2016届高三南京二模数学试卷及答案

合集下载

江苏省南京市高考数学二模试卷(理科)

江苏省南京市高考数学二模试卷(理科)

江苏省南京市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知集合则()A . {0,1}B . {−1,0,1}C . {−2,0,1,2}D . {−1,0,1,2}2. (2分) (2017·北京) 执行如图所示的程序框图,输出的S值为()A . 2B .C .D .3. (2分)在矩形ABCD中, = , = ,设 =(a,0), =(0,b),当⊥时,求得的值为()A . 3B . 2C .D .4. (2分) (2018高一下·宜昌期末) 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .B . 3C .D .5. (2分)已知复数z,“z+=0”是“z为纯虚数”的()A . 充分非必要条件B . 必要非充分条件C . 充要条件D . 既非充分也不必要条件6. (2分)(2020·河南模拟) 若,满足约束条件则的取值范围为()A .B .C .D .7. (2分)(2020·安徽模拟) 设,把函数的图象向左平移m个单位长度后,得到函数的图象(是的导函数),则m的值可以为()A .B .C .D .8. (2分)(2018·邢台模拟) 下列函数满足的是()A .B .C .D .二、填空题 (共6题;共16分)9. (2分)已知z∈C,且|z+3﹣4i|=1,则|z|的最大值为________,最小值为________.10. (1分) (2019高三上·天津期末) 在的展开式中,的系数为________用数字作答.11. (1分) (2016高二上·菏泽期中) 等差数列{an}中,前n项和为Sn , a1<0,S2015<0,S2016>0.则n=________时,Sn取得最小值.12. (1分)已知曲线C1、C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣)=﹣1,则曲线C1上的点与曲线C2上的点的最短距离为________.13. (1分)抛物线y2=2x的准线方程是________14. (10分) (2016高一下·惠来期末) 已知函数f(x)= .(1)设函数g(x)=f(x)﹣1,求函数g(x)的零点;(2)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求的取值范围.三、解答题 (共6题;共65分)15. (10分)(2020·上海模拟) 某开发商欲将一块如图所示的四边形空地ABCD沿着边界用固定高度的板材围成一个封闭的施工区域,经测量,边界AB与AD的长都是2千米,∠BAD=60°,∠BCD=120°.(1)如果∠ADC=105°,求BC的长(结果精确到0.001千米);(2)围成该施工区域至多需要多少千米长度的板材?(不计损耗,结果精确到0.001千米)16. (5分)今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁.私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:完成被调查人员的频率分布直方图;17. (10分)(2017·重庆模拟) 如图,几何体EF﹣ABCD中,CDEF为边长为2的正方形,ABCD为直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.(1)求证:AC⊥FB(2)求二面角E﹣FB﹣C的大小.18. (15分)已知a为实数,f(x)=(x2﹣4)(x﹣a),(1)求导数f'(x);(2)若x=﹣1是函数f(x)的极值点,求f(x)在[﹣2,2]上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2]和[2,+∞)上都是递增的,求a的取值范围.19. (15分)(2018·门头沟模拟) 已知椭圆,三点中恰有二点在椭圆上,且离心率为。

南京2016届高三年级数学第二次模拟考试

南京2016届高三年级数学第二次模拟考试

南京2016届高三年级数学第二次模拟考试一、填空题〔本大题共14小题,每题5分,计70分.〕1.设集合A ={x |-2<x <0},B ={x |-1<x <1},则A ∪B =▲________.2.假设复数z =(1+m i)(2-i)(i 是虚数单位)是纯虚数,则实数m 的值为 ▲ . 3.将一骰子连续抛掷两次,至少有一次向上的点数为1的概率是 ▲ .4.如下图,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.假设一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为▲________.5.执行如下图的流程图,则输出的k 的值为 ▲ .6.设公差不为0的等差数列{a n }的前n 项和为S n .假设S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10等于 ▲ .7.如图,正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=6.假设E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是▲________.〔第5题图〕〔第4题图〕〔第7题图〕ABCA 1B 1FC 1E8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且它的图象过点(-π12,-2),则φ的值为▲________.9.已知函数f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是▲________.10.在平面直角坐标系xOy 中,抛物线y 2=2px (p >0)的焦点为F ,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别与抛物线交于A ,B 两点(A ,B 异于坐标原点O ).假设直线AB 恰好过点F ,则双曲线的渐近线方程是▲________.11.在△ABC 中,A =120°,AB =4.假设点D 在边BC 上,且BD →=2DC →,AD =273,则AC 的长为▲________. 12.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.假设圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为▲________. 13.已知函数f (x )=ax 2+x -b (a ,b 均为正数),不等式f (x )>0的解集记为P ,集合Q ={x |-2-t <x <-2+t }.假设对于任意正数t ,P ∩Q ≠∅,则1a -1b 的最大值是▲________.14.假设存在两个正实数x 、y ,使得等式x +a (y -2e x )(ln y -ln x )=0成立,其中e 为自然对数的底数,则实数a 的取值范围为▲________.二、解答题〔本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内〕 15.(本小题总分值14分)已知α为锐角,cos (α+π4)=55.〔1〕求tan(α+π4)的值;〔2〕求sin(2α+π3)的值.A NBPMC16.(本小题总分值14分)如图,在三棱锥P—ABC中,平面P AB⊥平面ABC,P A⊥PB,M,N分别为AB,P A的中点.〔1〕求证:PB∥平面MNC;〔2〕假设AC=BC,求证:P A⊥平面MNC.17.(本小题总分值14分)如图,某城市有一块半径为1〔单位:百米〕的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处〔图中阴影部分〕只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C相切的小道AB.问:A,B两点应选在何处可使得小道AB最短?〔第16题图〕18. (本小题总分值16分)在平面直角坐标系xOy 中,点C 在椭圆M :x 2a 2+y 2b 2=1(a >b >0)上.假设点A (-a ,0),B (0,a3),且AB →=32BC →.〔1〕求椭圆M 的离心率;〔2〕设椭圆M 的焦距为4,P ,Q 是椭圆M 上不同的两点,线段PQ 的垂直平分线为直线l ,且直线l 不与y 轴重合.①假设点P (-3,0),直线l 过点(0,-67),求直线l 的方程;②假设直线l 过点(0,-1) ,且与x 轴的交点为D ,求D 点横坐标的取值范围.19.(本小题总分值16分)对于函数f (x ),在给定区间[a ,b ]内任取n +1(n ≥2,n ∈N *)个数x 0,x 1,x 2,…,x n ,使得a =x 0<x 1<x 2<…<x n -1<x n =b ,记S =n -1∑i =0|f (x i +1)-f (x i )|.假设存在与n 及x i (i ≤n ,i ∈N )均无关的正数A ,使得S ≤A 恒成立,则称f (x )在区间[a ,b ]上具有性质V . 〔1〕假设函数f (x )=-2x +1,给定区间为[-1,1],求S 的值;〔2〕假设函数f (x )=xex ,给定区间为[0,2],求S 的最大值;〔3〕对于给定的实数k ,求证:函数f (x )=k ln x -12x 2 在区间[1,e ]上具有性质V .20.(本小题总分值16分)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0). 〔1〕求p 的值;〔2〕求数列{a n }的通项公式;〔3〕设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n . 假设b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .南京2016届高三第二次模拟数学附加题21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每题10分,共计20分.A .选修4—1:几何证明选讲如图,在Rt △ABC 中,AB =BC .以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连接AE 交⊙O 于点F .求证:BE ⋅CE =EF ⋅EA .B .选修4—2:矩阵与变换已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2 所对应的变换T 把点(2,3)变成点(3,4).〔1〕求a ,b 的值.〔2〕假设矩阵A 的逆矩阵为B ,求B 2.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin(π3-θ)=32,椭圆C 的参数方程为⎩⎨⎧x =2cos t ,y =3sin t(t 为参数) .〔1〕求直线l 的直角坐标方程与椭圆C 的普通方程;〔2〕假设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.D .选修4—5:不等式选讲解不等式:|x -2|+x |x +2|>2A【必做题】第22题、第23题,每题10分,共计20分. 22.〔本小题总分值10分〕甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.〔1〕求比赛结束后甲的进球数比乙的进球数多1个的概率;〔2〕设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23.〔本小题总分值10分〕设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.〔1〕设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;〔2〕设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求|S mC m n -1 |的值.ANBPM南京2016高三数学第二次模拟考试参考答案一、填空题〔本大题共14小题,每题5分,计70分.〕1. {x |-2<x <1} 2.-2 3.1136 4. 9 5. 5 6. 19 7. 8 38.-π12 9. [-4,2] 10.y =±2x 11.3 12. [2-22,2+22]13. 12 14.a <0或a ≥1e二、解答题〔本大题共6小题,计90分.〕 15.(本小题总分值14分)解:〔1〕因为α∈(0,π2〕,所以α+π4∈(π4,3π4),所以sin (α+π4)=1-cos 2(α+π4)=255,…………………………3分所以tan(α+π4)=sin(α+π4)cos(α+π4)=2.……………………………6分〔2〕因为sin(2α+π2)=sin[2(α+π4)]=2 sin (α+π4) cos (α+π4)=45,………………9分cos(2α+π2)=cos[2(α+π4)]=2 cos 2(α+π4)-1=-35,……………………12分所以sin(2α+π3)=sin[(2α+π2)-π6]=sin(2α+π2)cos π6-cos(2α+π2)sin π6=43+310.………14分16.(本小题总分值14分)证:〔1〕因为M ,N 分别为AB ,P A 的中点, 所以MN ∥PB . ……………………2分 因为MN ⊂平面MNC ,PB ⊄平面MNC ,所以PB ∥平面MNC . …………………4分〔2〕因为P A ⊥PB ,MN ∥PB ,所以P A ⊥MN . ……6分 因为AC =BC ,AM =BM ,所以CM ⊥AB . ……8分因为平面P AB ⊥平面ABC ,CM ⊂平面ABC ,平面P AB ∩平面ABC =AB , 所以CM ⊥平面P AB . ……………………12分 因为P A ⊂平面P AB ,所以CM ⊥P A .因为P A ⊥MN ,MN ⊂平面MNC ,CM ⊂平面MNC ,MN ∩CM =M , 所以P A ⊥平面MNC. ……………………14分 17.(本小题总分值14分)解法一:如图,分别由两条道路所在直线建立直角坐标系xOy . 设A (a ,0),B (0,b )(0<a <1,0<b <1), 则直线AB 方程为x a +yb =1,即bx +ay -ab =0.因为AB 与圆C 相切,所以|b +a -ab |b 2+a 2=1.………4分化简得 ab -2(a +b )+2=0,即ab =2(a +b )-2.……6分 因此AB = a 2+b 2= (a +b )2-2ab = (a +b )2-4(a +b )+4= (a +b -2)2.…………8分因为0<a <1,0<b <1,所以0<a +b <2, 于是AB =2-(a +b ). 又ab =2(a +b )-2≤(a +b 2)2,解得0<a +b ≤4-22,或a +b ≥4+22.因为0<a +b <2,所以0<a +b ≤4-22,…………………12分所以AB =2-(a +b ) ≥2-(4-22)=22-2,当且仅当a =b =2-2时取等号,所以AB 最小值为22-2,此时a =b =2-2.答:当A ,B 两点离道路的交点都为2-2(百米)时,小道AB 最短.………14分解法二:如图,连接CE ,CA ,CD ,CB ,CF . 设∠DCE =θ,θ∈(0,π2),则∠DCF =π2-θ.在直角三角形CDA 中,AD =tan θ2.………4分在直角三角形CDB 中,BD =tan(π4-θ2),……6分所以AB =AD +BD =tan θ2+tan(π4-θ2)=tan θ2+1-tanθ2 1+tanθ2.……………8分令t =tan θ2,0<t <1,则AB =f (t )=t +1-t 1+t ==t +1+21+t-2≥22-2,当且仅当t =2-1时取等号.………………12分所以AB 最小值为22-2,此时A ,B 两点离两条道路交点的距离是1-(2-1)=2-2.答:当A ,B 两点离道路的的交点都为2-2(百米)时,小道AB 最短.……14分18.(本小题总分值16分)解:〔1〕设C (x 0,y 0),则AB →=(a ,a 3),BC →=(x 0,y 0-a 3).因为AB →=32BC →,所以(a ,a 3)=32(x 0,y 0-a 3)=(32x 0,32y 0-a 2),得⎩⎨⎧x 0=23a ,y 0=59a ,……………2分代入椭圆方程得a 2=95b 2.因为a 2-b 2=c 2,所以e =c a =23.……………4分〔2〕①因为c =2,所以a 2=9,b 2=5,所以椭圆的方程为x 29+y 25=1, 设Q (x 0,y 0),则x 029+y 025=1.……① ………………6分因为点P (-3,0),所以PQ 中点为(x 0-32,y 02),因为直线l 过点(0,-67),直线l 不与y 轴重合,所以x 0≠3,所以y 02+67x 0-32·y 0x 0+3=-1, ……………………8分化简得x 02=9-y 02-127y 0.……②将②代入①化简得y 02-157y 0=0,解得y 0=0〔舍〕,或y 0=157.将y 0=157代入①得x 0=±67,所以Q 为(±67,157),所以PQ 斜率为1或59,直线l 的斜率为-1或-95,所以直线l 的方程为y =-x +67或y =-95x +67.…………………10分②设PQ :y =kx +m ,则直线l 的方程为:y =-1kx -1,所以x D =-k .将直线PQ 的方程代入椭圆的方程,消去y 得(5+9k 2)x 2+18kmx +9m 2-45=0.………①, 设P (x 1,y 1),Q (x 2,y 2),中点为N ,x N =x 1+x 22=-9km 5+9k 2,代入直线PQ 的方程得y N =5m 5+9k 2,……………12分 代入直线l 的方程得9k 2=4m -5. ……② 又因为△=(18km )2-4(5+9k 2) (9m 2-45)>0,化得m 2-9k 2-5<0. …………………………14分 将②代入上式得m 2-4m <0,解得0<m <4,所以-113<k <113,且k ≠0,所以x D =-k ∈(-113,0)∪(0,113).综上所述,点D 横坐标的取值范围为(-113,0)∪(0,113).…………16分19.(本小题总分值16分)〔1〕解:因为函数f (x )=-2x +1在区间[-1,1]为减函数, 所以f (x i +1)<f (x i ),所以|f (x i +1)-f (x i )|= f (x i )-f (x i +1).S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )=f (-1)-f (1)=4.…………2分 (2) 解:由f ′(x )=1-xe x=0,得x =1.当x <1时,f ′(x )>0,所以f (x )在(-∞,1)为增函数; 当x >1时,f ′(x )<0,所以f (x )在(1,+∞)为减函数; 所以f (x )在x =1时取极大值1e . ………………4分设x m ≤1<x m +1,m ∈N ,m ≤n -1,则S =n -1∑i =0|f (x i +1)-f (x i )|=|f (x 1)-f (0)|+…+|f (x m )-f (x m -1)|+|f (x m +1)-f (x m )|+|f (x m +2)-f (x m +1)|+…+|f (2)-f (x n -1)| =[f (x 1)-f (0)]+…+[f (x m )-f (x m -1)]+|f (x m +1)-f (x m )|+[f (x m +1)-f (x m +2)]+…+[f (x n -1)-f (2)] =[f (x m )-f (0)]+|f (x m +1)-f (x m )|+[f (x m +1)-f (2)].………………6分 因为|f (x m +1)-f (x m )|≤[f (1)-f (x m )]+[f (1)-f (x m +1)],当x m =1时取等号, 所以S ≤f (x m )-f (0)+f (1)-f (x m )+f (1)-f (x m +1)+f (x m +1)-f (2) =2 f (1)-f (0)-f (2)=2(e -1)e 2.所以S 的最大值为2(e -1)e 2.…………………8分〔3〕证明:f ′(x )=kx -x =k -x 2x,x ∈[1,e].①当k ≥e 2时,k -x 2≥0恒成立,即f ′(x )≥0恒成立,所以f (x )在[1,e]上为增函数,所以S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 1)-f (x 0)]+[ f (x 2)-f (x 1)]+…+[ f (x n )-f (x n -1)]=f (x n )-f (x 0)=f (e)-f (1)=k +12-12e 2.因此,存在正数A =k +12-12e 2,都有S ≤A ,因此f (x )在[1,e]上具有性质V .………10分②当k ≤1时,k -x 2≤0恒成立,即f ′(x )≤0恒成立,所以f (x )在[1,e]上为减函数,所以S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )= f (1)-f (e)= 12e 2-k -12.因此,存在正数A =12e 2-k -12,都有S ≤A ,因此f (x )在[1,e]上具有性质V .………12分③当1<k <e 2时,由f ′(x )=0,得x =k ;当f ′(x )>0,得1≤x <k ;当f ′(x )<0,得k <x ≤e ,因此f (x )在[1,k )上为增函数,在(k ,e]上为减函数. 设x m ≤k <x m +1,m ∈N ,m ≤n -1则S =n -1∑i =1|f (x i +1)-f (x i )|=|f (x 1)-f (x 0)|+…+|f (x m )-f (x m -1)|+ |f (x m +1)-f (x m )|+ |f (x m +2)-f (x m +1)|+…+|f (x n )-f (x n -1)| =f (x 1)-f (x 0)+…+f (x m )-f (x m -1) + |f (x m +1)-f (x m )|+ f (x m +1)-f (x m +2) +…+f (x n -1)-f (x n ) =f (x m )-f (x 0) + |f (x m +1)-f (x m )| + f (x m +1)-f (x n )≤f (x m )-f (x 0) + f (x m +1)-f (x n )+ f (k )-f (x m +1)+ f (k )-f (x m )=2 f (k )-f (x 0)-f (x n )=k ln k -k -[-12+k -12e 2]=k ln k -2k +12+12e 2.因此,存在正数A =k ln k -2k +12+12e 2,都有S ≤A ,因此f (x )在[1,e]上具有性质V .综上,对于给定的实数k ,函数f (x )=k ln x -12x 2 在区间[1,e]上具有性质V .………16分20.(本小题总分值16分)解:〔1〕由a 1=-S 1+p ,得a 1=p2.……………………2分由a 2=S 2+p 2,得a 1=-p 2,所以p2=-p 2.又p ≠0,所以p =-12. ………………3分〔2〕由a n=(-1)n S n+(-12)n,得⎩⎨⎧a n=(-1)n S n+(-12)n, ……①a n +1=-(-1)nS n +1+(-12)n +1, ……②①+②得a n +a n +1=(-1)n (-a n +1)+12×(-12)n .……………5分当n 为奇数时,a n +a n +1=a n +1-12×(12)n ,所以a n =-(12)n +1. ………………7分当n 为偶数时,a n +a n +1=-a n +1+12×(12)n ,所以a n =-2a n +1+12×(12)n =2×(12)n +2+12×(12)n =(12)n ,所以a n =⎩⎨⎧-12n +1,n 为奇数, n ∈N *, 12n , n 为偶数,n ∈N *.……………9分〔3〕A n ={-14n ,14n },由于b 1≠c 1,则b 1 与c 1一正一负,不妨设b 1>0,则b 1=14,c 1=-14.则P n =b 1+2b 2+3b 3+…+nb n ≥14-(242+343+…+n4n ).……………12分设S =242+343+…+n 4n ,则14S =243+…+n -14n +n 4n +1,两式相减得34S =242+143+…+14n -n 4n +1=116+116×1-(14)n -11-14-n 4n +1=748-112×14n -1-n 4n +1<748.所以S <748×43=736,所以P n ≥14-(242+143+…+14n )>14-736=118>0.…………14分因为Q n = c 1+2 c 2+3 c 3+…+n c n ≤-14+S <-14+736 =-118<0,所以P n ≠Q n .…………16分南京2016高三数学附加题第二次模拟考试参考答案21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每题10分,共计20分. A .选修4—1:几何证明选讲证明:连接BD .因为AB 为直径,所以BD ⊥AC . 因为AB =BC ,所以AD =DC .……………………4分 因为DE ⊥BC ,AB ⊥BC ,所以DE ∥AB ,…………6分 所以CE =EB .………………………………………8分 因为AB 是直径,AB ⊥BC ,所以BC 是圆O 的切线,所以BE 2=EF ⋅EA ,即BE ⋅CE =EF ⋅EA .…………………………10分 B .选修4—2:矩阵与变换解:〔1〕由题意,得⎣⎢⎡⎦⎥⎤ 3 a b -2 ⎣⎡⎦⎤23=⎣⎡⎦⎤34,得6+3a =3,2b -6=4…………4分所以a =-1,b =5.………………………………………6分〔2〕由〔1〕,得A =⎣⎢⎡⎦⎥⎤ 3 -1 5 -2.由矩阵的逆矩阵公式得B =⎣⎢⎡⎦⎥⎤2 -1 5 -3.……………8分所以B 2=⎣⎢⎡⎦⎥⎤-1 1 -5 4. ……………………10分C .选修4—4:坐标系与参数方程解:〔1〕由ρsin(π3-θ)=32 ,得ρ(32cos θ-12sin θ)=32,即32x -12y=32,化简得y=3x -3,所以直线l 的直角坐标方程是y=3x -3.………………2分由(x 2)2+(y 3)2=cos 2t +sin 2t =1,得椭圆C 的普通方程为x 24+y 23=1.…………………4分 〔2〕联立直线方程与椭圆方程,得⎩⎪⎨⎪⎧y=3x -3, x 24+y 23=1,消去y ,得x 24+(x -1)2=1,化简得5x 2-8x =0,解得x 1=0,x 2=85,……………8分所以A (0,-3),B (85,353),则AB =(0-85)2+(-3-353)2=165. ……………10分D .选修4—5:不等式选讲A解:当x ≤-2时,不等式化为(2-x )+x (-x -2)>2, 解得-3<x ≤-2; …………………3分 当-2<x <2时,不等式化为(2-x )+x (x +2)>2, 解得-2<x <-1或0<x <2;……………………6分 当x ≥2时,不等式化为(x -2)+x (x +2)>2, 解得x ≥2; ……………………9分所以原不等式的解集为{x |-3<x <-1或x >0}. ……………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.〔本小题总分值10分〕解:〔1〕比赛结束后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率P =C 1323(13)2(12)3+C 23(23)2(13)C 13(12)3+C 33(23)3C 23(12)3=1136.…………………………4分〔2〕ξ的取值为0,1,2,3,所以 ξ的概率分布列为………8分所以数学期望E (ξ)=0×724+1×1124+2×524+3×124=1.……………10分23.〔本小题总分值10分〕解:〔1〕因为a k =(-1)k C kn ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12( C 011+C 111+…+C 1011+C 1111)=210=1024.………………3分〔2〕b k =k +1n -k a k +1=(-1)k +1 k +1n -kC k +1n =(-1)k +1 C kn ,……………5分当1≤k ≤n -1时,b k =(-1)k +1 C k n = (-1)k +1 (C k n -1+C k -1n -1)=(-1)k +1 C k -1n -1+(-1)k +1 C k n -1=(-1)k -1 C k -1n -1-(-1)kC k n -1. ………………7分当m =0时,|S m C m n -1 |=|b 0C 0n -1|=1.………………8分当1≤m ≤n -1时,S m =-1+k =1∑m[(-1)k -1 C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)mC m n -1,所以|S mC m n -1|=1.综上,|S mC m n -1|=1…………10分。

