CFG桩复合地基计算

合集下载

CFG桩设计计算(置换率及桩中心距公式.pdf

CFG桩设计计算(置换率及桩中心距公式.pdf

CFG 桩设计计算一、单桩承载力计算1、Up —桩的周长;—第i 层土极限侧阻力,按建筑桩基技术规范规定取值; h i —第i 层土厚度;q p —第i 层土极限端阻力,按建筑桩基技术规范规定取值;K —调整系数,K =2.0;2、 η—系数,取0.3~0.33;R 28—桩体28天立方体块强度;A p —桩的截面面积;单桩承载力两种计算方式中方法一主要适用于长桩,方法二适用于短桩,同时计算时取计算值较小者。

3、当用单桩静载荷试验确定单桩极限承载力标准值Ruk 后,Rk 可按下式计算: sp ukk R R γ=γsp —调整系数,宜取1.50-1.60,一般工程或桩间土承载力高、基础埋深大以及基础下桩数较多时应取低值,重要工程、基础下桩数kA q h q U R p p i i s p k ∑•+=,i s q ,pk A R R 28η=较少或桩间土为承载力较低的粘性土时应取高值。

二、复合地基承载力计算()k s p k k sp f m A mR f ,,1•−••+=βα—复合地基承载力标准值(kPa );A p —单桩截面积(m 2); α—桩间土强度提高系数,通常α=1;β—桩间土强度发挥系数;—桩间土承载力标准值(天然地基承载力标准值);三、置换率1、d —CFG 桩直径;S —桩间距;2、根据复合地基承载力公式计算。

四、桩间距桩距:一般为3-6倍桩径。

当在饱和粘性土中挤土成桩,桩距不宜小于4倍桩径。

根据桩土面积置换率计算桩中心距(s ),计算公式如下:(1)等边三角形布桩:m d s 105.1=(2)正方形布桩:k sp f ,k s f ,224/S d m π×=m d s 113.1=(3)长方形布桩:m d SS 113.11=S1—桩排距;如果桩间距已知,也可以利用此式确定面积置换率。

五、桩数确定p A mA n = 六、桩体强度计算pA R k 28R 3•≥。

CFG桩复合地基承载力计算2024新规范

CFG桩复合地基承载力计算2024新规范

CFG桩复合地基承载力计算2024新规范根据2024年新规范,可以按以下步骤计算CFG桩复合地基的承载力:
1.计算CFG桩的承载力
首先,需要计算CFG桩的承载力。

CFG桩的承载力可以通过基于桩侧
摩擦力和桩端阻力的计算方法进行估算。

具体的计算方法可以参考相关的
桩基设计规范。

2.计算复合地基的承载力
接下来,需要计算复合地基的承载力。

复合地基的承载力计算可以分
为两个部分:CFG桩的承载力和软土地基的承载力。

-CFG桩的承载力可以通过桩侧摩擦力和桩端阻力的计算方法进行估算。

-软土地基的承载力可以通过常规的软土承载力计算方法进行估算,
如广义土质分级法、标贯法等。

3.综合计算复合地基的承载力
在计算复合地基的承载力时,需要综合考虑CFG桩的承载力和软土地
基的承载力。

可以采用荷载传递系数的方法进行计算,将荷载按一定比例
分配给CFG桩和软土地基,再分别计算两者的承载力,并将其叠加求和。

4.结果分析
最后,根据得到的承载力计算结果,与设计要求进行对比分析。

如果
计算得到的承载力满足设计要求,则可以认为复合地基的承载力是满足要
求的;如果计算得到的承载力不满足设计要求,则需要进行进一步的加固设计。

总之,CFG桩复合地基承载力的计算遵循2024年新规范的要求,通过计算桩的承载力和软土地基的承载力,然后综合考虑两者的承载力,并与设计要求进行对比分析,以确定复合地基的承载力是否满足设计要求。

CFG复合地基

CFG复合地基

CFG桩复合地基1、定义:水泥粉煤灰碎石桩复合地基是由水泥、粉煤灰、碎石、砂加水拌合形成的高粘结强度桩。

(简称CFG桩),通过在基底和桩顶之间设置一定厚度的褥垫层以保护层以保证桩、土共同承担荷载,使桩、桩间土和褥垫层一起构成复合地基。

2、CFG桩复合地基技术指标CFG桩在工程中常用的施工工艺包括长螺旋钻孔灌注桩、管内泵压混合料成桩、振动沉管灌注桩。

根据现场情况,本项目采用长螺旋灌注桩。

施工现场CFG桩复合地基主要技术指标:桩径:400mm 桩间距:1200mm(电梯间)剩余主楼1500mm 桩长:16.5m 级配沙石粒径:10-30mm 厚度:300mm压实系数:0.95 单桩承载力:740KN/M3复合地基承载力:445Kpa3、适用范围:适用于处理粘性土、粉土、沙土和自重固结的素填土等地基,对淤泥质土应根据当地强制性标准或通过现场试验确定其适用性。

