]Fig.13㊀Synthesis of sulfoacid functionalized organic microporous poly-mer via post-modification method [36]307博看网 . All Rights Reserved.中国材料进展第40卷图14㊀后修饰法制备酸碱双功能化的超交联有机多孔聚合物[37]Fig.14㊀Preparation of acid-base bifunctional hyper-crosslinked organic porous polymers via post-modification method [37]㊀㊀采用共聚合法进行功能化时,具有活性基团的分子通过聚合反应合成出功能化的有机多孔聚合物前驱体,后通过超交联反应等手段构建出功能基团修饰的有机多孔聚合物㊂2016年,黄琨课题组通过分子设计预先合成一种可聚合的功能化单体,并通过聚合反应将其修饰至多组分聚合物分子刷中㊂如图15所示,以聚合物分子刷为前驱体,利用傅克烷基化超交联反应和脱保护方法构建出氨基修饰的以有机纳米管为结构单元的有机多孔聚合物[38]㊂该方法可通过调节聚合物前驱体的结构组成对有机多孔材料中功能基团的含量和分布进行精确调控㊂氨基修饰的有机多孔聚合物在Knoevenage 缩合反应中表现出优异的催化活性㊁化学稳定性和普适性㊂共交联法是指预先合成的或已有的功能性芳香类小分子作为反应物直接参与聚合物前驱体的超交联反应共同构建出有机多孔骨架,从而得到负载活性基团的功能化有机多孔聚合物㊂如图16所示,黄琨课题组分别将苄图15㊀共聚合法制备氨基功能化的有机多孔聚合物[38]Fig.15㊀Synthesis of amino-functionalized organic porous polymer by co-polymerization[38]图16㊀共交联法合成杂原子掺杂的有机多孔聚合物[39]Fig.16㊀Synthesis of heteroatom-doped organic porous polymers via co-crosslinking method [39]407博看网 . All Rights Reserved.㊀第9期张㊀慧等:形貌可控有机多孔聚合物:合成㊁功能化和应用胺㊁2,2-联吡啶和三苯基膦等含杂原子的有机小分子掺入含有聚合物分子刷的前驱体溶液中,后续通过一步超交联反应得到不同杂原子修饰的管状有机多孔聚合物[39]㊂该方法有效地避免了可聚合的含杂原子的芳香性小分子的繁琐合成,功能化有机多孔聚合物的制备路线更为方便,具有更强的普适性,为今后制备不同功能化的有机多孔聚合物提供了一种简便高效的合成策略㊂此外,利用相同的材料制备方法,黄琨课题组以聚乳酸-b-聚苯乙烯两嵌段共聚物为前驱体,在超交联过程中通过加入苄胺小分子制备出氨基修饰的有机多孔聚合物[40]㊂在该方法中,苄胺与聚苯乙烯嵌段不仅共同参与构建了中空有机纳米材料的骨架,同时实现了有机多孔聚合物的功能化㊂采用预合成法可有效地调控有机多孔聚合物中功能性基团的分布和含量,活性位点分布相对均匀,可实现对有机多孔聚合物功能化程度的调控㊂同时,该方法合成步骤相对简单,易于规模化生产㊂因此,预合成法在有机多孔聚合物功能化制备中得到了越来越广泛的应用㊂2.2.3㊀与金属或无机纳米粒子复合利用一定的物理或化学反应,有机多孔聚合物可以与金属或无机纳米粒子进行复合,实现有机多孔聚合物的多种功能化,赋予材料不同的物理或化学性能,如磁性㊁催化活性等,因此,该方法在有机多孔聚合物功能化领域得到了越来越多的关注㊂2016年,黄琨课题组预先合成了一种表层被聚苯乙烯修饰的Fe3O4磁性纳米粒子,将该纳米粒子与多组分聚合物分子刷共混于同一反应体系并共同发生超交联反应,制备出Fe3O4纳米粒子修饰的磁性有机多孔聚合物材料[41]㊂该材料表现出高效的电荷选择性吸附染料和快速磁性分离的能力㊂如图17所示,Son课题组利用Fe(III)-卟啉与1,4-二炔基苯之间的Sonogashira偶联反应成功地在Fe3O4磁性纳米粒子表面覆上一层Fe(Ⅲ)-卟啉构建的有机多孔聚合物网络,最终合成了磁性纳米粒子修饰的有机多孔聚合物[21]㊂该材料在卡宾插入N H反应中表现出良好的催化性能和快速分离功能㊂谭必恩课题组通过后修饰方法将氮原子掺杂于中空的有机多孔聚合物中㊂然后,基于氮原子与金属钯之间的相互作用,利用硼氢化钠的还原作用将钯纳米粒子修饰于有机多孔聚合物的中空孔腔中,合成出铂功能化的金属-有机复合多孔聚合物材料(图18)[42]㊂该复合材料在硝基苯的氢化反应中表现出良好的催化性能㊂图17㊀Fe3O4磁性纳米粒子与有机多孔聚合物复合构建非均相催化剂[21]Fig.17㊀Construction of heterogeneous catalysts by combination of Fe3O4 magnetic nanoparticles and organic porous polymers[21]图18㊀铂纳米粒子修饰的有机多孔聚合物的合成[42] Fig.18㊀Synthesis of palladium-modified organic porous polymers[42]㊀㊀如图19所示,黄琨课题组以聚乳酸-b-聚苯乙烯二嵌段聚合物为前驱体,通过超交联方法制备出具有中空结构且形貌可控的有机多孔聚合物;随后,利用硼氢化钠的还原作用将金属纳米粒子负载于材料内部的中空孔腔中,最终获得钯纳米粒子功能化的有机多孔聚合物[43]㊂该材料作为非均相催化剂在氢化反应中具有较好的催化活性㊂金属或无机纳米粒子与有机多孔聚合物的复合可实现有机多孔材料的多种功能化,赋予有机多孔材料不同的物理化学性能,可促进功能化有机多孔聚合物在不同领域的应用㊂2.2.4㊀碳化碳化是一种获取具有多种微观形貌的无机碳材料的有效途径㊂有机多孔聚合物通过碳化反应,在保持原有形貌的基础上,可以形成具有多孔结构的无机碳材料,制备出具有良好电化学性能的功能化材料㊂这一功能化方法在能源存储领域具有很好的应用前景㊂2017年,吴丁财课题组以聚苯乙烯分子刷修饰的碳纳米管为前驱体,通过超交联方法制备出由有机多孔聚507博看网 . All Rights Reserved.。