南京市数学高考二模试卷C卷

南京市数学高考二模试卷C卷

南京市数学高考二模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016高三上·黑龙江期中) 复数的虚部()A . iB . ﹣iC . 1D . ﹣12. (2分) (2016高二上·平阳期中) 已知b是实数,则“b=2”是“3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相切”的()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件3. (2分) (2018高一下·长阳期末) 设x , y满足,则z=2x-y的最小值为()A . ﹣5B . ﹣4C . 4D . 04. (2分)设(5x-1)n的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中x3的系数为()A . -150B . 150C . -500D . 5005. (2分)等差数列中,则()A . 2B . 3C . 6D . ±26. (2分) (2016高二上·友谊期中) 双曲线E的中心在原点,离心率等于2,若它的一个顶点恰好是抛物线y2=8x的焦点,则双曲线E的虚轴长等于()A . 4B .C . 2D . 47. (2分) (2016高一上·杭州期末) 已知函数y=f(x)的图象是由y=sin2x向右平移得到,则下列结论正确的是()A . f(0)<f(2)<f(4)B . f(2)<f(0)<f(4)C . f(0)<f(4)<f(2)D . f(4)<f(2)<f(0)8. (2分) (2016高二下·卢龙期末) 直线y=a分别与曲线y=2(x+1),y=x+lnx交于A、B,则|AB|的最小值为()A . 3B . 2C .D .9. (2分)下列命题:① ;② ;③ ,其中真命题有()A . 0个B . 1个C . 2个D . 3个10. (2分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD 上任意两点,且EF的长为定值,则下面四个值中不为定值的是A . 点P到平面QEF的距离B . 直线PQ与平面PEF所成的角C . 三棱锥P-QEF的体积D . 二面角P-EF-Q的大小二、填空题 (共7题;共8分)11. (2分) (2019高一上·嘉善月考) 在如图所示的韦恩图中,是非空集合,定义表示阴影部分集合,若集合 , ,则 =________; =________;12. (1分)若曲线在点处的切线平行于轴,则a=________.13. (1分)(2018·济南模拟) 一简单组合体的三视图如图,则该组合体的体积为________.14. (1分)已知直线3ρcosθ+4ρsinθ+α=0与曲线(θ为参数),有且仅有一个公共点,则正实数a的值为________15. (1分) (2015高三上·上海期中) 据统计,黄种人人群中各种血型的人所占的比例见表:血型A B AB O该血型的人所占的比例2829835已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,AB型血的人可以接受任何一种血型的血,其他不同血型的人不能互相输血,某人是B型血,若他因病痛要输血,问在黄种人群中人找一个人,其血可以输给此人的概率为________.16. (1分)(2016·绍兴模拟) 各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若• =1,则| |=________.17. (1分)(2019高三上·上海月考) 设为的反函数,则的最大值为________.三、解答题 (共5题;共35分)18. (5分)在锐角△ABC中,内角A、B、C的对边分别是a、b、c,且cos(B+C)=﹣sin2A.(1)求A;(2)设a=7,b=5,求△ABC的面积.19. (5分)(2018·南充模拟) 如图,四边形中,,,,,,分别在,上,,现将四边形沿折起,使平面平面 .(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;(Ⅱ)当三棱锥的体积最大时,求二面角的余弦值.20. (10分) (2017高二上·大连期末) 设a为实数,函数f(x)=ex﹣x+a,x∈R.(1)求f(x)在区间[﹣1,2]上的最值;(2)求证:当a>﹣1,且x>0时,.21. (10分) (2018高二上·沈阳期末) 已知椭圆的离心率为,若椭圆与圆相交于两点,且圆在椭圆内的弧长为.(1)求的值;(2)过椭圆的中心作两条直线交椭圆于和四点,设直线的斜率为,的斜率为,且.①求直线的斜率;②求四边形面积的取值范围.22. (5分)(2017·黑龙江模拟) 设函数.(Ⅰ)证明:f(x)≥5;(Ⅱ)若f(1)<6成立,求实数a的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、答案:略三、解答题 (共5题;共35分) 18-1、19-1、20-1、20-2、21-1、21-2、22-1、第11 页共11 页。