就地基而言,既可用于条基、独基、筏基,采取适当的技术处理措施后亦可用于刚度较软弱的基础及柔性基础。

4、设计计算:○1桩体强度:桩体试块抗压强度平均值应满足:ƒcu≥3R a/A P式中ƒcu—桩体混合料试块(边长150立方体)标准养护28d抗压强度平均值R a—单桩竖向承载力特征值(KN)A p—桩的截面积(m2)○2CFG桩复合地基承载力特征值:ƒspk=mR a/A p+β(1-m)ƒsk式中ƒspk—复合地基承载力特征值(Kpa)m—面积置换率A P—桩的截面积(m2)β—桩间土承载力折减系数ƒsk—处理后桩间土承载力特征值(Kpa)R a—单桩竖向承载力特征值(KN)○3CFG桩单桩竖向承载力特征值:单桩竖向承载力特征值R a的取值,当采取单桩荷载试验时,应将单桩极限承载力除以安全系数2;当无单桩荷载试验资料时,可按下式估算:R a=u p∑n i=1q si l i+q p A p式中u p—桩的周长(m);n—桩长范围的土层;q si、q p—桩周第i层土的侧阻力、桩端端阻力特征值(Kpa);l i—第i层土的厚度(m);A P—桩的截面积(m2)○4变形计算复合土层的分层与天然地基相同,各复合土层的压缩模量等于该层天然地基压缩模量的ξ倍,ξ值可按下式确定:ξ=ƒspk/ƒak式中ƒspk—复合地基承载力标准值(Kpa)ƒak—基础底面下天然地基承载力特征值(Kpa)复合地基的变形计算经验系数应根据地区沉降观测统计确定:地方性变形计算系数ΨsE—S为变形计算深度范围内压缩模量的当量值,应按下式计算:E—S=ΣA i/Σ(A i/E si)式中A i—第i层土附加应力系数沿土层深度的积分值;E si—基础底面下第i层土的压缩模量值(Mpa),桩长范围内的复合土层按复合土层的压缩模量取值5、工程实例:河南文化产业大厦位于郑州市东风路与商鼎路交叉口,该工程总建筑面积约15万M2,裙楼为框架剪力墙结构,主楼为核心筒剪力墙结构。