荧光寿命CNP

荧光寿命CNP

ORIGINAL PAPERFluorescent Carbon Dots Capped with PEG 200and Mercaptosuccinic AcidHelena Gonçalves &Joaquim C.G.Esteves da SilvaReceived:5January 2010/Accepted:24March 2010/Published online:30March 2010#Springer Science+Business Media,LLC 2010Abstract The synthesis and functionalization of carbon nanoparticles with PEG 200and mercaptosuccinic acid,rendering fluorescent carbon dots,is described.Fluorescent carbon dots (maximum excitation and emission at 320and 430nm,respectively)with average dimension 267nm were obtained.The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes:τ1=2.71ns;τ2=7.36ns;τ3=0.38ns.The fluorescence intensity of the carbon dots is affected by the solvent,pH (apparent p K a of 7.4±0.2)and iodide (Stern-V olmer constant of 78±2M −1).Keywords Carbon nanoparticles .Carbon dots .Fluorescence .Functionalization .PEG 200and mercaptosuccinic acidIntroductionCarbon dots are a new class of fluorescent nanoparticles with a carbon based core.These carbon dots possess high stability over time,exceptional resistance to photo and chemical degradation,tunable fluorescence emission and excitation,high quantum yields,large Stokes shifts and since their synthesis is performed in water they are water soluble.Although this new class of quantum dots (QDs)was recently discover they are gaining a lot of attentionsince they enable fluorescence imaging with both one-and two-photon excitations on the same platform [1,2].They are imaging agents with a performance competitive to the traditional CdSe/ZnS quantum dots [2].Furthermore,these carbon dots have proved to be a valuable tool to overcome the toxicity issues arising from the use of cadmium core based quantum dots.A toxicity assay of these new nanoparticles was performed very recently [2,3]and it was proved that unlike the traditional cadmium based quantum dots and nanotubes their accumulation level in the liver was very low.So far,carbon dots have been produced from multi-walled carbon nanotubes with electrochemical methods [4],from candle soot,through thermal oxidation of suitable molecular precursors [5,6],from commercial lampblack,which is a primary material of Chinese ink [7],and by laser ablation of graphite and subsequent surface oxidation with nitric acid [8].Despite the different ways of obtaining carbon dots,they have only been functionalized with NH 2-polyethylene-glycol of different molecular weights.This may be due to the fact that it was recently shown that using QDs capped with PEG 200in cultured keratinocytes signif-icantly inhibited cytotoxicity and immune responses when compared with QDs without this capping [9],thereby suggesting that PEG coating is an effective approach for the safe use of QDs for in vivo applications [10,11].However it is known that quantum dots can be capped with selected molecules according to the intended application,as such,and due to the possibility that carbon dots can overcome the toxicity limitation of the cadmium based quantum dots for biological applications,it is important to develop and analyze the stability of new nanosensors by further functionalization of these PEG coated carbon dots.Here we report the synthesis and characterization of carbon nanoparticles obtained by direct laser ablation ofH.Gonçalves :J.C.G.Esteves da Silva (*)Centro de Investigação em Química,Departamento de Química e Bioquímica,Faculdade de Ciências da Universidade do Porto,R.Campo Alegre 687,4169-007Porto,Portugal e-mail:jcsilva@fc.up.ptJ Fluoresc (2010)20:1023–1028DOI 10.1007/s10895-010-0652-ycarbon targets immersed in water and the carbon dots that these nanoparticles originate after functionalization with PEG200and mercaptosuccinic acid(MSS). Experimental sectionFunctionalization of the carbon dotsAll chemicals were purchased from Sigma Aldrich and were used without further purification.The synthesis of the carbon nanoparticles was performed by laser ablation[UV pulsed laser irradiation(248nm, KrF)]of carbon targets immersed in deonized water[12]. The carbon nanoparticles obtained by laser ablation are not fluorescent and the following activation/functionalization process is necessary to render them fluorescence[13]:(i) 20mL of the water solution with the carbon nanoparticles dispersed plus20mL of HNO3(0.1M)was refluxed for 12h in order to activate the carbon nanoparticles surface; (ii)afterwards it was added20mL of PEG200and the mixture continue refluxing for28h;(iii)after28h it was added2.650g of mercaptosuccinic acid(MSS)and left refluxing for more31h.The color of the solution evolves from colorless to light brown.The obtained carbon dots solution was extracted six times with ethyl acetate in order to eliminate unreacted reagents.1mL of this purified solution was diluted to100mL water which constituted the sensing solution used throughout the work.For the solvent analyses the carbon dots were dried in vacuum for2h resulting in a viscous light brown liquid.pH and ion titrationsThe pH response was obtained through an acid-base titration of the sensing solution with HCl0.1M and NaOH 0.1M.For testing the carbon dots sensitivity towards heavy metals the pH of the sensing solution was adjusted to6.4±0.1using a phosphate buffer solution and the addition of micromolar quantities of all metal ions did not change this value.Standard aqueous solutions of Hg(NO3)2,Pb(NO3)2, CdCl2,Cu(NO3)2,NiCl2,CoCl2,KI and Zn(NO3)2·4H2O from Merck,were prepared in water with concentrations of 5.00×10−4M.Aliquots of these standard solutions were added to20mL of a carbon dots solution at pH6.4–25mL of the sensing solution and25mL of phosphate buffer solution at pH6.4.For all ion solutions,except iodide,the range of concentrations were between 1.00×10−7and 2.69×10−6M.Iodide concentrations were:9.70×10−4, 2.90×10−3, 4.83×10−3, 6.75×10−3,8.66×10−3, 1.06×10−2,1.15×10−2,1.34×10−2,1.53×10−2,1.72×10−2and 1.90×10−2M.To perform the dynamic light scattering(DLS)analysis the solutions of carbon dots was diluted in water and passed through two continuous0.2μm Fischer Scientific RC filters.InstrumentationFluorescence excitation emission matrices(EEM)[excita-tion between300to600nm and emission between350to 700nm]were recorded with a Horiba Jovin Yvon Fluoromax4TCSPC using an integration time of0.1s and a slit of5nm.The emission fluorescence measure-ments were acquired using the Horiba Jovin Yvon Fluoromax4TCSPC using an excitation of330nm and an emission range of300–650nm,with an integration time of0.1s and a slit of5nm.Lifetime measurements were recorded with a Horiba Jovin Yvon Fluoromax4TCSPC using the following instrumental settings:368nm NanoLED;time range,200ns;peak preset 10,000counts;repetition rate at1MHz;synchronous delay of50ns.Quartz cells were used.The size distribution of carbon dots in water was determined by dynamic light scattering analysis using a Malvern Instruments(Malvern,UK)Zeta Sizer Nano ZS, using disposable polystyrene cells from Sigma.Data analysisLifetime deconvolution analysis was done using Decay Analysis Software v6.4.1(Horiba Jovin Yvon).Fluores-cence decays were interpreted in terms of a multiexponen-tial model:I tðÞ¼AþΣB i expÀt=t iðÞwhere B i are the pre-exponential factors andτi the decay times.The fraction contribution(percentage of photons)of each decay time component is represented by P i.The variations in the fluorescence intensity of the carbon dots resulting from the ionization reaction can be linearized using a Henderson-Hasselbalch type equation which allows the calculation of the p K a.pH¼p K aþlog I max:ÀIðÞ=IÀI min:ðÞ½where I max.and I min.are respectively the maximum and minimum of the fluorescence intensity of the acid or conjugated base species and I the fluorescence intensity as function of the pH.In this study quenching of fluorescence by ions[E(II)] was described using the Stern-V olmer equation:I o=I¼1þK SV E IIðÞ½where I o is the fluorescence intensity without ion,I is the fluorescence intensity observed in the presence of an ionand K SV is the (conditional stability constant)Stern-Volmer constant [14].Results and discussionFunctionalization and DLS characterizationThe effect of functionalization was studied by taking samples overtime.After 1and 31h reaction the maximum fluorescence emission remained almost constant at about 430nm.The resulting solution obtained at 31h reaction time contains fluorescent carbon dots functionalized with PEG 200and MSS.Due to the physical characteristics of PEG 200,electron microscopy analysis could not be per-formed because the sample could not be dried.Alternative-ly,the size dispersion of the carbon dots was characterized by DLS.Figure 1shows the size dispersion of the nanoparticles as a function of the reaction time.The nanoparticles obtained by direct laser ablation (Fig.1a )have two major size dispersions at average values of 63and 373nm.Accordingly to the laser ablation method used (without dispersing the nanoparticles)this size dispersion feature may be due to two factors:(i)the formation of clusters in an initial phase of the ablation and the subsequent ablation of these clusters,thereby leading to two size dispersions;(ii)the particles of 373nm may be impurities since after