江苏省南京市联合体中考数学二模试卷(含解析)

江苏省南京市联合体中考数学二模试卷(含解析)

2016年江苏省南京市联合体中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|﹣2|的值是()A.﹣2 B.2 C.D.﹣2.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣23.计算a3•(﹣a)2的结果是()A.a5B.﹣a5C.a6D.﹣a64.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()A. +1 B.C.﹣1 D.1﹣5.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四6.在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C. D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.计算:()﹣2+(+1)0= .8.因式分解:a3﹣4a= .9.计算: = .10.函数y=的自变量x的取值范围是.11.某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.则这段时间内这两种品牌冰箱月销售量较稳定的是(填“A”或“B”).12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.13.已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn= .14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程.15.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为.16.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为.(只需写出序号)三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:1﹣≥,并写出它的所有正整数解.18.化简:÷(x+2﹣)19.(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.20.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人,并请补全条形统计图;(2)扇形统计图中18﹣23岁部分的圆心角的度数是度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.23.如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B的仰角为20.3°,当小强前进5m 达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?25.如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C 的坐标.26.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.27.在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.2016年江苏省南京市联合体中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.|﹣2|的值是()A.﹣2 B.2 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣2【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.008 9=8.9×10﹣3.故选:C.3.计算a3•(﹣a)2的结果是()A.a5B.﹣a5C.a6D.﹣a6【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】原式利用幂的乘方与积的乘方运算法则,以及单项式乘单项式法则计算即可得到结果.【解答】解:原式=a3•a2=a5,故选A.4.如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是()A. +1 B.C.﹣1 D.1﹣【考点】实数与数轴;勾股定理.【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示﹣1,可得E点表示的数.【解答】解:∵AD长为2,AB长为1,∴AC==,∵A点表示﹣1,∴E点表示的数为:﹣1,故选:C.5.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【考点】一次函数图象与系数的关系.【分析】分两种情况讨论即可.【解答】解:一次函数y=ax﹣x﹣a+1=(a﹣1)x﹣(a﹣1),当a﹣1>0时,﹣(a﹣1)<0,图象经过一、三、四象限;当a﹣1<0时,﹣(a﹣1)>0,图象经过一、二、四象限;所以其函数图象一定过一、四象限,故选D.6.在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C. D.【考点】切线的性质.【分析】以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,根据勾股定理即可求出答案.【解答】解:以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,此时BC===.故选D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.计算:()﹣2+(+1)0= 10 .【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=9+1=10,故答案为:108.因式分解:a3﹣4a= a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).9.计算: = ﹣1 .【考点】二次根式的乘除法.【分析】根据二次根式的乘除法,即可解答.【解答】解:,故答案为:﹣1.10.函数y=的自变量x的取值范围是x≥1 .【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】当函数表达式是二次根式时,被开方数为非负数.即x﹣1≥0.【解答】解:依题意,得x﹣1≥0,解得x≥1.11.某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.则这段时间内这两种品牌冰箱月销售量较稳定的是 A (填“A”或“B”).【考点】方差.【分析】先利用方差公式分别计算出A、B品牌的方差,然后根据方差的意义判断这两种品牌冰箱月销售量的稳定性.【解答】解:A品牌的销售量的平均数为=15,B品牌的销售量的平均数为=15,A品牌的方差= [(13﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(17﹣15)2]=2,B品牌的方差= [(10﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(20﹣15)2]=10.4,因为10.4>2,所以A品牌的销售量较为稳定A,故答案为A.12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为35 °.【考点】平行线的性质;余角和补角.【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2+90°=∠3.【解答】解:如图:∵∠3=180°﹣∠1=180°﹣55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°﹣90°=35°.故答案为:35.13.已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn= ﹣3 .【考点】根与系数的关系.【分析】根据根与系数的关系得到m+n=2,mn=,然后利用整体代入的方法计算即可.【解答】解:根据题意得m+n=﹣=2,∴a=﹣1,∴mn=﹣3,故答案为﹣3.14.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程=.【考点】由实际问题抽象出一元一次方程.【分析】设计划做x个“中国结”,根据小组人数不变列出方程.【解答】解:设计划做x个“中国结”,根据题意得=.故答案为=.15.如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为12.【考点】正多边形和圆.【分析】根据题意得到图中阴影部分的面积=S△ABC+3S△ADE,代入数据即可得到结论.【解答】解:如图,∵“六芒星”图标是由圆的六等分点连接而成,∴△ABC与△ADE是等边三角形,∵圆的半径为2,∴AH=3,BC=AB=6,∴AE=2,AF=,∴图中阴影部分的面积=S△ABC+3S△ADE=6×3+2×=12,故答案为:12.16.已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为①③④.(只需写出序号)【考点】二次函数的性质.【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对①进行判断;利用x=0和x=3时函数值相等可得到抛物线的对称轴方程,则可对②进行判断;利用抛物线的对称性可得x=1和x=2的函数值相等,则可对③进行判断;利用抛物线的对称性可得x=﹣1和x=4的函数值相等,则可对④进行判断.【解答】解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,所以①正确;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,所以②错误;点(1,3)和点(2,3)为对称点,所以③正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,所以④正确.故答案为①③④.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.解不等式:1﹣≥,并写出它的所有正整数解.【考点】一元一次不等式的整数解;解一元一次不等式.【分析】去分母,去括号,移项,合并同类项,系数化为1即可求得不等式的解集,然后确定正整数解即可.【解答】解:去分母,得:6﹣2(2x+1)≥3(1﹣x),去括号,得:6﹣4x+2≥3﹣3x,移项,合并同类项得:﹣x≥﹣5,系数化为1得:x≤5.它的所有正整数解1,2,3,4,5.18.化简:÷(x+2﹣)【考点】分式的混合运算.【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:÷(x+2﹣)=÷()=•=.故答案为.19.(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.【考点】解一元二次方程﹣因式分解法;解二元一次方程组.【分析】(1)把①代入②得:3x﹣2(x+1)=﹣1,求出解x=1,再把x=1代入①得:y=2即可,(2)由①得:x=1﹣y③,再把③代入②得:1﹣y+y2=3,解得:y1=﹣1,y2=2,把y1=﹣1,y2=2分别代入③得:x1=2,x2=﹣1即可.【解答】解:(1)把①代入②得:3x﹣2(x+1)=﹣1,解得:x=1.把x=1代入y①得:y=2.∴方程组的解为,(2)由①得:x=1﹣y③把③代入②得:1﹣y+y2=3,解得:y1=﹣1,y2=2,把y1=﹣1,y2=2分别代入③得:得:x1=2,x2=﹣1,∴方程组的解为或.20.网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了1500 人,并请补全条形统计图;(2)扇形统计图中18﹣23岁部分的圆心角的度数是108 度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据30﹣35岁的人数除以所占的百分比,可得调查的人数;根据有理数的减法,可得12﹣17岁的人数;(2)根据18﹣23岁的人数除以抽查的人数乘以360°,可得答案;(3)根据总人数乘以12﹣23岁的人数所占的百分比,可得答案.【解答】解:(1)这次抽样调查中共调查了330÷22%=1500(人),12﹣17岁的人数为:1500﹣450﹣420﹣330=300(人),补全条形图如图:(2)扇形统计图中18﹣23岁部分的圆心角的度数是×360°=108°;(3)2000×=1000(万人),答:估计其中12﹣23岁的人数约1000万人.故答案为:(1)1500;(2)108.21.初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.【考点】列表法与树状图法.【分析】(1)直接根据概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)另外1人恰好选中副班长的概率是;(2)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙的结果数为2,所以恰好选中班长和副班长的概率==.22.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.【考点】全等三角形的判定;菱形的判定.【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA判定△ABE≌△AD′F;(2)四边形AECF是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【解答】(1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.23.如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B的仰角为20.3°,当小强前进5m 达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)【考点】解直角三角形的应用﹣仰角俯角问题;视点、视角和盲区.【分析】(1)在Rt△GEB中,得到EG==,在Rt△GBF中,得到FG==,根据已知条件即可得到结论;(2)根据(1)的结论得到FH=FG+GH=9,根据三角函数的定义即可得到结论.【解答】解:(1)解:在Rt△BEG中,BG=EG×tan∠BEG,在Rt△BFG中,BG=FG×tan∠BFG,设FG=x米,(x+5)0.37=0.74x,解得x=5,BG=FG×tan∠BFG=0.74×5=3.7,AB=AG+BG=3.7+1.6=5.3米,答:大树AB的高度为5.3米.(2)在Rt△DFG中,DH=FH×tan∠DFG=(5+4)×0.74=6.66米,CD=DH+HC=6.66+1.6=8.26米,答:大树CD的高度为8.26米.24.把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(20﹣x)cm,就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于250cm2建立方程求出其解即可;(2)根据题意建立方程x2+(20﹣x)2=180,再判定该一元二次方程是否有解即可;(3)设所围面积和为y cm2,则有y=x2+(20﹣x)2,再求二次函数最值即可.【解答】解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(20﹣x)cm,由题意得:x2+(20﹣x)2=250,解得x1=5,x2=15,当x=5时,4x=20,4(20﹣x)=60,当x=15时,4x=60,4(20﹣x)=20,答:能,长度分别为20cm与60cm;(2)x2+(20﹣x)2=180,整理:x2﹣20x+110=0,∵b2﹣4ac=400﹣440=﹣40<0,∴此方程无解,即不能围成两个正方形的面积和为180cm2;(3)设所围面积和为y cm2,y=x2+(20﹣x)2,=2 x2﹣40x+400=2( x﹣10)2+200,当x=10时,y最小为200.4x=40,4(20﹣x)=40,答:分成40cm与40cm,使围成两个正方形的面积和最小为200 cm.25.如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点A作AD⊥x轴,垂足为D,由点A、B的对称性可知OA=,根据点在直线上,设点A的坐标为(a,2a),在Rt△OAD中,通过勾股定理即可求出点A的坐标,由点A的坐标利用待定系数法即可求出结论;(2)由点A、B的对称性结合点A的坐标求出点B的坐标,根据点C在反比例函数图象上,设出点C的坐标为(n,),分△ABC三个角分别为直角来考虑,利用“两直线垂直斜率之积为﹣1(斜率都存在)”求出点C的坐标.【解答】解:(1)过点A作AD⊥x轴,垂足为D,如图1所示.由题意可知点A与点B关于点O中心对称,且AB=2,∴OA=OB=.设点A的坐标为(a,2a),在Rt△OAD中,∠ADO=90°,由勾股定理得:a2+(2a)2=()2,解得:a=1,∴点A的坐标为(1,2).把A(1,2)代入y=中得:2=,解得:k=2.(2)∵点A的坐标为(1,2),点A、B关于原点O中心对称,∴点B的坐标为(﹣1,﹣2).设点C的坐标为(n,),△ABC为直角三角形分三种情况:①∠ABC=90°,则有AB⊥BC,•=﹣1,即n2+5n+4,解得:n1=﹣4,n2=﹣1(舍去),此时点C的坐标为(﹣4,﹣);②∠BAC=90°,则有BA⊥AC,•=﹣1,即n2﹣5n+4=0,解得:n3=4,n4=1(舍去),此时点C的坐标为(4,);③∠ACB=90°,则有AC⊥BC,•=﹣1,即n2=4,解得:n5=﹣2,n6=2,此时点C的坐标为(﹣2,﹣1)或(2,1).综上所述:当△ABC为直角三角形,点C的坐标为(﹣4,﹣)、(4,)、(﹣2,﹣1)或(2,1).26.如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.【考点】圆的综合题.【分析】(1)连接AD,由D为弧AB的中点,得到AD=BD,根据圆周角定理即可得到结论;(2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD,根据相似三角形的性质得到DE:AC=BE:BC,即可得到结论.(3)连接CO,根据线段垂直平分线的判定定理得到OE垂直平分BC,由三角形的中位线到现在得到OF=AC,根据直角三角形的性质得到EF=BC,由勾股定理即可得到结论.【解答】(1)解:连接AD,∵D为弧AB的中点,∴AD=BD,∵AB为直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°,∴∠DCB=∠DAB=45°;(2)证明:∵BE⊥CD,又∵∠ECB=45°,∴∠CBE=45°,∴CE=BE,∵四边形ACDB是圆O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDE+∠BDC=180°,∴∠A=∠BD,又∵∠ACB=∠BED=90°,∴△ABC∽△DBE,∴DE:AC=BE:BC,∴DE:BE=AC:BC=1:2,又∵CE=BE,∴DE:CE=1:2,∴D为CE的中点;(3)解:连接CO,∵CO=BO,CE=BE,∴OE垂直平分BC,∴F为OE中点,又∵O为BC中点,∴OF为△ABC的中位线,∴OF=AC,∵∠BEC=90°,EF为中线,∴EF=BC,在Rt△ACB中,AC2+BC2=AB2,∵AC:BC=1:2,AB=,∴AC=,BC=2,∴OE=OF+EF=1.5.27.在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.【考点】作图—复杂作图.【分析】(1)根据垂直平分线性质作AB的垂直平分线即可解决问题.(2)作线段AB、BC的垂直平分线,以及△ABC的外接圆即可解决问题.(3)按照(2)的方法找到点E,再以点E为圆心,以EC或EB长为半径作圆,再以点B为圆心,a长为半径作圆,两圆的交点为点H,再连接BH,交△ABC的外接圆于点F,则点F 为所求.【解答】解:(1)作AB的垂直平分线EF交AC于点D,此时DB+DC=AC,如图1所示,(2)作线段AB、BC的垂直平分线交于点O,以O为圆心,OA为半径作⊙O,交BC的垂直平分线于E,LJ EC、EB,△BCE就是所求是三角形.如图2所示,(3)按照(2)的方法找到点E,再以点E为圆心,以EC或EB长为半径作圆,再以点B为圆心,a长为半径作圆,两圆的交点为点H和H′,再连接BH或BH′交△ABC的外接圆于点F,则点F或F′为所求.如图3所示,.。