刚性桩复合地基计算书(CFG桩)三相岩土

刚性桩复合地基计算书(CFG桩)三相岩土

三相岩土—刚性桩复合地基计算程序淘宝有售1 说明:1.高程请输入绝对标高,或统一高程系统。

2.桩边至筏板边距离为采用等效实体法计算沉降时采用。

3.地基承载力修正深度适合建筑周边存在独立基础的地下车库时,修正深度不同于基础埋深时。

4.输入土层各压力段下孔隙比很重要,用于计算不用压力段下压缩模量,输入此值以后,输入的压缩模量值会在计算时被替换。

5.保存数据与读取数据均为EXCEL2003格式,计算书为word2003格式。

6.如有问题可发邮件到2419859460@ 淘宝店名:三相岩土复合地基计算书5号楼一、计算条件基础长度:67.83 m基础宽度:17.73 m地基承载力修正深度:0.50 m基底压力:570kpa准永久荷载:540KN/m3地下水位高程:18.00 m自然地面标高:32.21 m3.桩基参数桩长:26 m桩径:500 mm桩顶标高:21.73 m桩间土承载力发挥系数β:1.0单桩承载力发挥系数λ:0.9桩端阻力发挥系数:1.0桩顶标高: 21.73 m布桩形式:矩形桩间距X方向:1.7 m Y方向:1.8 m二、复合地基承载力计算1.桩在地层中位置主层号 亚层号 土层名称 地层计算厚度(m) 侧阻标准值(Kpa) 端阻标准值(Kpa) 3 0 细砂 4.12 65 — 4 0 粘土 7.90 53 — 5 0 细砂 9.20 70 — 7细砂 0.98 72 25002.单桩竖向承载力特征值计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-3)R a =12 ×(u p ∑q si l i +αp q p A p )=12 ×[π×0.50×(4.12×65+7.90×53+9.20×70+3.80×66+0.98×72)+1.00×π×0.252×2500.00]=1542.80KN R a —单桩竖向承载力特征值(KN) u p —桩周长(m)q si —桩周第i 层土极限侧阻力标准值(Kpa) l i —桩周第i 层土厚度(Kpa) αp —桩端端阻力发挥系数q p —桩的极限端阻力标准值(Kpa) A p —桩的截面积(m 2) 3.面积置换率计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-1) 布桩类型:矩形m= d 2d e2 =0.502/(1.052×1.70×1.80) =0.0640m —面积置换率 d —桩径(m)d e — 一根桩分担的处理地基面积的等效圆直径(m) 4.桩间土承载力基底以下存在软弱下卧层,天然地基承载力按207.8873Kpa 计算主层号 亚层号 土层名称 修正深度(m) 平均重度(KN/m3) 深度修正系数 修正后承载力(Kpa) 4粘土4.1218.751207.89f sk =207.89Kpa 5.复合地基承载力计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-2)f spk =λm R aA p+β(1-m)f sk = 0.90 × 0.0640 ×1542.80/(π×0.252)+0.95×(1-0.0640)×207.89=637.32Kpa f spk —复合地基承载力特征值 (kpa) λ—单桩承载力发挥系数 β—桩间土承载力发挥系数 6.复合地基承载力深度修正不考虑深度修正 f spa =f spk =637.32Kpa f spa —深度修正后复合地基承载力(kpa) 7.桩体试块抗压强度计算达到设计要求的复合地基承载力需要的单桩竖向承载力特征值R a =[f spk -β(1-m)f sk ]A p λm=[ 570.00-0.95×(1-0.0640)×207.89]×π×0.252/(0.90 × 0.0640)=1063.73KN 桩身试块抗压强度,根据《建筑地基处理技术规范》(JGJ79)第7.1.6条式(7.1.6-2)f cu ≥4λR aA p=4×0.90×1063.73/(π×0.252)/1000=24.08Mpaf cu —桩体试块抗压强度(Mpa)三、下卧层承载力验算1.天然地基下卧层承载力验算根据《建筑地基基础设计规范》(GB 50007)第5.2.7条式(5.2.7-1) P z +P cz ≤f azP z —下卧层顶面处附加压力值(kPa)P cz —下卧层顶面处土的自重压力值(kPa)f az —下卧层顶面处经深度修正后承载力特征值(kPa) 计算结果见下表主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加应力 PzKpa自重 应力 Pcz kpa Pz+ Pcz kpa 修正 深度 m 平均 重度 KN /m3 深度 修正 系数 修正后 承载力 kpa 计算 结果 3 0 细砂 21.73 19.70 1.0000 367.09 202.91 570.00 0.50 19.70 3.00 220.00 不满足 3 0 细砂 18.00 9.70 0.9739 357.50 276.39 633.89 4.23 17.37 3.00 414.39 不满足 4 0 粘土 17.61 7.70 0.9661 354.66 280.17 634.83 4.62 16.72 1.00 208.90 不满足 5 0 细砂 9.71 9.70 0.7042 258.52 341.00 599.52 12.52 11.03 3.00 697.74 满足 6 0 粘土 0.51 7.60 0.4613 169.33 430.24 599.57 21.72 10.47 1.00 402.10 不满足 7 0 细砂 -3.29 9.80 0.3936 144.50 459.12 603.62 25.52 10.04 3.00 1063.58 满足 8 0 卵石 -8.39 11.00 0.3226 118.42 509.10 627.52 30.62 10.00 4.40 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.2679 98.35 565.20663.5535.7210.141.60751.56满足10 0 细砂 -14.59 9.90 0.2578 94.63 576.09 670.72 36.82 10.14 3.00 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.2214 81.27 620.64 701.91 41.32 10.11 1.60 860.29 满足 12细砂 -20.19 9.800.213678.40631.53 709.93 42.42 10.10 3.001620.72 满足2.