functionalization these particles were no longer detected.After activation and functionalization the size distribu-tion becomes unimodal (Fig.2b and c ).Also,the analysis of the DLS shows that the carbon dots size growsupFig.1DLS size dispersion of the a carbon nanoparticlesobtained by direct laser ablation,b carbon dots functionalized with PEG 200at 31h reaction time and,c carbon dots func-tionalized with PEG 200and MSS at 31h reaction timeaccordingly with the reaction time:carbon dots +PEG 20031h -122nm (Fig.1b );carbon dots +PEG 200+MSS 1h -193nm;and,carbon dots +PEG 200+MSS 31h -267nm (Fig.1c ).Fluorescent propertiesThe emission spectra at maximum excitation (320nm)of the synthesized carbon dots functionalized with PEG 200and MSS are shown in Fig.2a .The fluorescence intensity increased with the reaction time but the maximum emission wavelength remained approximately the same at about 430nm,which is an indication of a little variation of the quantum confinement.When the fluorescence intensity started to decrease with the reaction time,it was considered that the maximum particle size and quantum confinement was reached for that ligand and as such the reaction was stopped.The emission bands are relatively broad and the full with half maximum increases with the reaction time,namely:87,89and 122nm,respectively.Figure 2b shows that the decrease of the carbon dots concentration provokes a linear decrease of the fluorescence intensity without changing the emission wavelength.The preliminary analysis of the decay time indicates that it is complex as it shows the presence of several lifetime ranges.Indeed,as shown in Table 1,only a three component decay time model originated a good fit for carbon dots functionalized with PEG 200(χ=1.08),and for carbon dots with PEG 200and MSS (χ=1.25)with the following lifetimes,respectively:τ1=2.76ns;τ2=0.33ns;τ3=6.59ns and τ1=2.71ns;τ2=7.36ns;τ3=0.38ns.These results show that the fluorescence lifetimes of the carbon dots were not affected after MSS functionalization.The results here obtained for carbon dots with PEG 200are comparable with the data reported by Sun et al.[7]for PEG 1500,indicating that the lifetime is also not affected by the length of the polymer in the dot surface.Solvent,pH and ions effect on the carbon dots fluorescenceFigure 3shows the effect of the solvent on the fluorescence properties of the carbon dots.As observed only the fluorescence intensity and not the emission wavelength is affected by solvents.This result shows that the solvent do not affect the quantum confinement of the carbon dots and only provokes the quenching of the fluorescence.After functionalization with PEG 200and MSS it was possible to see a marked sensitivity of the fluorescence intensity as a function of the pH.Since both MSS and PEG 200are sensitive to the surrounding environmental pH,the sigmoid curve represented in Fig.4is broad.When we applied the Henderson-Hasselbalch equation,it was found an apparent p K a of 7.4±0.2and a slope of 2.1.This pH behavior is reversible.Also,as the slope is higher than 1showing that a polyelectrolyte ionization is occurring.However,the variation with the pH of the fluorescence intensity of the carbon dots was only observed when the titration of the sensing solution was performed with stronga.b.2x104x106x108x10carbon nanoparticles+PEG 200I n t e n s i t y / a .u .Wavelength/ nmWavelength/ nm4005006005x1061x107I n t e n s i t y / a .u .Fig.2a Fluorescence emission spectra of carbon dots functionalized with PEG 200at 31h reaction,with PEG 200and MSS at 1h reaction and with PEG 200and MSS at 31h reaction time (excitation:320nm).b Variation of the fluorescence emission spectrum as function of the dilution of the aqueous carbon dotsTable 1Lifetime intensity decays of carbon dots functionalized with PEG 200and MSS in water SampleN τi (ns)αif i Carbon dots with PEG 20031h1 2.76(9)0.0227(1)42.9%20.33(2)0.0921(5)20.7%3 6.59(6)0.00812(4)36.4%χ=1.08Carbon dots with PEG 200+MSS 31h1 2.71(8)0.0227(1)43.6%27.36(9)0.00634(4)33.0%30.38(1)0.0870(5)23.4%χ=1.25acid and/or base.Indeed,when the same total phosphate buffer solutions with different pH values were used the fluorescence intensity did not change.This observation may be due to a stabilization effect on the dots surface charge promoted by the buffer solution.In order to access if these carbon dots were sensitive to ions,several ion solutions of Hg(II),Cu(II),Cd(II),Ni(II),Zn(II),Ca(II)and iodide were tested.Figure 5shows the effect of iodide at milimolar concentration levels on the carbon dots fluorescence and it is possible to observe a marked quenching —the fluores-cence signal decreases 55%upon addition of relatively high concentration of iodide (1.90×10−2M).The analysis of typical Stern-V olmer plot of the I −quenching on the carbon dots fluorescence shows that they follow a linear trend with K sv =78±2M −1(Intercept =0.92;r =0.996with 12points).This order of magnitude is compatible with a dynamic quenching mechanism.The other metal ions analyzed,namely,Hg(II),Cu(II),Cd(II),Ni(II),Zn(II)and Ca(II)at micromolar concentra-tion range show no measurable effect on the fluorescence of the carbon dots.The fact that these carbon dots remained stable in aqueous solutions and that they their fluorescence properties were not affected by the common interfering metals is an important step for the development of a non-toxic and stable nanosensor for bioimaging applications.ConclusionsFluorescent carbon nanoparticles (carbon dots)(with excitation at 320and emission at 430nm)with 267nm dimension were easily synthesized in water and function-alized with PEG 200and MSS.The fluorescence intensity of the functionalized carbon dots remain stable in water and are solvent and pH sensitive.The lifetime decay of the carbon dots is complex and it is not affected by the size of the PEG chain as well as the presence of other capping agents.The fluorescence intensity of the carbon dots are not affected by the presence of micromolar quantities of metal ions but quenched (dynamic quenching)by the presence of the milimolar quantities of iodide.Acknowledgments Financial support from Fundação para a Ciência e Tecnologia (Lisboa,Portugal)(FSE-FEDER)(Project PTDC/QUI/71001/2006)and (Project PTDC/QUI/71336/2006)is acknowledged.A PhD grant to Helena Gonçalves SFRH/BD/46406/2008is acknowledged to Fundação para a Ciência e Tecnologia (Lisboa).P.A.S.Jorge and J.R.A.Fernandes are acknowledging for assisting the laser ablation experiments.3x104x10I n t e n s i t y / a .u .pHFig.4Variation of the fluorescence intensity (excitation:320nm;emission:430nm)of aqueous carbon dots as function of thepH1x102x103x104x105x10[KI]=0 M I n t e n s i t y / a .u .Wavelength/ nmFig.5Fluorescence emission spectrum (excitation:320nm)quench-ing of the carbon nanoparticles +PEG 200+MSS 31h reaction time byiodide5x101x10I n t e n s i t y / a .uWavelength/ nmFig.3Fluorescence emission spectra (excitation:320nm)of carbon dots functionalized with PEG 200and MSS at 31h reaction time in different solventsReferences1.Cao L,Wang X,Meziani MJ,Lu F,Wang H,Luo PG,Lin Y,Harruff BA,Veca LM,Murray D,Xie SY,Sun YP(2007)Carbon dots for multiphoton bioimaging.J Am Chem Soc129:11318 2.Yang ST,Wang X,Wang H,Lu F,Luo PG,Cao L,Meziani MJ,Liu JH,Liu Y,Chen M,Huang Y,Sun YP(2009)Carbon dots as nontoxic and high-performance fluorescence imaging agents.J Phys Chem C113:181103.Yang ST,Cao L,Luo PG,Lu F,Wang X,Wang H,Mezian MJ,Liu G,Qi G,Sun YP(2009)Carbon dots for optical imaging in vivo.J Am Chem Soc131:113084.Liu HP,Ye T,Mao CD(2007)Fluorescent carbon nanoparticlesderived from candle soot.Angew Chem Int Ed46:6473–6475 5.Bourlinos AB,Stassinopoulos A,Anglos D,Zboril R,Karakas-sides M,Giannelis EP(2008)Surface functionalized carbogenic quantum dots.Small4:4556.Bourlinos AB,Stassinopoulos A,Anglos D,Zboril R,Georgaki-las V,Giannelis EP(2008)Photoluminescent carbogenic dots.Chem Mater20:45397.Mao XJ,Zheng HZ,Long YJ,Du J,Hao JY,Wang LL,Zhou DB(2009)Study on the fluorescence characteristics of carbon dots.Spectrochimica Acta A.doi:10.1016/j.saa.2009.11.0158.Sun YP,Zhou B,Lin Y,Wang W,Fernando KAS,Pathak P,Meziani MJ,Harruff BA,Wang X,Wang HF,Luo PG,Yang H, Kose ME,Chen B,Veca LM,Xie SY(2006)Quantum-sized carbon dots for bright and colorful photoluminescence.J Am Chem Soc128:7756–77579.Ryman-Rasmussen JP(2007)Surface coatings determinecytotoxicity and irritation potential of quantum dot nano-particles in epidermal keratinocytes.J Invest Dermatol 127:14310.Higuchi Y(2008)Mannosylated semiconductor quantum dots forthe labeling of macrophages.J Control Release125:13111.Faure AC,Dufort S,Josserand V,Perriat P,Coll JL,Roux S,Tillement O(2009)Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol)coatings.Small5:2565–257512.Gonçalves H,Jorge PAS,Fernandes JRA,Esteves da SilvaJCGES(2010)Hg(II)sensing based on functionalized carbon dots obtained by direct laser ablation.Sens Actuactors B145:702–70713.Hu SL,Niu KY,Sun J,Yang J,Zhao NQ,Du XW(2009)One-step synthesis of fluorescent carbon nanoparticles by laser irradiation.J Mat Chem19:484kowicz JR(1999)Principles of fluorescence spectroscopy.Kluwer-Plenum,New York,Ch.8。