2016年江苏省南京市联合体中考数学二模试卷和解析

2016年江苏省南京市联合体中考数学二模试卷和解析

2016年江苏省南京市联合体中考数学二模试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣2.(2分)已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣23.(2分)计算a3•(﹣a)2的结果是()A.a5B.﹣a5 C.a6D.﹣a64.(2分)如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E 表示的实数是()A.+1 B.C.﹣1 D.1﹣5.(2分)已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四6.(2分)在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C. D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.(2分)计算:()﹣2+(+1)0=.8.(2分)因式分解:a3﹣4a=.9.(2分)计算:=.10.(2分)函数y=的自变量x的取值范围是.11.(2分)某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.则这段时间内这两种品牌冰箱月销售量较稳定的是(填“A”或“B”).12.(2分)如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为°.13.(2分)已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn=.14.(2分)某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程.15.(2分)如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为.16.(2分)已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为.(只需写出序号)三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式:1﹣≥,并写出它的所有正整数解.18.(6分)化简:÷(x+2﹣)19.(8分)(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人,并请补全条形统计图;(2)扇形统计图中18﹣23岁部分的圆心角的度数是度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.22.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D 落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.23.(8分)如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B 的仰角为20.3°,当小强前进5m达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)24.(10分)把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?25.(9分)如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.26.(9分)如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.27.(8分)在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.2016年江苏省南京市联合体中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)|﹣2|的值是()A.﹣2 B.2 C.D.﹣【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.2.(2分)已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A.8.9×10﹣5B.8.9×10﹣4C.8.9×10﹣3D.8.9×10﹣2【解答】解:0.008 9=8.9×10﹣3.故选:C.3.(2分)计算a3•(﹣a)2的结果是()A.a5B.﹣a5 C.a6D.﹣a6【解答】解:原式=a3•a2=a5,故选A.4.(2分)如图,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是﹣1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E 表示的实数是()A.+1 B.C.﹣1 D.1﹣【解答】解:∵AD长为2,AB长为1,∴AC==,∵A点表示﹣1,∴E点表示的数为:﹣1,故选:C.5.(2分)已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限()A.一、二B.二、三C.三、四D.一、四【解答】解:一次函数y=ax﹣x﹣a+1=(a﹣1)x﹣(a﹣1),当a﹣1>0时,﹣(a﹣1)<0,图象经过一、三、四象限;当a﹣1<0时,﹣(a﹣1)>0,图象经过一、二、四象限;所以其函数图象一定过一、四象限,故选D.6.(2分)在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.5 C. D.【解答】解:以A为圆心,AC为半径作⊙A,当BC为⊙A的切线时,即BC⊥AC 时,∠B最大,此时BC===.故选D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.(2分)计算:()﹣2+(+1)0=10.【解答】解:原式=9+1=10,故答案为:108.(2分)因式分解:a3﹣4a=a(a+2)(a﹣2).【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).9.(2分)计算:=﹣1.【解答】解:,故答案为:﹣1.10.(2分)函数y=的自变量x的取值范围是x≥1.【解答】解:依题意,得x﹣1≥0,解得x≥1.11.(2分)某商场统计了去年1~5月A,B两种品牌冰箱的销售情况.则这段时间内这两种品牌冰箱月销售量较稳定的是A(填“A”或“B”).【解答】解:A品牌的销售量的平均数为=15,B品牌的销售量的平均数为=15,A品牌的方差=[(13﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(17﹣15)2]=2,B品牌的方差=[(10﹣15)2+(14﹣15)2+(15﹣15)2+(16﹣15)2+[(20﹣15)2]=10.4,因为10.4>2,所以A品牌的销售量较为稳定A,故答案为A.12.(2分)如图,将三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为35°.【解答】解:如图:∵∠3=180°﹣∠1=180°﹣55°=125°,∵直尺两边互相平行,∴∠2+90°=∠3,∴∠2=125°﹣90°=35°.故答案为:35.13.(2分)已知m、n是一元二次方程ax2+2x+3=0的两个根,若m+n=2,则mn=﹣3.【解答】解:根据题意得m+n=﹣=2,∴a=﹣1,∴mn=﹣3,故答案为﹣3.14.(2分)某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程=.【解答】解:设计划做x个“中国结”,根据题意得=.故答案为=.15.(2分)如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为12.【解答】解:如图,∵“六芒星”图标是由圆的六等分点连接而成,∴△ABC与△ADE是等边三角形,∵圆的半径为2,∴AH=3,BC=AB=6,∴AE=2,AF=,∴图中阴影部分的面积=S△ABC +3S△ADE=6×3+2×=12,故答案为:12.16.(2分)已知二次函数y=ax2+bx+c与自变量x的部分对应值如表:现给出下列说法:①该函数开口向下.②该函数图象的对称轴为过点(1,0)且平行于y轴的直线.③当x=2时,y=3.④方程ax2+bx+c=﹣2的正根在3与4之间.其中正确的说法为①③④.(只需写出序号)【解答】解:∵二次函数值先由小变大,再由大变小,∴抛物线的开口向下,所以①正确;∵抛物线过点(0,1)和(3,1),∴抛物线的对称轴为直线x=,所以②错误;点(1,3)和点(2,3)为对称点,所以③正确;∵x=﹣1时,y=﹣3,∴x=4时,y=﹣3,∴二次函数y=ax2+bx+c的函数值为﹣2时,﹣1<x<0或3<x<4,即方程ax2+bx+c=﹣2的负根在﹣1与0之间,正根在3与4之间,所以④正确.故答案为①③④.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式:1﹣≥,并写出它的所有正整数解.【解答】解:去分母,得:6﹣2(2x﹣1)≥3(1﹣x),去括号,得:6﹣4x+2≥3﹣3x,移项,合并同类项得:﹣x≥﹣5,系数化为1得:x≤5.它的所有正整数解1,2,3,4,5.18.(6分)化简:÷(x+2﹣)【解答】解:÷(x+2﹣)=÷()=•=.故答案为.19.(8分)(1)解方程组(2)请运用解二元一次方程组的思想方法解方程组.【解答】解:(1)把①代入②得:3x﹣2(x+1)=﹣1,解得:x=1.把x=1代入y①得:y=2.∴方程组的解为,(2)由①得:x=1﹣y③把③代入②得:1﹣y+y2=3,解得:y1=﹣1,y2=2,把y1=﹣1,y2=2分别代入③得:得:x1=2,x2=﹣1,∴方程组的解为或.20.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出如图两幅统计图.请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了1500人,并请补全条形统计图;(2)扇形统计图中18﹣23岁部分的圆心角的度数是108度;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.【解答】解:(1)这次抽样调查中共调查了330÷22%=1500(人),12﹣17岁的人数为:1500﹣450﹣420﹣330=300(人),补全条形图如图:(2)扇形统计图中18﹣23岁部分的圆心角的度数是×360°=108°;(3)2000×=1000(万人),答:估计其中12﹣23岁的人数约1000万人.故答案为:(1)1500;(2)108.21.(8分)初三(1)班要从、乙、丙、丁这4名同学中随机选取2名同学参加学校毕业生代表座谈会,求下列事件的概率.(1)已确定甲参加,另外1人恰好选中乙;(2)随机选取2名同学,恰好选中甲和乙.【解答】解:(1)另外1人恰好选中副班长的概率是;(2)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙的结果数为2,所以恰好选中甲和乙的概率==.22.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D 落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.【解答】(1)证明:由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE和△AD′F中∵∴△ABE≌△AD′F(ASA).(2)解:四边形AECF是菱形.证明:由折叠可知:AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.23.(8分)如图,两棵大树AB、CD,它们根部的距离AC=4m,小强沿着正对这两棵树的方向前进.如果小强的眼睛与地面的距离为1.6m,小强在P处时测得B 的仰角为20.3°,当小强前进5m达到Q处时,视线恰好经过两棵树的顶端B和D,此时仰角为36.42°.(1)求大树AB的高度;(2)求大树CD的高度.(参考数据:sin20.3°≈0.35,cos20.3°≈0.94,tan20.3°≈0.37;sin36.42°≈0.59,cos36.42°≈0.80,tan36.42°≈0.74)【解答】解:(1)解:在Rt△BEG中,BG=EG×tan∠BEG,在Rt△BFG中,BG=FG×tan∠BFG,设FG=x米,(x+5)0.37=0.74x,解得x=5,BG=FG×tan∠BFG=0.74×5=3.7,AB=AG+BG=3.7+1.6=5.3米,答:大树AB的高度为5.3米.(2)在Rt△DFG中,DH=FH×tan∠DFG=(5+4)×0.74=6.66米,CD=DH+HC=6.66+1.6=8.26米,答:大树CD的高度为8.26米.24.(10分)把一根长80cm的铁丝分成两个部分,分别围成两个正方形.(1)能否使所围的两个正方形的面积和为250cm2,并说明理由;(2)能否使所围的两个正方形的面积和为180cm2,并说明理由;(3)怎么分,使围成两个正方形的面积和最小?【解答】解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(20﹣x)cm,由题意得:x2+(20﹣x)2=250,解得x1=5,x2=15,当x=5时,4x=20,4(20﹣x)=60,当x=15时,4x=60,4(20﹣x)=20,答:能,长度分别为20cm与60cm;(2)x2+(20﹣x)2=180,整理:x2﹣20x+110=0,∵b2﹣4ac=400﹣440=﹣40<0,∴此方程无解,即不能围成两个正方形的面积和为180cm2;(3)设所围面积和为y cm2,y=x2+(20﹣x)2,=2 x2﹣40x+400=2(x﹣10)2+200,当x=10时,y最小为200.4x=40,4(20﹣x)=40,答:分成40cm与40cm,使围成两个正方形的面积和最小为200 cm.25.(9分)如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.【解答】解:(1)过点A作AD⊥x轴,垂足为D,如图1所示.由题意可知点A与点B关于点O中心对称,且AB=2,∴OA=OB=.设点A的坐标为(a,2a),在Rt△OAD中,∠ADO=90°,由勾股定理得:a2+(2a)2=()2,解得:a=1,∴点A的坐标为(1,2).把A(1,2)代入y=中得:2=,解得:k=2.(2)∵点A的坐标为(1,2),点A、B关于原点O中心对称,∴点B的坐标为(﹣1,﹣2).设点C的坐标为(n,),△ABC为直角三角形分三种情况:①∠ABC=90°,则有AB⊥BC,•=﹣1,即n2+5n+4,解得:n1=﹣4,n2=﹣1(舍去),此时点C的坐标为(﹣4,﹣);②∠BAC=90°,则有BA⊥AC,•=﹣1,即n2﹣5n+4=0,解得:n3=4,n4=1(舍去),此时点C的坐标为(4,);③∠ACB=90°,则有AC⊥BC,•=﹣1,即n2=4,解得:n5=﹣2,n6=2,此时点C的坐标为(﹣2,﹣1)或(2,1).综上所述:当△ABC为直角三角形,点C的坐标为(﹣4,﹣)、(4,)、(﹣2,﹣1)或(2,1).26.(9分)如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.(1)求∠BCE的度数;(2)求证:D为CE的中点;(3)连接OE交BC于点F,若AB=,求OE的长度.【解答】(1)解:连接AD,∵D为弧AB的中点,∴AD=BD,∵AB为直径,∴∠ADB=90°,∴∠DAB=∠DBA=45°,∴∠DCB=∠DAB=45°;(2)证明:∵BE⊥CD,又∵∠ECB=45°,∴∠CBE=45°,∴CE=BE,∵四边形ACDB是圆O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDE+∠BDC=180°,∴∠A=∠BDE,又∵∠ACB=∠BED=90°,∴△ABC∽△DBE,∴DE:AC=BE:BC,∴DE:BE=AC:BC=1:2,又∵CE=BE,∴DE:CE=1:2,∴D为CE的中点;(3)解:连接EO,∵CO=BO,CE=BE,∴OE垂直平分BC,∴F为BC中点,又∵O为AB中点,∴OF为△ABC的中位线,∴OF=AC,∵∠BEC=90°,EF为中线,∴EF=BC,在Rt△ACB中,AC2+BC2=AB2,∵AC:BC=1:2,AB=,∴AC=,BC=2,∴OE=OF+EF=.27.(8分)在△ABC中,用直尺和圆规作图(保留作图痕迹).(1)如图①,在AC上作点D,使DB+DC=AC.(2)如图②,作△BCE,使∠BEC=∠BAC,CE=BE;(3)如图③,已知线段a,作△BCF,使∠BFC=∠A,BF+CF=a.【解答】解:(1)作AB的垂直平分线EF交AC于点D,此时DB+DC=AC,如图1所示,(2)作线段AB、BC的垂直平分线交于点O,以O为圆心,OA为半径作⊙O,交BC的垂直平分线于E,LJ EC、EB,△BCE就是所求是三角形.如图2所示,(3)按照(2)的方法找到点E,再以点E为圆心,以EC或EB长为半径作圆,再以点B为圆心,a长为半径作圆,两圆的交点为点H和H′,再连接BH或BH′交△ABC的外接圆于点F,则点F或F′为所求.如图3所示,.。

2016届南京师大附中高三年级校模拟考试数学含参考答案

2016届南京师大附中高三年级校模拟考试数学含参考答案

7 5
(第 4 题)
5.将甲、乙两个不同的球随机放入编号为 1,2,3 的 3 个盒子中,每个盒子的放球数量不限,则 1,2 号盒子中各有 1 个球的概率为 ▲ . ▲ .
x-1≤0, 6.设变量 x,y 满足约束条件 x+y+1≥0,则目标函数 z=2x+y 的最小值是 x-y+3≥0,
高三数学答案 第 1 页 共 14 页
高三数学答案 第 3 页 共 14 页
18.(本小题满分 16 分) 如图,在平面直角坐标系 xOy 中,已知点 F1、F2 分别是椭圆 E: x2 y2 + 2=1(a>b>0)的左、右焦点, 2 a b π 时, 4
过点 F1、 F2 分别作倾斜角都为α(α≠0)的两条直线 AB、 DC, 分别交椭圆 E 于点 A、 B 和 D、 C. 当α= 点 B 坐标为(0,1). (1)求椭圆 E 的方程; (2)当α变化时,讨论线段 AD 与 BC 长度之间的关系,并给出证明; (3)当α变化时,求四边形 ABCD 面积的最大值及对应的α值. y B C F2 D (第 18 题) 19.(本小题满分 16 分) 1 已知函数 f(x)=ln( x+1)+ ,g(x)=lnx. 2x (1)求函数 f(x)的单调区间; 1 (2)设 k 是实数,若关于 x 的不等式 f(x)- ≤kx 在[1,+∞)上恒成立,求 k 的取值范围; 2x (3)是否存在正实数 c,使得关于 x 的方程 f(x)=cg(x)有两个不同的实数根?并说明理由.
π 7.已知函数 y=Asin(ωx+φ)(A>0,ω>0,|φ|< ),则φ=________ ▲ . 2
(第 7 题) 8.已知一圆柱的若底面直径和高相等,其侧面积是π,则这个圆柱的体积是________ ▲ . 9.设 a 为实数,若函数 f(x)= 3-x- 1+x-a 存在零点,则实数 a 的取值范围是________ ▲ . x2 y2 10.在平面直角坐标系 xOy 中,已知点 F1、F2 分别是双曲线 C: - 2=1(a>0,b>0)的左、右焦点, 2 a_x001F_ b P 是右支上一点.若△PF F 是顶角为 120°的等腰三角形,则双曲线 C 的离心率是________ ▲ .

2016届江苏省南京市高考考前综合模拟训练数学试题(终稿)

2016届江苏省南京市高考考前综合模拟训练数学试题(终稿)