lewis酸催化剂催化酯交换反应机理

lewis酸催化剂催化酯交换反应机理

lewis酸催化剂催化酯交换反应机理1.酯交换反应是在酯和醇之间发生的一种化学反应。

Ester exchange reaction is a chemical reaction that occurs between an ester and an alcohol.2. Lewis酸催化剂可以促进酯交换反应的进行。

Lewis acid catalyst can facilitate the ester exchange reaction.3.在这个反应中,Lewis酸催化剂会提供一个位点来吸引和激活酸中的羰基。

In this reaction, the Lewis acid catalyst provides a site to attract and activate the carbonyl in the ester.4. Lewis酸催化剂通常是金属离子,如钨离子或锂离子。

The Lewis acid catalyst is typically a metal ion such as tungsten or lithium ion.5.当醇与酯接触到Lewis酸催化剂时,它们会发生配位作用。

When the alcohol comes into contact with the Lewis acid catalyst, they undergo coordination.6.这种配位使醇的羟基能够攻击酯中的羰基。

This coordination allows the hydroxyl group of the alcohol to attack the carbonyl in the ester.7.这导致酰氧根离子的离开,形成一个新的酯。

This results in the leaving of the acyloxy ion, forming a new ester.8. Lewis酸催化剂在反应中起着促进和加速的作用。

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化

抗氧化剂阿魏酸自组装金纳米颗粒的体外抗氧化张晗;李砚超;姜玉刚;杜立波;施维;刘扬【摘要】The antioxidant protection effects of ferulic acid nanoantioxidant on macrophage cells were studied and the free radical-inhibiting activities of ferulic acid nanoantioxidant were determined at the cellular level using electron spin reso-nance-spin trapping and UV-spectrum method.The results illustrates that the nanoantioxidant could eliminate the reactive oxygen species stimulated by t-BuOOH in cells more effectively than that of antioxidants monomers.Meanwhile,the lipid peroxide detection of malondialdehyde by spectrum method also proved that the nanoantioxidant have a high antioxidant activity on t-BuOOH stimulated macrophage cells.Therefore,it could be concluded that the self-assembled nanoantioxi-dant have a potential for the enhancement of antioxidant activity.%对纳米阿魏酸抗氧化剂在巨噬细胞上的抗氧化保护作用进行检测,并采用电子顺磁-自旋捕获技术和光谱法对纳米阿魏酸在细胞水平上清除自由基的能力进行检测。

基于碳氟键断裂的硼化反应

基于碳氟键断裂的硼化反应

基于碳氟键断裂的硼化反应曹松【摘要】有机硼化合物在有机合成、材料科学、医药、农药等领域有着广泛的应用.近几年来,有机硼酸酯,如有机硼酸频呐醇酯(ArBpin或者RBpin),由于其显著的化学稳定性、出色的官能团转换能力、优良的官能团兼容性以及在过渡金属催化下表现出来的强大的偶联能力,再次吸引了有机化学家的关注,成为有机合成的热点研究领域[1].基于有机硼酸酯的偶联反应也为构建碳碳键、碳氮键、碳氧键以及碳卤键提供强有力的工具.经典的有机硼酸频呐醇酯的合成方法是有机锂试剂或格氏试剂与三烷基硼酸酯反应,但该反应存在反应条件苛刻,官能团兼容性差等缺点.过渡金属催化下,卤代烯烃、卤代芳烃与双联频哪醇硼酸酯(B2pin2)反应是合成烯基、芳基硼酸酯的最常用的有效方法之一[2].【期刊名称】《应用技术学报》【年(卷),期】2018(018)004【总页数】4页(P366-369)【关键词】有机硼化合物;偶联反应;碳氟;键断裂;有机硼酸酯;过渡金属催化;有机合成;化学稳定性【作者】曹松【作者单位】[1]华东理工大学药学院上海市化学生物学(芳香杂环)重点实验室,上海200237;【正文语种】中文【中图分类】O627.31有机硼化合物在有机合成、材料科学、医药、农药等领域有着广泛的应用。

近几年来,有机硼酸酯,如有机硼酸频呐醇酯 (ArBpin或者RBpin),由于其显著的化学稳定性、出色的官能团转换能力、优良的官能团兼容性以及在过渡金属催化下表现出来的强大的偶联能力,再次吸引了有机化学家的关注,成为有机合成的热点研究领域[1]。