南京市2016届高考考前综合题一、填空题1.已知α,β,γ是三个互不重合的平面,l 是一条直线,下列命题中正确的个数是 . ①若α⊥β,l ⊥β,则l 不一定平行α;②若α⊥β,γ⊥β,则γ∥α;③若l 上有两个点到α的距离相等,则l ∥α; ④若l 与α,β所成角相等,则α∥β. 【答案】1.2.已知正项等比数列{a n }的前n 项和为S n ,S 1=6,S 2+S 3=60,则S 4的值为 . 【答案】90.【提示】由题知a 1=6,2a 1+2a 2+a 3=60,设等比数列{a n }的公比为q ,代入化简得q 2+2q -8=0,q =2或者q =-4(舍),所以S 4=90.(如果用求和公式则需要讨论q =1,q ≠1)【说明】本题考查了等比数列的项与和关系,通项公式,求和公式,考查了基本量的运算,合理选择运算方法.3.已知数列{a n }的前n 项和为S n ,数列{a n }满足a n +2-a n =d (d 为常数,且d ≠0,n ∈N *),a 1=1,a 2=2,且a 1a 2,a 2a 3,a 3a 4成等差数列,则S 20等于 . 【答案】120.【提示】由题得2a 2a 3=a 1a 2+a 3a 4,则2×2(d +1)=2+(d +1)(d +2).又d ≠0,得d =1,所以数列{a n }奇数项成等差数列,偶数项成等差数列,于是S 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=10×1+10×92×1+10×2+10×92×1=120.【说明】本题考查等差数列的基本量运算,考查了简单的隔项成等差数列的求和问题.4.已知函数f (x )=2 |x |+cos x -π,则不等式(x -2)f (x )>0的解集是 ________ . 【答案】(-π2,π2)∪(2,+∞).【提示】注意到函数f (x )为偶函数,且f (-π2)=f (π2)=0.当x ≥0时,f (x )=2x +cos x -π,此时f ′(x )=2-sin x >0恒成立,于是f (x )在[0,+∞)上单调递增,根据f (x )为偶函数可知,f (x )在(-∞,0]上单调递减.由(x -2)f (x )>0得⎩⎨⎧x -2>0,f (x )>0,或者⎩⎨⎧x -2<0,f (x )<0,即x >2或-π2<x <π2.【说明】本题考查函数的基本性质以及简单的分类讨论.该题没有直接指明函数的奇偶性及单调性,需要能根据给定的解析式发现其性质,助于解决问题.5.已知圆O :x 2+y 2=r 2(r >0)及圆上的点A (0,-r ),过点A 的直线l 交圆于另一点B ,交x 轴于点C ,若OC =BC ,则直线l 的斜率为_______.【答案】±3.【提示】方法一:设直线l 的斜率为k ,则直线l 方程为y =kx -r ,联立直线与圆方程解得B (2kr k 2+1,(k 2-1) r k 2+1),又点C 坐标为(r k ,0),由OC =BC ,得(rk )2=(2kr k 2+1-r k )2+[(k 2-1) r k 2+1]2,解得k =±3.方法二:设∠B =θ,在△ABD 中,AB =2r cos θ.在△AOC 中,AC =rcos θ,在△BOC 中,BC =r 2 cos θ.由AB = AC +BC ,得2r cos θ=r cos θ+r2 cos θ.因为θ∈(0,π2),解得cos θ=32,故θ=π6,得∠BCx=π3,所以k =3.由对称性,得k =± 3.【说明】考查坐标法处理直线与圆的位置关系.6.已知斜率为3的直线l 过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,交椭圆于A ,B 两点.若原点O 关于直线l 的对称点在椭圆的右准线上,则椭圆的离心率为_________. 【答案】63. 【提示】直线l 方程为y =3(x -c ),设O 关于l 的对称点为P (m ,n ),则⎩⎨⎧nm 3=-1n 2= 3(m 2-c ),解得m =32c ,由题意知32c =a 2c ,由e =63.【说明】考查点关于直线对称问题的处理方法及椭圆离心率的计算.7.如图,边长为1的正三角形ABC 中,P 是线段BC 上的动点,Q 是AB 延长线上的动点,且满足|BQ →|=2|BP →|,则PA →·PQ →的最小值为_________. 【答案】-2532.【提示】设BP →=λBC →,λ∈[0,1],则BQ →=2λAB →,则PA →=BA →-BP →=BA →-λBC →,PQ →=BQ →-BP →=-2λBA →-λBC →.因此PA →·PQ →=2λ2-52λ=2(λ-58)2-2532,因此PA →·PQ→最小值为-2532.【说明】本题考查平面向量数量积的最值问题,也可通过坐标法解决.8.如图,凸四边形ABCD 中,AB =2,BC =6,AD =CD =4.设四边形ABCD 面积为S ,则S 的最大值为________.【答案】8 3【提示】S =S △ABD + S △BCD =12AB ·AD ·sin A +12CB ·CD ·sin C =4sin A +12sin C ,即S4=sin A+3sin C ①;由余弦定理得BD 2=AB 2+AD 2-2AB ·AD cos A =CB 2+CD 2-2CB ·CD cos C ,代入化简得2=3cos C -cos A ②.①②两式平方相加得:(S4)2+4=10-6cos(A +C )≤16(当cos(A +C )=-1,即A +C =π时取“=”),解得S ≤83.【说明】本题考查三角形面积公式,余弦定理,两角和差公式及三角函数最值.本题的背景是“四条边长ABCD一定的凸四边形,当其四点共圆时面积最大”9.已知函数f (x )=⎩⎨⎧x 2-1,x ≥0,-x +1,x <0.若函数y =f (f (x ))-k 有3个不同的零点,则实数k 的取值范围是______.【答案】(1,2].【提示】f (f (x ))=⎩⎪⎨⎪⎧x 2-2x ,x <0,2-x 2,0≤x <1,x 4-2x 2,x ≥1.作出函数f (f (x ))的图像可知,当1<k ≤2时,函数y =f (f (x ))-k 有3个不同的零点.【说明】本题考查函数迭代运算、函数的零点以及数形结合思想.一般的函数的零点问题要有意识的借助于函数的图像解决问题.10.已知a ,b ,c 为正数,且a +2b ≤5c ,3a +4b ≤5c ,则a +3b c 的最小值为____________. 【答案】275.【提示】由题意得⎩⎨⎧ac +2bc ≤5, 3c a +4c b≤5,,设x =b c ,y =ac ,则有⎩⎪⎨⎪⎧2x +y ≤5,4x +3y ≤5,即⎩⎪⎨⎪⎧y ≤5-2x ,y ≥3x 5x -4,45<x <52.作出平面区域得: 设a +3bc =t ,即t =3x +y ,当直线y =-3x +t 与曲线y =3x5x -4相切时,t 最小.将直线y =-3x +t 与曲线y =3x 5x -4联立方程组,消去y 整理得15x 2-(5t +9)x +4t =0,△=(5t +9)2-240t =0得t =275或t =35(舍),于是t 最小为275. 【说明】一般的含多个变量的不等式组问题要注意先减元再利用解决线性规划问题的方法求解.11.已知f (x )=(x +1) |x |-3x .若对于任意x ∈R ,总有f (x )≤f (x +a )恒成立,则常数a 的最小值是______. 【答案】3+10.【提示】f (x )=⎩⎨⎧x 2-2x ,x ≥0,-x 2-4x ,x <0,,作出函数f (x )的图象得:作平行于x 轴的直线l 与f (x )图象有三个交点,设最左边与最右边的交点分别为M ,N ,如图所示,则a的最小值即为线段MN 长的最大值.设直线l 的方程为y =t ,可得MN =3+1+t +4-t =3+(1+t +4-t )2=3+5+2(1+t )(4-t )≤3+5+1+t +4-t =3+10所以,a 的最小值是3+10【说明】本题的难点是要能结合函数的图象发现常数a 的最小值即为线段MN 长的最大值. 二、解答题12.三角形ABC 中,A =45○,BC =2. (1)若cos C =513,求三角形ABC 的面积S ;(2)求AB →·AC →的最大值.【解答】(1)因为cos C =513,C ∈(0,π),所以sin C =1213.由正弦定理得c =a sin A ·sin C =22sin C =24213.又sin B =sin(A +C )=sin A cos C +cos A sin C =17226,所以S =12ac sin B =408169.(2)AB →·AC →=bc cos A =22bc .因为a 2=b 2+c 2-2bc cos A ,所以4=b 2+c 2-2bc .因为b 2+c 2≥2bc ,当且仅当b =c 时取等号,所以4+2bc ≥2bc ,所以bc ≤4+22, 所以AB →·AC →≤2+22,即AB →·AC →的最大值为2+22.【说明】考查三角形面积公式,正弦定理,平面向量的数量积,基本不等式.13.三角形ABC 中,三内角A ,B ,C 所对边长分别为a ,b ,c ,cos B =45.(1)若c =2a ,求sin A 的值;(2)若C =45○+B ,求sin A 的值.【解答】(1)由余弦定理知:b 2=a 2+c 2-2ac cos B =95a 2,即b =355a ,由正弦定理得:sin B =355sin A ,因为cos B =45,B ∈(0,π),所以sin B =35,所以sin A =55.(2)因为cos B =45,B ∈(0,π),所以sin B =35,而sin A =sin(B +C )=sin(2B +45○)= 22(sin2B +cos2B ),又sin2B =2sin B cos B =2425,cos2B =1-2sin 2B =725,所以sin A =31250.【说明】考查正余弦定理,两角和差公式及二倍角公式.另外第(1)问还可以利用正弦定理将边的关系“c=2a ”转化为角的关系“sin C =2sin A ”来解决.D 14.如图,矩形ABCD 所在的平面与平面ABF 互相垂直. 在△ABF 中,O 为AB 的中点,AF =8,BF =6,OF =5.(1)求证:AF ⊥平面BCF ;(2)设FC 的中点为M ,求证:OM ∥平面ADF .【解答】(1)取BF 中点E ,连结OE . 因为O 为AB 中点,所以OE =4,EF =3,由OE 2+EF 2=25=OF 2可得:EF ⊥OE .又OE ∥AF ,从而BF ⊥AF . 由矩形ABCD 可知:BC ⊥AB ,又平面ABCD 所在的平面与平面ABF 互相垂直,平面ABCD ∩平面ABF =AB ,BC ⊂平面ABCD ,所以BC ⊥平面ABF .而AF ⊂平面ABF ,故BC ⊥AF .又BF ∩BC =B ,所以AF ⊥平面BCF . (2)连结ME .由(1)知:ME ∥BC ,而BC ∥AD ,故ME ∥AD . 又ME /⊂平面DAF ,DA ⊂平面DAF ,所以ME ∥平面DAF .同理可证:OE ∥平面DAF . 而OE ∩ME=E ,所以平面OME ∥平面DAF . 又MO ⊂平面OME ,所以OM ∥平面DAF .【说明】本题第二问也可以使用线线平行来证明线面平行.15.如图,已知四棱锥P -ABCD 的底面是边长为2的菱形,∠BCD =60°,点E 是BC 边的中点,AC ,DE 交于点O ,PO =23,且PO ⊥平面ABCD . (1)求证:PD ⊥BC ;(2)在线段AP 上找一点F ,使得BF ∥平面PDE ,并求此时四面体PDEF 的体积.【解答】(1)由题可得△BCD 为正三角形,E 为BC 中点,故DE ⊥BC .又PO ⊥平面ABCD ,BC ⊂平面ABCD ,则PO ⊥BC ,而DE ∩PO =O ,所以BC ⊥平面PDE .又PD ⊂平面PDE ,故PD ⊥BC . (2)取AP 中点为F ,再取PD 中点为G ,连结FG .则FG 为△P AD 中位线,故FG =∥ 12AD ,又BE =∥ 12AD ,所以FG =∥BE ,于是四边形BFGE 为平行四边形,因此BF ∥EG .又BF /⊂平面PDE ,EG ⊂平面PDE ,所以BF ∥平面PDE .由(1)知,BC ⊥平面PDE .则有BC ⊥PE ,BC ⊥DE ,而BC ∥FG ,故FG ⊥PE ,FG ⊥DE ,且DE ∩PE =E ,所以FG ⊥平面PDE .于是四面体PDEF 的体积为V=13S △PD E ·FG =13×12×23×3×1=1.另解(等体积转化):因为BF //面PDE ,则B ,F 两点到平面PDE 的距离相等,所以四面体PDEF 的体积等于四面体PDEB ,因为PO ⊥平面ABCD ,所以V P-BDE =13·PO ·S △BDE =1.【说明】第一问考查空间中线线垂直的证明方法;第二问属于探究性问题,本问注意与三模立体几何题第二问区别开来.本题应先找到点的位置再进行论证,最终证明得到线面平行.最后考查棱锥的体积公式.ABECDPO16.如图,有一位于A 处的观测站,某时刻发现其北偏东45°且与A 相距202海里的B 处有一货船正以匀速直线行驶. 20分钟后又测得该船位于观测站A 北偏东45°+θ(其中tan θ=15,0°<θ<45°),且与观测站A 相距513海里的C 处.(1) 求该船的行驶速度v (海里/小时);(2) 在离观测站A 的正南方15海里的E 处有一半径为3海里的警戒区域,并且要求进入警戒区域的船只不得停留在该区域超过10分钟. 如果货船不改变航向和速度继续前行,则该货船是否会进入警戒区域?若进入警戒区域,是否能按规定时间离开该区域?请说明理由.【解答】(1)由题意:AB =202,AC =513,∠BAC =θ, 因为tan θ=15,0°<θ<45°,所以cos θ=52626,由余弦定理得:BC 2=AB 2+AC 2-2AB ·AC cos θ=125,即BC =5 5. 因为航行时间为20分钟,所以该船的行驶速度为v =155海里/小时. (2)由(1)知,在△ABC 中,cos B =31010,则sin B =1010.设BC 延长线交AE 于点F ,则∠AFB =45°-B ,∠ACF =θ+B . 在△AFC 中,由正弦定理可得:AC sin ∠AFB = AFsin ∠ACF. 解得:AF =20海里.过点E 作EG 垂直BF 于点G , 在△EFG 中,sin ∠AFB =55,EF =5,所以EG = 5.显然,5<3,故货船会进入警戒区.则货船进入警戒区的时间为232-5155=4755小时,而4755<16,所以货船可以在规定时间之内离开警戒区域. 【说明】考查正、余弦定理的运用,求解直线与圆的弦长问题,考查学生解决实际问题的能力.本题第二问也可以通过建立平面直角坐标系来解决直线与圆的位置关系问题.17.某工厂制造一批无盖圆柱形容器,已知每个容器的容积都是π立方米,底面半径都是r 米.如果制造底面的材料费用为a 元/平方米,制造侧面的材料费用为b 元/平方米,其中ba >1,设计时材料的厚度忽略不计.(1)试将制造每个容器的成本y (单位:元)表示成底面半径r (单位:米)的函数; (2)若要求底面半径r 满足1≤r ≤3(单位:米),则如何设计容器的尺寸,使其成本最低? 【解答】(1)设每个容器的高为h 米,则圆柱的体积为V =πr 2h =π,即r 2h =1. 所以,制造成本y =2πrhb +πr 2a =(2rb +r 2a )π(r >0).南A E南FA E(2)y '=2π(ar -br 2),令y '=0,则有r =3b a. 列表得:(i )当3b a ≥3,即ba≥27,则函数y 在[1,3]上单调递减, 所以当r =3时,y 取得最小值,此时底面半径应设计成3米. (ii )当1<3b a <3,即1<ba<27,则函数y 在[1,3ba]上单调递减,在[3ba,3]上单调递增, 所以当r =3ba 时,y 取得最小值,此时底面半径应设计成3b a米. 综上,当b a ≥27时,应将底面半径设计成3米;当1<ba <27时,应将底面半径设计成3ba米. 【说明】考查圆柱体的体积及表面积的计算,利用导数解决函数在闭区间上的最值问题,分类讨论思想的运用,考查学生解决实际问题的能力.18.已知椭圆x 24+y 23=1,左顶点为A ,右准线与x 轴的交点为B ,点P 为椭圆右准线上且在第一象限内的点,直线AP 交椭圆于点Q ,连接BQ .(1)当AP →=2AQ →时,求证:直线BQ 与椭圆只有一个公共点;(2)过点P 与直线BQ 垂直的直线l 在y 轴上的截距为t ,当t 最大时,求直线AP 的方程.【解答】(1)由题意知,右准线方程为x =4.设P (4,m ),因为AP →=2AQ →,即Q 为AP 中点,因为A (—2,0),所以点Q (1,m 2),代入椭圆方程得14+13(m 2)2=1,解得m =±3(负值舍去),所以Q (1,32). 又B (4,0),所以直线BQ 方程为y =-12(x -4),联立直线与椭圆方程得⎩⎨⎧y =-12(x -4),x 24+y 23=1,消去y ,得x 2-2x+1=0,该方程有两个相等的实根,所以直线与椭圆只有一个公共点.(2)AP 方程为y =k (x +2)(k >0),则点P 坐标为(4,6k ),联立直线与椭圆方程⎩⎪⎨⎪⎧y =k (x +2), x 24+y 23=1,消去y ,得(3+4k 2)x 2+16k 2x +16k 2―12=0.设方程两根为x 1,x 2,由题意知x 1=―2,因为x 1x 2=16k 2―123+4k 2,因此x 2=―8k 2+6 3+4k 2,代入直线方程得y 2=12k 3+4k 2,即Q (―8k 2+6 3+4k 2,12k 3+4k 2),则直线BQ 的斜率为k BQ =-2k4k 2+1,则直线l 的斜率为4k 2+12k ,所以直线l 的方程为y -6k =4k 2+12k (x ―4).令x =0,得y =-(2k +2k )≤-22k·2k =-4(当且仅当k =1时取“=”号),此时直线AP 方程为y =x +2.【说明】考查直线与椭圆的位置关系及解几中的最值问题.19.已知椭圆x 2a 2+y 2b 2=1(a >b >0)上顶点A (0,2),右焦点F (1,0),椭圆上任一点到点F 的距离与到定直线l :x =m 的距离之比为常数k . (1)求常数m ,k 的值;(2)过点F 的直线交椭圆于点S ,T 两点,P 为直线l 上一动点.①若PF ⊥ST ,求证:直线OP 平分线段ST ;②设直线PS ,PF ,PT 的斜率分别为k 1,k 2,k 3,求证:k 1,k 2,k 3成等差数列.【解答】(1)由题意知b =2,c =1,则a =5,所以椭圆方程为x 25+y 24=1.设M (x ,y )为椭圆上任一点,由题意知(x -1)2+y 2|x -m |=k ,整理得(x —1)2+y 2=k 2(x —m )2.又y 2=4—4x 25,代入上式整理得 (15—k 2)x 2+2(mk 2—1)x +5—k 2m 2=0.由题意知上式恒成立,则⎩⎨⎧15—k 2=0,2(mk 2—1)=0, 5—k 2m 2=0,解得k =55,m =5.(2)①当ST 斜率不存在时,由PF ⊥ST ,得P 为直线l 与x 轴的交点,此时线段ST 被直线OP 平分; 当ST 斜率为0时,不合题意;当ST 斜率存在时,设直线ST 方程为y =k (x —1),联立直线与椭圆方程⎩⎪⎨⎪⎧y =k (x —1) x 25+y 24=1,消去y ,得(4+5k 2)x 2—10k 2x +5k 2—20=0.设S (x 1,y 1),T (x 2,y 2),则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-20 4+5k 2,且△>0.