基于有机硼酸酯的偶联反应也为构建碳碳键、碳氮键、碳氧键以及碳卤键提供强有力的工具。

经典的有机硼酸频呐醇酯的合成方法是有机锂试剂或格氏试剂与三烷基硼酸酯反应,但该反应存在反应条件苛刻,官能团兼容性差等缺点。

过渡金属催化下,卤代烯烃、卤代芳烃与双联频哪醇硼酸酯 (B2pin2) 反应是合成烯基、芳基硼酸酯的最常用的有效方法之一[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis and Postfunctionalization of Well-Defined Star Polymersvia‘‘Double’’Click ChemistryCyrille Boyer,Michael Whittaker,Thomas P.DavisSchool of Chemical Engineering,Centre for Advanced Macromolecular Design(CAMD),The University of New South Wales, 2052NSW,Sydney,AustraliaCorrespondence to:C.Boyer(E-mail:cboyer@.au)Received11August2011;accepted8September2011;published online4October2011DOI:10.1002/pola.25001ABSTRACT:In this article,the synthesis and the functionaliza-tion of well-defined,narrow polydispersity(polydispersity index<1.2)star polymers via reversible addition-fragmenta-tion chain transfer polymerization is detailed.In this arm first approach,the initial synthesis of a poly(pentafluorophenyl ac-rylate)polymer,and subsequent,cross-linking using bis-acryl-amide to prepare star polymers,has been achieved by reversible addition fragmentation chain transfer polymeriza-tion.These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality.This approach has allowed the synthesis of star glycopolymer using a very simple approach.Finally,the core of the stars was modified via thiol-ene click chemistry reaction using fluorescein-o-acrylate and DyLigh633Maleimide.V C2011Wiley Periodicals,Inc.J Polym Sci Part A:Polym Chem49:5245–5256,2011KEYWORDS:activated ester,click chemistry,functionalization of polymers;radical polymerization;reversible addition fragmen-tation chain transfer polymerization(RAFT),star polymer, thiol-ene.INTRODUCTION Star polymers have attracted a lot of research interests due to their unique solution properties in particular their relationship between arm number,arm mo-lecular weight and solvent viscosity.1–4Star polymers can be seen as singular well-defined and structurally complex nano-particles which have found applications in nanomedicine,5–8 catalyst,9and in photonics.10,11In general well-defined star polymers have been prepared via two different routes;arm first approach or core first approach.In the core first approach,the synthesis of a suitable macroinitiator bearing a defined number of initiating groups is used to obtain star polymers.The approach was initially demonstrated using ionic polymerization techniques which are ideally suited to this star syntheses procedure as bimolecular termination (especially coupling)is not present,and therefore star–star coupling by-products are not produced.12–14With the later discovery of living radical techniques,all three main syn-thetic methods,viz,atom transfer radical polymerization (ATRP)/metal mediated,15–21RAFT/MADIX,22–29and NMP,30 have been exploited to make multiarm star polymers using this approach.However all these mechanisms suffer from radical intermediate termination reactions,and therefore,the optimization of the reaction conditions to minimize these becomes an important consideration for generating narrow polydispersities(an issue of particular importance in nano-medicine applications).5,31,32In the unique case of RAFT polymerization,the star–star coupling problem can be addressed in a limited fashion by using a Z-group approach rather than a R-group approach to arm growth.24Although this approach minimizes star–star coupling the chain growth process is still vulnerable to solvent and monomer accessibil-ity problems,as was shown in theoretical and experimental work.33–35To obviate these problems the alternate‘‘arm-first’’method can be implemented;where presynthesized arms are either attached to a suitable multifunctional core or linked itera-tively together to form a star(usually through cross-linking chemistry to give a cross-linked core).However in both these cases at higher arm molecular weights and arm numbers, steric effects generally come into play and less than quantita-tive yields are achieved.36With the emergence of‘‘click chemistry,’’both Huisgen cycloaddition and thiol-ene have been used to connect cores to arms negating any radical ter-mination problems.37–41Multifunctional microgels or nano-gels have also proved to be suitable cores for polymer stars. These cores can be synthesized via cross-linking polymeriza-tion chemistry and any residual vinyl groups used for subse-quent arm attachment.The iterative linking together of poly-mer arms via cross-linking chemistry has been applied to living radical polymerization,and been optimized for ATRP initially by Matyjaszewski17and expanded on by Qiao and coworkers who both reported very narrow polydispersitiesV C2011Wiley Periodicals,Inc.using ATRP.42–44Using RAFT polymerization however the generation of polymer stars with narrow polydispersities has remained elusive(as exemplified by previous work45).How-ever,we have recently shown that by judicious choice of both cross-linker and solvent,narrow polydispersity polymer stars can be routinely achieved in high yield and in a facile manner via the RAFT process.In this work,we prepared star polymers bearing activated ester groups,via an arm first methodology.Arm polymers were first prepared via RAFT polymerization of pentafluoro-phenyl acrylate(PF-A).PF-A is an activated ester monomer developed by Theato and coworkers,46–49(with similar reac-tivity to N-hydroxysuccinimide).PF-A based polymers have been extensively used to react with functional amine com-pounds and to introduced functional side-groups into linear polymer molecules with a very high yield.50–55In our previ-ous work,we exploited PF-A chemistry to synthesize linear glycopolymers,56and to cross-link polymeric nanoparticles.57 In this work,activated ester chemistry has been exploited to attach a variety of functional amino compounds to stars giv-ing rise to a library of functional,well-defined polymer stars in high yield.To the best of our knowledge,it is the first time such functional star polymers have been obtained using this ing this approach,we are able to prepare a variety of glycopolymer star using a very simple methodology.EXPERIMENTALMaterialsThe initiator,2,20-azobisisobutyronitrile(AIBN),was crystal-lized twice from methanol.DyLigh633Maleimide Dye was provided by Thermo Scientific.All the others chemical reac-tants were purchased from Sigma-Aldrich,supplied at the highest purity available.High purity N2(Linde gases)was used for reaction solution purging.Membranes for dialysis (regenerated cellulose tubular membrane,diameter12.1 mm)MWCO¼3500,6000,and12,000–14,000Da)were provided by Fisher Biotec Australia and Membrane Filtration Products.AnalysesGel Permeation Chromatography(GPC)Measurements DMAc GPC analyses of the polymers were performed in N,N-dimethylacetamide[DMAc;0.03%w/v LiBr,0.05%2,6–di-butyl-4-methylphenol(BHT)]at50 C(flow rate¼1mL minÀ1)using a Shimadzu modular system comprised of an SIL-10AD autoinjector,a PL5.0-mm bead-size guard column (50Â7.8mm)followed by four linear PL(Styragel)col-umns(105,104,103,and500Å)and an RID-10A differential refractive-index detector.Calibration was achieved with commercial polystyrene standards ranging from500to106 g/mol.THF GPC analyses were performed on a Shimadzu modular system,comprising an autoinjector and a Polymer Laboratories5.0l m bead size guard column(50Â7.5mm), followed by three linear PL column and a differential refrac-tive index detector using THF as the eluent at40 C with a flow rate of1mL minÀ1.The GPC system was calibrated using linear polystyrene standards.Nuclear Magnetic Resonance(NMR)Structures of the synthesized compounds were analysed by 1H NMR spectroscopy using a Brucker DPX300spectro-meter at300MHz for hydrogen nuclei,282MHz for fluor nuclei and75MHz for carbon nuclei.The monomer(PF-A)and cross-linker conversion was calcu-lated using19F NMR and1H NMR:(i)PF-A conversion calcu-lated by19F NMR analysis and using the following equation: a FP-A¼[$À158.0ppm/($IÀ158.0ppmþ$À152.5ppm)]Â100,with $À158.0ppm and$IÀ158.0ppm corresponding to integral of thesignal atÀ158.0and atÀ152.5ppm,respectively;(ii)cross-linker conversion calculated by1H NMR analysis and using the following equation:a cross-linker¼(5Â$I5.5–6.5ppm)/(3Â$I7.2ppm)Â[RAFT]0/[Cross-linker]0Â100,with[RAFT]0, [Cross-linker]0,$I5.5–6.5ppm and$I7.2ppm corresponding to cross-linker and RAFT end group concentration,integral of the signal at5.5–6.5ppm and at7.2ppm,respectivelyUV-Visible SpectroscopyUV-visible spectra were recorded using a CARY300spectro-photometer(Bruker)equipped with a temperature controller.Dynamic Light Scattering(DLS)DLS measurements were performed using a Malvern Zeta-sizer Nano Series running DTS software and using a4mW He A Ne laser operating at a wavelength of633nm and an avalanche photodiode(APD)detector.The scattered light was detected at an angle of173 .The temperature was sta-bilized to60.1 C of the set temperature.To reduce the influence of larger aggregates the number-average hydro-dynamic particle size is reported.The polydispersity index (PDI)is used to describe the width of the particle size distri-bution,as calculated from the DTS software using a Cumulants analysis of the measured intensity autocorrelation function;it is related to the standard deviation of the hypothetical Gaussian distribution(i.e.,PDI¼s2/Z2D, where s is the standard deviation and Z D is the Z average mean size).Transmission Electron Microscopy(TEM)The sizes and morphologies of the star polymers were ob-served using a transmission electron microscopy JEOL1400 TEM at an accelerating voltage of100kV.The star polymer were dispersed in water(5mg/mL)or in THF(5mg/mL) according the solubility of the material and deposited onto 200mesh,holey film,copper grid(ProSciTech).Osmium vapor(OsO4)staining was applied.SynthesesSynthesis of RAFT AgentsThe synthesis3-(benzylsulfanylthiocarbonylsulfanyl)-propi-onic acid(BSPA,1-Scheme1)has been described earlier.581H NMR(300.17MHz,CDCl3,298K):d/ppm¼2.85(2H,t, J¼6.8Hz,C H2C(O)OH),3.62(2H,t,C H2CH2),4.61(2H,s, C H2-Ph),7.31(5H,m,CH(C6H5).13C NMR(75.48MHz,CDCl3,298K):d/ppm¼224.1,179.2, 136.2,130.7,130.1,129.2,42.9,34.4,32.3.Synthesis of Pentafluorophenyl Acrylate(PF-A)6.2g of pentafluorophenol(33.8mmol),3.5g of triethyl-amine(35.0mmol),and30mL of dichloromethane were introduced into round bottom flask.The solution was placed in ice bath,and3.0mL of acryloyl chloride(36.8mmol)was slowly added.The solution was stirred for4h at room tem-perature.The triethylammonium chloride salt issue of the esterification reaction was removed by filtration,and the solid was washed with10mL of DCM.The solution was extract twice with10mL of acidic water(pH¼2.0),and af-ter twice with10mL of basic solution(Na2CO3),and finally, twice with10mL of distilled water.The organic phase was dried over anhydrous sodium sulfate(Na2SO4),and then, DCM was removed using a rotary evaporator to yield a yel-low liquid.This liquid was distilled under reduced pressure to give a colorless liquid(yield:60%).Note:100mg of6-di-Butyl-4-methylphenol(BHT)was added before the distilla-tion to avoid the polymerization.1H NMR(300.17MHz,CDCl3,298K):d/ppm¼6.70(C H2, 1H,d),6.36(C H2,1H,dd)and6.16(C H,1H,dd).19F NMR(282.41MHz,CDCl3,298K):d/ppm¼À163.6(2F, dd),À158.4(1F,t),À153.5(2F,d).13C NMR(75.48MHz,CDCl3,298K):d/ppm¼125.5,127.9, 133.5,133.7,134.2,140.0,165.2.Synthesis of Poly(pentafluorophenyl acrylate)Arm HomopolymerThree different molecular weights were targeted,and a sum-mary of the reagents used are given in Table 1.Briefly,SCHEME1Synthesis of star polymer using arm first approach. TABLE1Summary of the Poly(PF-A)Polymers Used in This StudyPoly(PF-A)Arm a FP-Aa M n,theo(g/mol)bM n,NMR(g/mol)cM n,GPC(g/mol)d PDI df RAFT(%)ePoly(PF-A)-1755,0004,8005,500 1.1595 Poly(PF-A)-27010,0009,50010,500 1.1695 Poly(PF-A)-37515,00013,50014,500 1.1795a PF-A conversion calculated by19F NMR analysis and using the following equation:a FP-A¼[$IÀ158.0ppm/ ($IÀ158.0ppmþ$IÀ152.5ppm)]Â100,with$IÀ158.0ppm and$IÀ152.5ppm corresponding to integral of the signal at À158.0and atÀ152.5ppm,respectively.b Theoretical molecular weight calculated by the following equation:Mn,theo.¼a FP-AÂ([M]0/[RAFT]0)ÂMW MonomerþMW RAFT,with[M]0,[RAFT]0,MW Monomer and MW RAFT corresponding to monomer and RAFT concentration,molar mass of monomer and RAFT agent,respectively.c Experimental molecular weight calculated by1H NMR using the following equation:Mn,NMR¼[(5ÂI1.5–2.5ppm)/(3ÂI7.2ppm)]ÂMW MonomerþMW RAFT,with I1.5–2.5ppm and I7.2ppm corresponding to inte-gral of signal from1.5to2.5ppm and at7.2ppm,respectively.d molecular weight and PDI determined by GPC.e f RAFT RAFT functionality determined by UV-visible using the following equation:RAFT end-group Func-tionality¼(Abs305/e305)/[Polymer]0),where Abs305,e305,and[Polymer]0correspond to absorbance,extinc-tion coefficient at305nm(e305¼15,700/mol/cm58)and polymer concentration,respectively.pentafluorophenyl acrylate(PF-A),AIBN,3-benzylsulfanylth-iocarbonylsulfanyl-propionic acid and acetonitrile were placed into a50mL round bottom flask,equipped witha magnetic stirrer bar.The reaction mixture,maintained at0 C,was degassed by purging with nitrogen for20mins. The degassed solution was stirred at70 C for6h.At the end of the polymerization,the solution was placed in an ice bath and an aliquot was sampled for GPC and1H NMR analy-ses.The remainder of the reaction mixture was purified;ace-tonitrile was partially removed using a rotary evaporator under vacuum,and the concentrated solution was precipi-tated in methanol.Synthesis of Star Polymers via an Arm First Methodology A general procedure is provided.Poly(FP-A)arm polymers (200mg)were introduced into a vial equipped with a mag-netic stirrer,with AIBN(2mg)and toluene(2mL).Different amounts of cross-linker(N,N0-bis(acryloyl)cystamine(C1), N,N-methylene bisacrylamide(C2)or1,6-hexanediol diacry-late(C3))were added,and the vials were sealed and purged under nitrogen at0 C,for20mins.The reaction vials were placed in an oil bath at70 C for24h.At the end of the polymerizations,an aliquot was taken and analyzed by GPC and by NMR to determine the arm incorporation and the monomer and