设线段ST 中点为(x 0,y 0),则x 0=x 1+x 22=5k 2 4+5k 2,y 0= k (x 0—1)=-4k 4+5k 2,所以ST 中点为(5k 24+5k 2,-4k 4+5k 2).因为PF ⊥ST ,所以直线PF 方程为y =-1k (x —1),所以点P 坐标为(5,—4k ),则直线OP 方程为y =- 45k x ,而y 0=-45k x 0,即(x 0,y 0)在直线OP 上,即直线OP 平分线段ST . 综上,直线OP 平分线段ST .(2)当ST 斜率不存在时,易得S (1,455),T (1,-455).设P (5,t ),则k 1=t -4554,k 2=t4,k 3=t +4554,则k 1+k 3=t —4554+t +4554=t2=2k 2,即k 1,k 2,k 3成等差数列.当ST 斜率存在时,设直线ST 方程为y =k (x —1)(同第(1)问).设P (5,t ),则k 1=t —y 15—x 1=t —k (x 1—1)5—x 1=k +t —4k 5—x 1,k 2=t 4,k 3=t —y 25—x 2=t —k (x 2—1)5—x 2=k +t —4k 5—x 2,则k 1+k 3=k +t —4k 5—x 1+k +t —4k5—x 2=2k +(t —4k )(10—x 1—x 2)(5—x 1)( 5—x 2)=2k +(t —4k )[10—(x 1+x 2)]25—5(x 1+x 2)+x 1x 2.由(1)知x 1+x 2=10k 2 4+5k 2,x 1x 2=5k 2—204+5k 2,代入上式得k 1+k 3=2k +(t —4k )[10— 10k 24+5k 2]25—510k 2 4+5k 2+5k 2—20 4+5k 2=2k +(t —4k )(40+40k 2)80+80k 2=2k +t —4k 2=t 2,又k 2=t4,所以k 1+k 3=2k 2,即k 1,k 2,k 3成等差数列.综上:k 1,k 2,k 3成等差数列.【说明】考查直线与椭圆的位置关系,解析几何中的恒成立问题及分类讨论思想.20.已知函数f (x )=2x 3-3(k +1)x 2+6kx +t ,其中k ,t 为实数,记区间[-2,2]为I . (1)若函数f (x )的图像与x 轴相切于点(2,0),求k ,t 的值;(2)已知k ≥1,如果存在x 0∈(-2,2),使得f (x 0)为f (x )在I 上的最大值,求k 的取值范围; (3)已知-103<k <-3,若对于任意x ∈I ,都有f (x )≥6(x -2)e x ,求t 的最小值.(e 2≈7.39)【解答】(1)f ′(x )=6x 2-6(k +1)x +6k =6(x -1)(x -k ),因为函数f (x )的图像与x 轴相切于点(2,0),于是f (2)=0,f ′(2)=0, 即2-k =0,16-12(k +1)+12k +t =0,解得k =2,t =-4.(2)当k ≥2时,f (x )在(-2,1)上单调递增,在(1,2)上单调递减, 于是存在x 0=1,使得f (x 0)为f (x )在I 上的最大值; 当k =1时,f ′(x )≥0恒成立,故f (x )在I 上单调递增, 故不存在x 0∈(-2,2),使得f (x 0)为f (x )在I 上的最大值;当1<k <2时,f (x )在(-2,1)上单调递增,在(1,k )上单调递减,在(k ,2)上单调递增, 于是若存在x 0∈(-2,2),使得f (x 0)为f (x )在I 上的最大值,则必有f (1)≥f (2), 即k ≥53,又1<k <2,于是53≤k <2;综上,k ≥53.(3)对于任意x ∈I ,都有f (x )≥6(x -2)e x ,即对于任意x ∈I ,都有2x 3-3(k +1)x 2+6kx +t ≥6(x -2)e x 即t ≥6(x -2)e x -2x 3+3(k +1)x 2-6kx设g (x )=6(x -2)e x -2x 3+3(k +1)x 2-6kx ,x ∈[-2,2], 则g ′(x )=6(x -1)( e x -x +k ),令h (x )=e x -x +k ,x ∈[-2,2],则h ′(x )=e x -1,于是h (x )在(-2,0)上单调递减,在(0,2)上单调递增,又h (-2)=1e 2+2+k <1e 2+2-3=1e 2-1<0,于是当x ∈[-2,0]时h (x )<0恒成立,又h (1)=e -1+k <e -1-3=e -4<0,h (2)=e 2-2+k >e 2-2-103=e 2-163>0,因此h (x )=e x -x +k ,x ∈[-2,2]存在唯一的零点x 0∈(1,2),于是g (x )在(-2,1)上单调递增,在(1,x 0)上单调递减,在(x 0,2)上单调递增, 所以g (x )max =max{ g (1),g (2)}.又g (1)-g (2)=(1-6e -3k )-(-4)=5-6e -3k <5-6e -3(-103)=15-6e <0,于是g (1)<g (2),所以g (x )max =g (2)=-4,即t ≥-4,因此t 的最小值是-4.【说明】本题主要考查利用导数求函数的最值,分类讨论思想及函数极值点常见的处理方法.其中第三问要能通过给定的k 的范围比较相关量的大小.21.已知函数f (x )=x 2+ax (a ∈R ),g (x )=ln x . (1)求证:g (x )<x2;(2)设h (x )=f (x )+bg (x )(b ∈R ).①若a 2+b =0,且当x >0时h (x )>0恒成立,求a 的取值范围;②若h (x )在(0,+∞)上存在零点,且a +b ≥-2,求b 的取值范围. 【解答】(1)设h (x )=x 2-g (x )=x2-ln x则h ′(x )=x -22x ,于是f (x )在(0,2)上单调递减,在(2,+∞)上单调递增,于是h (x )min =h (2)=1-ln2>0,从而h (x )>0恒成立,即g (x )<x2.(2)h (x )=f (x )+bg (x )=x 2+ax +b ln x①因为a 2+b =0,所以h (x )=x 2+ax -a 2ln x ,h ′(x )=(x +a )(2x -a )x,当a =0时,h (x )=x 2>0恒成立;当a >0时,h (x )在(0,a 2)上单调递减,在(a 2,+∞)上单调递增,于是h (x )min =h (a 2)>0, 即34a 2-a 2ln a 2>0,解得0<a <2e 34. 当a <0时,h (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增,于是h (x )min =h (-a )>0,即-a 2ln(-a )>0,解得-1<a <0.综上,-1<a <2 e 34.②因为h (x )在(0,+∞)上存在零点,所以x 2+ax +b ln x =0在(0,+∞)上有解,即a =-x -b ln x x在(0,+∞)上有解. 又因为a +b ≥-2,即a ≥-b -2,所以-x -b ln x x≥-b -2在(0,+∞)上有解. 由(1)可知ln x <x 2<x ,因此b ≥x 2-2x x -ln x, 设F (x )=x 2-2x x -ln x ,则F ′(x )=(x -1)(x -2ln x +2) (x -ln x )2, 因为ln x <x 2,所以x -2ln x +2>0,于是F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以F (x )min =F (1)=-1,故b ≥-1.【说明】本题考查导数的应用,第二问中涉及恒成立问题及存在性问题,一般说来首选方法是参变分离,遇到不能分离的应考虑构建新的函数解决问题.注意比较第二问中解决问题的方法选择.22.定义:从数列{a n }中取出部分项,并将它们按原来的顺序组成一个数列,称为数列{a n }的一个子数列.设数列{a n }是一个公差不为零的等差数列;(1)已知a 4=6,自然数k 1,k 2,…,k t ,…满足4<k 1<k 2<…<k t <…,①若a 2=2,且a 2,a 4,a k 1,a k 2,…,a kt ,…是等比数列,求k 2的值;②若a 2=4,求证:数列a 2,a 4,a k 1,a k 2,…,a kt ,…不是等比数列.(2)已知存在自然数k 1,k 2,…,k t ,…,其中k 1<k 2<…<k t <….若a k 1,a k 2,a k 3,…,a kt ,…是{a n }的一个等比子数列,若a k 2a k 1=m (m 为正整数),求k t 的表达式.(答案用k 1,k 2,m ,t 表示). 【解答】(1)①设数列{a n }的公差为d ,因为a 2=2,a 4=6,所以2d =4,d =2,a n =a 2+(n -2)d =2n -2,设无穷等比数列公比为q ,q =a 4a 2=3,所以a k 2=2×33=2k 2-2,故k 2=28. ②假设数列a 2,a 4,a k 1,a k 2,…,a kt ,…是无穷等比数列.则a 2,a 4,a k 1成等比,a 4,a k 1,a k 2成等比,所以a 42=a 2×a k 1得 a k 1=9, a k 12=a 4×a k 2得a k 2=272.因为2d =a 4-a 2=1,d =1,a n =a 2+(n -2)d =n +2,所以a k 2=k 2+2=272,k 2=232/∈N * 这与k 2为自然数矛盾.所以数列a 2,a 4,a k 1,a k 2,…,a kt ,…不是无穷等比数列.(2)方法1 因为a k 2-a k 1=(k 2-k 1)d =(m -1)a k 1,所以d =(m -1)a k 1k 2-k 1. 又a k 1,a k 2,a k 3,…,a kt ,…是{a n }的一个等比子数列,a kt =a k 1m t-1=a k 1+(k t -k 1)d ,将d =(m -1)a k 1k 2-k 1代入,得m t-1=1+(m -1)(k t -k 1)k 2-k 1,解得k t =(k 2-k 1)×1-m t -11-m+k 1. 方法2 因为a k 1,a k 2,a k 3成等比数列,所以a k 3=a k 22a k 1=a 1+(k 2-1)d a 1+(k 1-1)d ×a k 2=[1+(k 2-k 1)d a 1+(k 1-1)d]×a k 2=a k 2+(k 2-k 1)d a k 1×a k 2,则(k 3-k 2)d =(k 2-k 1)d ×a k 2a k 1,因为d 不为零,a k 2a k 1是正整数m ,所以k 3-k 2=(k 2-k 1)m ,同理可得k 4-k 3=(k 3-k 2)m ,…,k t -k t -1=(k t -1-k t -2)m (t ≥3),所以{k t -k t -1}(t ≥2)是等比数列,则k t -k t -1=(k 2-k 1)×m t -2(t ≥2),累加得k t -k 1=(k 2-k 1)×1-m t -11-m ,所以k t =(k 2-k 1)×1-m t -11-m +k 1(t ≥2),易知当t =1时,此式也成立,于是k t =(k 2-k 1)×1-m t -11-m+k 1. 【说明】本题主要探究了无穷等差数列中能有无穷等比子数列的条件问题,考查了等差数列等比数列的概念及基本量运算,通项公式的求法,反证法等等.考查了运算能力,推理论证能力和化归思想.23.等差数列{a n }公差大于零,且a 2+a 3=52,a 22+a 32=134,记{a n }的前n 项和为S n ,等比数列{b n }各项均为正数,公比为q ,记{b n }的前n 项和为T n .(1)写出S i (i =1,2,3,4,5,6)构成的集合A .(2)若q 为正整数,问是否存在正整数k ,使得T k ,T 3k 同时为(1)中集合A 的元素?若存在,求出所有符合条件的{b n }的通项公式,若不存在,请说明理由.(3)若将S n 中的整数项按从小到大的顺序排列构成数列{c n },求{c n }的一个通项公式.【解答】(1)由a 2+a 3=52,a 22+a 32=134,设{a n }公差为d ,d 大于零,得a 2=1,a 3=32,d = 12,a 1=12,S n =n 2+n 4,所以A ={12,32,3,5,152,212} (2)因为{b n }是等比数列,b n >0,q ∈N *当q =1时,T k =kb 1,T 3k =3kb 1,T 3k T k =3,所以T 3k =32,T k =12,所以kb 1=12,b 1=12k ,b n =12k. 当q ≠1时,T k =b 1(1-q k )1-q ,T 3k =b 1(1-q 3k )1-q. 因为 q ∈N *,q ≠1,所以q ≥2,则T 3k T k=1+q k +q 2k ≥1+2+4=7, 所以⎩⎪⎨⎪⎧T k =12,T 3k =5,或⎩⎨⎧T k =12,T 3k =152,或⎩⎨⎧T k =12,T 3k =212,或⎩⎨⎧T k =32,T 3k =212, 当⎩⎪⎨⎪⎧T k =12,T 3k =5时,1+q k +q 2k =10,解得q k =-1±372/∈N *. 当⎩⎨⎧T k =12,T 3k =152时,1+q k +q 2k =15,解得q k =-1±572/∈N *.当⎩⎨⎧T k =12,T 3k =212时,1+q k +q 2k =21,解得q k =4或-5(舍).由q =2,k =2,代入T k =b 1(1-q k )1-q,得b 1=16,所以b n =16×2n -1. 由q =4,k =1,代入T k =b 1(1-q k )1-q,得b 1=12,所以b n =12×4n -1=4n -2. 当⎩⎨⎧T k =32,T 3k =212时,1+q k +q 2k =7,解得q k =2或-3(舍), 所以q =2,k =1,代入T k =b 1(1-q k )1-q,得b 1=32,所以b n =3×2n -2. 综上,b n =12k (k ∈N *)或b n =16×2n -1或b n =4n -2或b n =3×2n -2. (3)因为S n =n 2+n 4为整数项,所以n =4k 或4k -1,k ∈N *. 当n =4k -1,k ∈N *时,S n =(4k -1)k ;当n =4k ,k ∈N *时,S n =k (4k +1);因为S n 中的整数项按从小到大的顺序排列构成数列{c n },所以当n 为奇数时,k =n +12,c n =(4×n +12-1)×n +12=2n 2+3n +12; 当n 为偶数时,k =n 2,c n =n 2×(2n +1)=2n 2+n 2;所以c n =⎩⎨⎧2n 2+3n +12(n 为奇数),2n 2+n 2(n 为偶数), 【说明】本题是数列与方程的综合问题.本题考查了等差数列等比数列的基本量运算,方程整解问题.考查了运算能力,推理论证能力,分类讨论思想.附加题1.如图,四棱锥S -ABCD 的底面是平行四边形,AD =BD =2,AB =22,SD ⊥平面ABCD .SD =2,点E 是SD 上的点,且 DE →=λDS →(0≤λ≤1).(1)求证:对任意的0≤λ≤1,都有SC →·EA →≥AC →·BE →;(2)若二面角C -AE -D 的大小为60°,求λ的值.【解答】(1)因为AD =BD =2,AB =22,所以AD ⊥DB .故以D 为原点,DA 所在直线为x 轴,DB 所在直线为y 轴,DS 所在直线为z 轴,建立空间直角坐标系o -xyz ,则D (0,0,0),A (2,0,0),B (0,2,0),C (-2,2,0),S (0,0,2),E (0,0,2λ).所以SC →=(-2,2,-2),EA →=(2,0,-2λ),AC →=(-4,2, 0),BE →=(0,-2,2λ),则有SC →·EA →-AC →·BE →=-4+4λ-(-4+0)=4λ≥0,即SC →·EA →≥AC →·BE →.(2)设平面ACE 的一个法向量为n =(x ,y ,z ),所以EA →·n =0,即2x -2λz =0.同理AC →·n =0,即-4x +2y =0.取z =1,则x =λ,y =2λ,所以平面ACE 的一个法向量为n =(λ,2λ,1).显然平面ADE 的一个法向量为m =(0,1,0),由二面角C -AE -D 的大小为60°知|cos <n , m >|=12,解得λ=1111. 【说明】考查空间向量的基本运算以及在立体几何中的应用,本题主要是用空间向量来研究二面角的大小.特别注意交待空间直角坐标系的建立过程和法向量的求解过程.2.已知2件次品和a 件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出a 件正品时检测结束,已知前两次检测都没有检测出次品的概率为310. (1)求实数a 的值;(2)若每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值.【解答】(1)记“前两次检测都没有检测出次品”为事件A ,P (A )=a (a -1)(a +2)(a +1)=310得a =3或-27(舍). (2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=6A 23A 35=35. 所以X 的分布列为X200 300 400 P 110 310 35E (X )=200×110+300×310+400×【说明】本题要注意“检测后不放回”与“检测后放回”之间的区别,正确求出相应的排列数组合数是学好分布列的基础和前提.3.已知数列T : a 1,a 2,…,a n (n ∈N *,n ≥4)中的任意一项均在集合{-1,0,1}中,且对 i ∈N *,1≤i ≤n -1,有|a i +1-a i |=1.(1)当n =4时,求数列T 的个数;(2)若a 1=0,且a 1+a 2+…+a n ≥0,求数列T 的个数.【解答】(1)当n =4时,符合条件的数列为:0,1 ,0,-1; 0,1,0,1; 0,-1,0,-1;0,-1,0,1;1,0,-1,0;1,0,1,0;-1,0,1,0;-1,0,-1,0.共8个.(2)①当n =4k (k ∈N *)时,由a 1=0,得a 3=a 5=…=a 4k -1=0,所以a 2,a 4,…,a 4k 中的每一个任取±1.又a 1+a 2+…+a n ≥0,所以a 2,a 4,…,a 4k 中1的个数不小于-1的个数.所以数列T 的个数为:C k 2k +C k +12k +…+C 2k 2k =12( C 02k +C 12k +…+C k -12k +C k 2k +C k +12k +…+C 2k 2k )+12C k 2k =12(22k +C k 2k ). ②当n =4k +1(k ∈N *)时,则a 1=a 3=a 5=…=a 4k +1=0,同①,可知数列T 的个数为 12(22k +C k 2k ). ③当n =4k +2(k ∈N *)时,则a 1=a 3=a 5=…=a 4k +1=0,则数列T 的个数为 C k +12k +1+C k +22k +1+…+C 2k +12k +1=22k .④当n =4k +3(k ∈N *)时,则a 1=a 3=a 5=…=a 4k +3=0,同③,可知数列T 的个数为 22k .综上,当n =4k 或n =4k +1,k ∈N *时,数列T 的个数为12(22k +C k 2k ). 当n =4k +2或n =4k +3,k ∈N *时,数列T 的个数为 22k .【说明】本题考查组合计数.要能从已知条件中发现数列T 所满足的特性,再利用相关的特性求出数列的个数.。