cross-linker conversions,respectively.The rest of the solution was purified by dialysis using membrane cutoff MW3500Da against acetone,dried under vacuum at40 C for48h,and then,sampled for1H NMR and GPC analyses. Similar experiments were conducted using acetonitrile as solvent.However,a broader PDI was obtained(PDI>1.5) and a low arm incorporation for all three cross-linker was measured,see Table2.The arm incorporation was calculated using the following equation:a Arm(%)¼[Intensity Arm/(Intensity ArmþIntensi-ty Star)]Â100,with Intensity Arm and Intensity Star correspond-ing to intensity of signals of arm and of star measured by GPC analysis using refractive index as a detector.Postmodification of Star Using Amino CompoundsA general procedure is provided.Poly(FP-A)star polymers, with M n,arm¼5000g/mol,(200mg,8.40Â10À4mol)were introduced into a vial equipped with a magnetic stirrer.Tet-rahydrofuran(THF,5mL)and triethylamine(200l L)were added to the flask.Amino compounds,for example,benzyl amine(100mg,9.2Â10À4mol,1.1equivalents(eq.))were dissolved in1mL of THF,and were added dropwise into the star solution.The solution was stirred overnight(14h)at room temperature.The crude solution was analyzed by19F NMR to determine the pentafluorophenyl ester conversion. The star polymers were purified by dialysis against ethanol, and dried before to be analyzed by1H NMR,19F NMR,and GPC analyses.The similar process was carried out for the different amino compounds,expect for gluosamine hydrochloride(300mg, 1.4Â10À4mol,1.6eq.)and galactose amine hydrochloride (300mg,1.4Â10À4mol,1.6eq.).Both compounds were dissolved in water(1mL).Poly(FP-A)star polymers,with M n,arm¼5500g/mol,(200mg,8.40Â10À4mol)were introduced into a vial equipped with a magnetic stirrer;tet-rahydrofuran(THF,3mL),dimethylformamide(DMF,2mL) and triethylamine(TEA,400l L)were added.Carbohydrate solution was added slowly to the star solution to avoid the precipitation of the polymers.The star polymers were puri-fied by dialysis against water with MWCO¼3500Da. Finally,the star polymers were analyzed by1H&19F NMR, FTIR,and dynamic light scattering(DLS)analyses.The FP conversion for the nucleophilic substitution was determined by19F NMR of reactional mixture and using the following equation:FP conversion¼[$À165.2ppm/ ($IÀ165.2ppmþ$À152.5ppm)]Â100.Simultaneous Postmodification of Star UsingAmino Compounds and Thiol-ene ReactionA general procedure is provided.Poly(FP-A)star polymers, with M n,arm¼5500g/mol,(200mg,8.40Â10À4mol of FP-A)were introduced into a vial equipped with a magnetic stirrer.Tetrahydrofuran(THF,5mL)and triethylamine(TEA, 200l L)were added to the flask.Amino compounds,for example,benzyl amine(100mg,9.2Â10À4mol,1.1equiva-lents(eq.))and fluorescein acrylate(20mg,5.0Â10À5mol, 1.25eq.)or DyLight633(provided by Thermo Scientific,0.1 mg,1.0Â10À7mol)were dissolved in1mL of DMF,and were added dropwise into the star solution.The solution was stirred overnight(14h)at room temperature.The crudeTABLE2Summary of the Poly(FP-A)Star Synthesized via RAFT Polymerization Using Different Cross-Linkers in AcetonitrileStars Cross-linker a Ratio b ArmM n(g/mol)ca monomer(%)da cross-linker(%)dArmincorporation(%)eStar M n(g/mol)fStar PDIby GPC fS1C185,50095945648,000 2.05 S2C285,50099986245,000 2.12 S3C385,50098965852,000 2.28a Nature of cross-linker used in this study,that is,C1–C3correspond to N,N0-bis(acryloyl)cistamine,N,N0-methylene bisacrylamide,and1,6-hex-anediol diacrylate(see Scheme1for the structures).b Optimal ratio of[Cross-linker]/[RAFT agent]for the maximum incorpo-ration for the arm polymers in the star structure.c Arm molecular weight determined by GPC.d Monomer and cross-linker conversion determined by NMR(see experimental part).e Weight arm incorporation in the star structure assessed by GPC deconvolution of the arm and star peak using the following equation Arm Incorp.¼I arm/(I armþI Star)Â100.f Molecular weight and PDI determined by GPC.solution was analyzed by19F NMR to determine the penta-fluorophenyl ester conversion.The star polymers were puri-fied by dialysis(MWCO¼12,000–14,000Da)against etha-nol for3days,and dried before to be analyzed by1H NMR, 19F NMR,and GPC analysis.The solution of the star poly-mers modified by fluorescein and DyLigh633maleimide appears yellow/orange and blue,respectively.RESULTS AND DISCUSSIONOptimization of the Star Synthesis via Arm FirstPoly(pentafluorophenyl-acrylate)(PFA)(1)arms were pre-pared via RAFT polymerization in the presence of3-(benzyl-sulfanylthiocarbonylsulfanyl)-propionic acid(BSPA)(2)as the RAFT agent and AIBN as the initiator at70 C in acetoni-trile.Three different polymer arms,with molecular weights from5000to15,000g molÀ1and PDIs< 1.20,were obtained(Table1).Experimental molecular weights assessed by both GPC and by NMR analyses were in good agreement with the theoretical values.After purification,the presence of RAFT end groups was confirmed by1H NMR spectroscopy and by UV-visible spectroscopy.The RAFT end-group func-tionality for these polymers was determined to be greater than95%by UV-visible spectroscopy(k¼305nm of C¼¼S bond),using the following equation:RAFT end-group Func-tionality¼(Abs305/e305)/[Polymer]0),where Abs305,e305,and[Polymer]0correspond to absorbance,extinction coeffi-cient at305nm(e305¼15,700/mol/cm)58and polymer con-centration,respectively.19F NMR spectroscopy confirms the presence of pentafluoro phenyl groups atÀ153,À157,and À162ppm.Subsequently,the linear polymers were chain extended in the presence of a cross-linker molecule,AIBN and a low concentration of monomer,with a[RAFT]:[AIBN]: [Monomer]:[Cross-linker]ratio¼1.0:0.3:10.0:X,with X¼4, 6,8,and16in toluene for6,24,and48h(Scheme1).After chain extension,the star polymers were analysed by GPC and by1H NMR spectroscopy to determine the arm incorpo-ration and the cross-linker monomer conversion.In this study,we used three different cross-linkers,two based on bis-acrylamide and one bis-acrylate.Both bis-acrylamide cross-linkers present a low solubility in toluene,while bis-ac-rylate is perfectly soluble.Effect of the Cross-Linker on the Star FormationTo investigate the effect of the cross-linker concentration and nature on the formation of poly(pentafluorophenyl acry-late)poly(FP-A)star,we worked at a fixed optimal reactant ratio,that has been determined and published previously, namely,a[RAFT]0:[Monomer]0:[Cross-linker]0ratio equal to1.0:10.0:8.0.The reaction was carried out in toluene as it was demonstrated in our earlier publication that this sol-vent allows a high incorporation of poly(oligoethylene glycol) (poly(OEG-A))and poly(tert-butyl acrylate)(poly(tert-BuA)) arm in the star structure.45b Finally,the lower molecular weight poly(PF-A)arm was initially tested in the presence of N,N0-bis(acryloyl)cistamine(C1),N,N0-methylene bisacryla-mide(C2)and1,6-hexanediol diacrylate(C3).Star formation was observed for all three cross-linkers.However,a high pol-ydispersity index of star prepared from C3was noted(>1.5)with only60%incorporation of arms,consistent with previ-ous published data using RAFT polymerization.45a In con-trast,when the core crosslinking was achieved with C1or C2,well-defined star polymers were obtained with a very narrow molecular weight distributions(typically,PDI<1.2) and an excellent incorporation of the arms in the star struc-tures[greater than85%,determined via deconvolution of the GPC traces,see Fig.1(A)].However,C1cross-linker allows a higher incorporation of arm in the star structure than C2cross-linker.These results show that our previous method reported for the synthesis of star using poly(OEG-A), poly(tert-Bu A)or poly(NIPAAm)arms can be extended to the poly(pentafluorophenyl acrylate)arm polymers.To con-firm that the nature of solvent plays a key role,the synthesis of star was carried out in acetonitrile as solvent using simi-lar experimental conditions(cross-linker,concentration,etc). In acetonitrile,all three cross-linkers are perfectly soluble. We obtained relatively broad distribution for all the three cross-linkers(PDI>1.5)with relatively low arm incorpora-tion(around60%),when acetonitrile is used as solvent,for an arm molecular weight equal to5500g/mol(Table2). These promising initial results using toluene as solvent and C1-C2as cross-linker motivated us to probe the experimen-tal conditions to find optimum conditions for the synthesis of star polymers using poly(PF-A)arm.First,different[RAFT]:[Cross-linker]ratios(from1:2to 1:16)were tested using the similar recipe detailed in the previous section.The incorporation of the arm into the star structure increased with the increase of cross-linker to reach an optimal concentration around1:6–1:8[Fig.1(B)].How-ever,for a ratio greater than1:16,the solution became tur-bid and we observe a loss of solubility of star.The optimal FIGURE1GPC traces of the unpurified star polymers obtained with arm M n¼10,500g/mol:(-)obtained using C1cross-linker, (-)with C2cross-linker,and(-)with C3cross-linker.Experimen-tal condition:[monomer]:[cross-linker]:[RAFT]¼10:10:1at70 C for24h.Note:peak centred at33min corresponds to the unreacted arm.[Cross-linker]:[RAFT]ratio was determined around8:1,and this ratio was then used in the following work.Effect of the[Monomer]:[Cross-linker]RatioThe[Monomer]:[Cross-linker]ratio was investigated from0 to 1.5using poly(PF-A)arm with a molecular weight of 10,500g/mol.The star obtained were analysed by GPC[Fig. 2(A)].The increase of the[Monomer]:[Cross-linker]ratio results by an increase of the molecular weight of star poly-mer[Fig.2(B)].It is noteworthy that the absence of mono-mer results in a low incorporation of arms into the star structures.Influence of the Molecular Weight of the Armin the Formation of Star PolymersThe optimal condition,that is,[Monomer]:[Cross-linker]: [RAFT]¼10:8:1,was tested for all the polymeric arms synthe-sized.Figure3shows the GPC traces for the star formation reactions for each of the different molecular weight arms.As the molecular weight of the arm increases there is a corre-sponding decrease in the efficiency of incorporation of thearms into the star structure.For M n,by GPC¼5500g/mol,we observed a near full incorporation of the arms into the starstructure(>90%).In addition,even though the efficiency ofincorporation of the arms decreased,as the molecular weightof the arms increased,the molecular weight of the star formedalso increased;from90,000to135,000g/mol.In conclusion,we have obtained optimal condition for the syn-thesis of poly(FP-A)star via RAFT polymerization with a nearincorporation of the arms into the star structures,see Table3.Postfunctionalization of the Star ArmsThe presence of activated ester(pentafluorophenyl ester) (FP)groups was exploited to attach a variety of amino com-pounds to yield functional stars.In this approach,benzyl amine,isopropylamine,hydroxylpropyl amine,galactose amine and glucose amine were used to postfunctionalize the stars in the presence of triethylamine(TEA).Typical,we used a slight excess of amino compounds(1.2eq./1.0eq.ofFIGURE2Evolution of the molecular weights of the star poly-mers versus[Monomer]:[Cross-linker]ratio using cross-linker 2.(A)GPC traces of the unpurified star polymers:(-)[Mono-mer]:[Cross-linker]ratio¼0,(-)[Monomer]:[cross-linker]ratio ¼0.5,(-)[Monomer]:[Cross-linker]ratio¼1.0,(-)[Monomer]: [cross-linker]ratio¼1.25,(-)[Monomer]:[Cross-linker]ratio¼2.0;(B)Evolution of molecular weight and PDI versus[Mono-mer]:[Cross-linker].FIGURE3Evolution the star molecular weight and PDI versusarm molecular weights using the optimal condition:[Mono-mer]:[Cross-linker(1)]:[RAFT]¼10:10:1at70 C for24h in tolu-ene:A-GPC traces of crude star polymers obtained withdifferent arm molecular weight;B-Evolution of the star molec-ular weight and PDI versus arm molecular weight.T A B L E 3S u m m a r y o f t h e O p t i m a l P o l y (F P -A )S t a r S y n t h e s i z e d v i a R A F T P o l y m e r i z a t i o n U s i n g D i f f e r e n t C r o s s -L i n k e r s i n T o l u e n eS t a r sC r o s s -l i n k e raR a t i obA r m M n(g /m o l )c a m o n o m e r (%)d a c r o s s -l i n k e r(%)dA r m i n c o r p o r a t i o n e(%)S t a r M n(g /m o l )f S t a r P D I b y G P C f S t a r S i z e (n m )g S t a r P D I b y D L SS t a r M n(g /m o l )hN u m b e r o f a r m iS 1C 185,50098969665,0001.15140.09110,00020S 2C 1810,50097969290,0001.18150.08160,00016S 3C 1814,500989688122,0001.16180.10220,00015S 4C 285,50098978862,0001.19110.1295,00017S 5C 2810,50099978070,0001.18130.11140,00014S 6C 2814,500989675118,0001.14180.12190,00013S 10C 385,50095966042,2002.28130.21n dn dS 11C 3810,50095964045,0002.14160.15n dn dS 12C 3814,50095963052,0002.65220.17n dn daN a t u r e o f c r o s s -l i n k e r u s e d i n t h i s s t u d y ,t h a t i s ,C 1-C 3c o r r e s p o n d t o N ,N 0-b i s (a c r y l o y l )c i s t a m i n e ,N ,N 0-m e t h y l e n e b i s a c r y l a m i d e ,a n d 1,6-h e x a n e d i o l d i a c r y l a t e (s e e S c h e m e 1f o r t h e s t r u c t u r e s ).bO p t i m a l r a t i o o f [C r o s s -l i n k e r ]/[R A F T a g e n t ]f o r t h e m a x i m u m i n c o r p o r a t i o n f o r t h e a r m p o l y m e r s i n t h e s t a r s t r u c t u r e c A r m m o l e c u l a r w e i g h t d e t e r m i n e d b y G P C d M o n o m e r a n d c r o s s -l i n k e r c o n v e r s i o n d e t e r m i n e d b y N M R (s e e e x p e r i m e n t a l p a r t )e W e i g h t a r m i n c o r p o r a t i o n i n t h e s t a r s t r u c t u r e a s s e s s e d b y G P C d e c o n v o l u t i o n o f t h e a r m a n d s t a r p e a k u s i n g t h e f o l l o w i n g e q u a t i o n A r m I n c o r p .¼I a r m /(I a r m þI S t a r )Â100f A r m m o l e c u l a r w e i g h t a n d P D I o b t a i n e d b y D M A c G P C g D e t e r m i n e d b y d y n a m i c l i g h t s c a t t e r i n g i n T H F a t 1m g /m L (D L S )h M o l e c u l a r w e i g h t c a l c u l a t e d b y D L S i N u m b e r o f a r m s c a l c u l a t e d u s i n g t h e f o l l o w i n g e q u a t i o n :N a r m ¼S t a r M D L S n /M A r m n,n d :n o t d e t e r m i n e d .。

相关文档
最新文档