2019届江苏省南京市、盐城市2016级高三下学期二模考试数学试卷及解析

2019届江苏省南京市、盐城市2016级高三下学期二模考试数学试卷及解析

2019届南京市、盐城市2016级高三下学期二模考试数学试卷★祝考试顺利★一、选择题:本大题共14个小题,每小题5分,共70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合,,则=______.【答案】【解析】【分析】直接利用并集的定义求解.【详解】由题得=故答案为:2.若复数满足(为虚数单位),且实部和虚部相等,则实数的值为______. 【答案】【解析】【分析】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,即可求出a的值.【详解】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,所以a=-2.故答案为:-23.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为_________.【答案】【解析】【分析】由频率以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出总的人数,求出第三组的人数.【详解】由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,设总的人数为n,则所以第3小组的人数为人.故答案为:184.下图是某算法的伪代码,输出的结果的值为______.【答案】【解析】【分析】直接按照算法的伪代码运行即得结果.【详解】1<6,i=3,S=4,3<6,i=5,S=9,5<6,i=7,S=16,7>6,输出S=16.故答案为:165.现有件相同的产品,其中件合格,件不合格,从中随机抽检件,则一件合格,另一件不合格的概率为______.【答案】【解析】【分析】分别求出基本事件的总数和要求事件包含的基本事件的个数,根据古典概型的概率计算公式即可得出.【详解】从5件产品中任意抽取2有种抽法,其中一件合格、另一件不合格的抽法有种.根据古典概型的概率计算公式可得一件合格,另一件不合格的概率.故答案为:6.等差数列中,,前项的和,则的值为______.【答案】【解析】【分析】首先根据已知求出,再利用等差数列的通项求出的值.【详解】由题得.故答案为:-47.在平面直角坐标系中,已知点是抛物线与双曲线的一个交点.若抛物线的焦点为,且,则双曲线的渐近线方程为______.【答案】【解析】【分析】设点A(x,y),根据的坐标,再把点A的坐标代入双曲线的方程求出,再求双曲线的渐近线方程.【详解】设点A(x,y),因为x-(-1)=5,所以x=4.所以点A(4,±4),由题得所以双曲线的渐近线方程为.故答案为:8.若函数的图象经过点,且相邻两条对称轴间的距离为,则的值为______.【答案】【解析】【分析】先根据相邻两条对称轴间的距离为求出的值,再根据图象经过点求出,再求的值.【详解】因为相邻两条对称轴间的距离为,所以所以.因为函数的图象经过点所以.所以,所以.故答案为:9.已知正四凌锥的所有棱长都相等,高为,则该正四棱锥的表面积为______.【答案】【解析】【分析】设正四棱锥的棱长为2a,根据求得a=1,再求正四棱锥的表面积. 【详解】设正四棱锥的棱长为2a,由题得.所以四棱锥的棱长为2.所以正四棱锥的表面积=.故答案为:【点睛】本题主要考查几何体的边长的计算和表面积的计算,意在考查学生对这些知识的理解能力掌握水平和空间观察想象能力.10.已知函数是定义在上的奇函数,且当时,,则不等式的解集为______.【答案】【解析】【分析】利用函数的奇偶性求出函数的表达式,然后解不等式件即可.【详解】设,则,所以.因为是定义在上的奇函数,所以,所以,所以当时,,当时,.当时,当0≤时,.所以0≤.当x<0时,所以-2<x<0.综上不等式的解集为.故答案为:11.在平面直角坐标系中,已知点,.若圆上存在唯一点,使得直线,在轴上的截距之积为,则实数的值为______. 【答案】【解析】【分析】根据题意,设的坐标为,据此求出直线、的方程,即可得求出两直线轴上的截距,分析可得,变形可得,即可得的轨迹方程为,据此分析可得圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,结合圆与圆的位置关系可得,解可得的值,即可得答案.【详解】根据题意,设的坐标为,直线的方程为,其在轴上的截距为,直线的方程为,其在轴上的截距为,若点满足使得直线,在轴上的截距之积为5,则有,变形可得,则点在圆上,若圆上存在唯一点,则圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,则有,解可得:,故答案为:.12.已知是直角三角形的斜边上的高,点在的延长线上,且满足.若,则的值为______.【答案】【解析】【分析】设∠DPC=,∠DPB=,先化简得到|PD|=2,再利用数量积的公式展开,利用三角函数和三角和角的余弦公式化简即得解.【详解】设∠DPC=,∠DPB=,由题得,所以|PB|所以=.故答案为:213.已知函数设,且函数的图象经过四个象限,则实数的取值范围为______.【答案】【解析】【分析】先讨论当x≤0时,f(x)-g(x)=|x+3\-kx-1,须使f(x)-g(x)过第三象限,得到k<.再讨论当x>0时,f(x)-g(x)=, f(x)-g(x)过第四象限,得到k >-9.综合即得解.【详解】当x≤0时,f(x)-g(x)=|x+3\-kx-1,须使f(x)-g(x)过第三象限,所以f(-3)-g(-3)<0, 解之得k<.当x>0时,f(x)-g(x)=,因为,所以须使f(x)-g(x)过第四象限,必须综合得-9<k<.故答案为:14.在中,若,则的最大值为______.【答案】【解析】【分析】先由题得,再化简得=,再利用三角函数的图像和性质求出最大值.【详解】在△ABC中,有,所以==,当即时取等.故答案为:二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.设向量,,其中,,且与互相垂直.(1)求实数的值;(2)若,且,求的值.【答案】(1)1;(2).【解析】【分析】(1)由与互相垂直可得,展开化简即得.(2)由,得..,最后求.【详解】解:(1)由与互相垂直,可得,所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知.由,得,即.因为,所以,所以.所以,因此.【点睛】本题主要考查平面向量的数量积运算,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.如图,在三棱柱中,,,,,分别是和的中点.求证:(1)平面;(2)平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接,证明,即得平面.(2),,平面.【详解】证明:(1)连接,在三棱柱中,且,所以四边形是平行四边形.又因为是的中点,所以也是的中点.在中,和分别是和的中点,所以.又因为平面,平面,所以平面.(2)由(1)知,因为,所以.又因为,,,平面,所以平面.又因为平面,所以.在中,,是的中点,所以.因为,,,,平面,所以平面.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平和空间想象分析推理转化能力.17.某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内切在圆外的区域,其中,,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设,.问:对于任意,上述设计方案是否均能符合要求?【答案】能符合要求【解析】【分析】过作垂直于,垂足为,所以点处观众离点处最远. 由余弦定理可得.再求得. 因为,所以观众席内每一个观众到舞台处的距离都不超过米.【详解】解:过作垂直于,垂足为.在直角三角形中,,,所以,因此.由图可知,点处观众离点处最远.在三角形中,由余弦定理可知.因为,所以当时,即时,,即.因为,所以观众席内每一个观众到舞台处的距离都不超过米. 答:对于任意,上述设计方案均能符合要求.【点睛】本题主要考查三角函数的应用,考查余弦定理和三角函数最值的计算,意在考查学生对这些知识的理解掌握水平和利用数学知识解决实际问题的能力.18.在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.(1)求椭圆的方程;(2)设经过点的直线交椭圆于,两点,点.①若对任意直线总存在点,使得,求实数的取值范围;②设点为椭圆的左焦点,若点为的外心,求实数的值.【答案】(1);(2)①;②.【解析】【分析】(1)依题意解之即得椭圆的方程.(2) ①设直线的方程为,代入椭圆的方程,根据,解得.,所以,即. 解得.由,即可解得m范围②由,.所以,解得,即可求出m值.【详解】解:(1)依题意解得所以,所以椭圆的方程为.(2)设直线的方程为,代入椭圆的方程,消去,得.因为直线交椭圆于两点,所以,解得.设,,则有,.①设中点为,则有,.当时,因为,所以,即.解得.当时,可得,符合.因此.由,解得.②因为点为的外心,且,所以.由消去,得,所以,也是此方程的两个根.所以,.又因为,,所以,解得.所以.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查直线和直线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.已知,.(1)当时,求函数图象在处的切线方程;(2)若对任意,不等式恒成立,求的取值范围;(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)利用导数的几何意义求得函数图象在处的切线方程为.(2)先求导得,再对a分类讨论得到的取值范围.(3对a分类讨论,结合极大值小于极小值求出的取值范围.【详解】解:(1)当时,,,则.又因为,所以函数图象在处的切线方程为,即.(2)因为所以,且.因为,所以.①当时,即,因为在区间上恒成立,所以在上单调递增.当时,,所以满足条件.②当时,即时,由,得,当时,,则在上单调递减,所以时,,这与时,恒成立矛盾. 所以不满足条件.综上,的取值范围为.(3)①当时,因为在区间上恒成立,所以在上单调递增,所以不存在极值,所以不满足条件.②当时,,所以函数的定义域为,由,得,列表如下:↗极大值↘极小值↗由于在是单调减函数,此时极大值大于极小值,不合题意,所以不满足条件.③当时,由,得.列表如下:↘极小值↗此时仅存在极小值,不合题意,所以不满足条件.④当时,函数的定义域为,且,.列表如下:↗极大值↘↘极小值↗所以存在极大值和极小值,此时因为,所以,,,,所以,即,所以满足条件.综上,所以的取值范围为.【点睛】本题主要考查导数的几何意义和切线方程,考查利用导数研究极值和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力. 20.已知数列各项为正数,且对任意,都有.(1)若,,成等差数列,求的值;(2)①求证:数列为等比数列;②若对任意,都有,求数列的公比的取值范围.【答案】(1)或;(2)①详见解析;②.【解析】【分析】(1)根据,,成等差数列得到,,成等比数列,即可求出或.(2)①利用定义证明数列为等比数列;②当时,,所以满足条件. 当时,由,得,由于,因此,与任意恒成立相矛盾,所以不满足条件. 综上可得q的取值范围.【详解】解:(1)因为,所以,因此,,成等比数列. 设公比为,因为,,成等差数列,所以,即,于是,解得或,所以或.(2)①因为,所以,两式相除得,即,由,得,两式相除得,即,所以,即,,,由(1)知,所以,,因此数列为等比数列.②当时,由时,可得,所以,因此,所以满足条件.当时,由,得,整理得.因为,,所以,因此,即,由于,因此,与任意恒成立相矛盾,所以不满足条件.综上,公比的取值范围为.【点睛】本题主要考查等差数列的性质和等比数列的证明,考查数列的求和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.南京市、盐城市2019届高三年级第二次模拟考试数学附加题【选做题】在A、B、C三小题中只能选做2题,每小题10分,共计20分,请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A.选修4-2:矩阵与交换21.已知矩阵,,.(1)求,的值;(2)求的逆矩阵.【答案】(1);(2).【解析】【分析】(1)由题得即得(2)由题得,即得的逆矩阵.【详解】解:(1)因为,,,所以即(2)因为,所以.【点睛】本题主要考查矩阵的性质和逆矩阵的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.【必做题】第22题、第23题,每题10分,共20分,请在答题卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.如图是一旅游景区供游客行走的路线图,假设从进口开始到出口,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共名游客结伴到旅游景区游玩,他们从进口的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口集中,设点是其中的一个交叉路口点.(1)求甲经过点的概率;(2)设这名游客中恰有名游客都是经过点,求随机变量的概率分布和数学期望.【答案】(1);(2)详见解析.【解析】【分析】(1) 选择从中间一条路走到的概率为.选择从最右边的道路走到点的概率为.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以.(2) 随机变量可能的取值,,,,,再求出它们对应的概率,即得随机变量的概率分布和数学期望.【详解】解:(1)设“甲从进口开始到出口经过点”为事件,甲选中间的路的概率为,在前面从岔路到达点的概率为,这两步事件相互独立,所以选择从中间一条路走到的概率为.同理,选择从最右边的道路走到点的概率为.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以.答:甲从进口开始到出口经过点的概率.(2)随机变量可能的取值,,,,,则,,,,,概率分布为:数学期望.【点睛】本题主要考查互斥事件的概率,考查随机变量的分布列和数学期望的计算,意在考查学生对这些知识的理解能力掌握水平,考查学生的应用能力.23.平面上有个点,将每一个点染上红色或蓝色.从这个点中,任取个点,记个点颜色相同的所有不同取法总数为.(1)若,求的最小值;(2)若,求证:.【答案】(1)2;(2)详见解析.【解析】【分析】(1)当时,共有个点,对染红色的点的个数分类讨论,即得T的最小值为2.(2) 首先证明:任意,,,有. 设个点中含有个染红色的点,接着证明①时,②时,③时,.【详解】解:(1)当时,共有个点,若染红色的点的个数为个或个,则;若染红色的点的个数为个或个,则;若染红色的点的个数为个或个,则;若染红色的点的个数为,则;因此的最小值为.(2)首先证明:任意,,,有.证明:因此,所以.设个点中含有个染红色的点,①当时,,因为,所以,于是.②当时,,同上可得.③当时,,设,,当时,,显然,当即时,,当即时,,即;;因此,即.综上,当时,.【点睛】本题主要考查排列组合的计数问题,考查组合不等式的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力,解答本题的关键是分类讨论思想的灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档