复合地基下卧层承载力验算根据《建筑地基基础设计规范》(GB 50007)第5.2.7条式(5.2.7-1) P z +P cz ≤f az计算结果见下表主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加 应力 Pz Kpa 自重应力 Pcz kpaPz+Pcz kpa修正 深度 m平均 重度 KN /m3深度 修正 系数 修正后 承载力 kpa计算 结果8 0 卵石 -8.39 11.00 0.3226 118.42 509.10 627.52 30.62 10.00 4.40 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.2679 98.35 565.20 663.55 35.72 10.14 1.60751.56 满足 10 0 细砂 -14.59 9.90 0.2578 94.63 576.09 670.72 36.82 10.14 3.00 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.2214 81.27 620.64 701.91 41.32 10.11 1.60 860.29 满足 12细砂 -20.19 9.800.213678.40631.53 709.93 42.42 10.10 3.001620.72 满足3.按桩基模式验算桩端下卧层承载力根据《建筑桩基技术规范》(JGJ 94)第5.4.1条式(5.4.1-1) σz +γm z ≤f azσz —作用于下卧层顶面的附加应力γm —下卧层顶面以上深度修正范围内土层加权平均重度(KN/m 3) z —修正深度(m)σz0=(F k +G k )-3/2(A 0+B 0)∑q sik l iA 0+B 0=[570.00-3/2×(67.83+17.73-4×0.80)×(4.12×65+7.90×53+9.20×70+3.80×66+0.98×72)]/[(67.83-2×0.80)×(17.73-2×0.80)]=212.08kpa σz0—桩端位置附加应力(kpa)F k +G k —建筑荷载与基础覆土重之和,即基底压力(kpa) A 0、B 0—桩群外缘矩形底面的长、短边边长(m) 计算结果见下表 主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加 应力 σz自重应力 γ·zkpaσz+ γ·z kpa修正 深度 m平均 重度KN/m3深度修正 系数修正后承载力kpa 计算 结果 7 0 细砂 -4.27 9.80 1.0000 212.08 468.72 680.81 26.50 3.00 10.03 1092.41 满足 8 0 卵石 -8.39 11.00 0.9636 204.36 509.10 713.46 30.62 4.40 10.00 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.7938 168.36 565.20733.56 35.72 1.60 10.14 751.56 满足 10 0 细砂 -14.59 9.90 0.7531 159.72 576.09 735.81 36.82 3.00 10.14 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.6043 128.16 620.64 748.80 41.32 1.60 10.11 860.29 满足 12细砂 -20.19 9.800.5733121.59 631.53 753.12 42.42 3.0010.10 1620.72 满足四、沉降计算1.天然地基沉降计算根据《建筑地基基础设计规范》(GB 50007)第5.3.5条式(5.3.5)s=ψs ∑p 0E si(z i αi -z i-1αi-1)s —地基最终变形量(mm) ψs —沉降计算经验系数p 0—准永久组合时基础底面处的附加应力(kpa),p0=337.09kpa z i 、z i-1—基础底面至第i 层土、第i-1层土底面的距离(m)αi 、αi-1—基础底面至第i 层土、第i-1层土底面范围内平均附加应力系数E si —基础底面下第i 层土的压缩模量(Mpa),应取土的自重压力至土的自重压力与附加压力之和的压力段计算,根据《土工试验方法标准》(GBT50123)第14.1.9、14.1.10条E si =(1+e i0)(p i2-p i1)e i1-e i2e 0—初始孔隙比p i1、p i2—第i 层土自重应力、第i 层土自重应力与附加应力之和(Kpa)e i1、e i2—第i 层土自重应力下孔隙比、第i 层土自重应力与附加应力之和作用下孔隙比,根据高压固结试验内插计算 根据《建筑地基基础设计规范》(GB 50007)第5.3.7条,地基变形计算深度z n 应符合式(5.3.7)条规定Δs n '≤0.025∑Δs i ' Δs i '—在计算深度范围内,第i 层土计算变形值(mm)Δs n '—在由计算厚度向上取厚度为Δz 的土层计算变形值(mm) Δz —根据基础宽度b=17.73m ,查表5.3.7,Δz=1m 计算过程见下表主层亚层土层 名称计算 深度 m 有效 重度 KN/ 自重 应力 Pcz 附加 应力 PzPz+ Pcz kpa孔隙比 e1 孔隙比 e2 压缩 模量 Mpa平均附加Ai本层 沉降号 号 m3 kpa Kpa 应力系数 Δs' mm 3 0 细砂 1.00 19.70 202.91 337.09 540.00 19.00 0.9998 0.9998 17.74 3 0 2.00 19.70 222.61 336.87 559.48 19.00 0.9988 0.9978 17.70 3 0 3.00 19.70 242.31 335.41 577.71 19.00 0.9962 0.9910 17.58 3 03.73 19.70 256.69 331.80 588.49 19.00 0.9930 0.7154 12.69 3 0 细砂4.12 9.70 264.37 327.60 591.9719.00 0.9909 0.3783 6.71 4 0 粘土 5.12 7.70 274.07 324.82 598.89 0.683 0.636 12.95 0.9838 0.9545 24.85 4 0 6.12 7.70 281.77 316.13 597.90 0.677 0.636 14.44 0.9746 0.9275 21.66 4 0 7.12 7.70 289.47 305.64 595.11 0.671 0.636 16.39 0.9635 0.8959 18.42 4 0 8.12 7.70 297.17 293.91 591.08 0.665 0.637 19.15 0.9509 0.8614 15.16 4 0 9.12 7.70 304.87 281.50 586.37 0.663 0.637 20.44 0.9372 0.8253 13.61 4 0 10.12 7.70 312.57 268.86 581.43 0.662 0.637 20.34 0.9225 0.7889 13.07 4 0 11.12 7.70 320.27 256.33 576.60 0.661 0.638 20.24 0.9073 0.7529 12.54 4 012.02 7.70 327.20 244.14 571.34 0.661 0.638 20.13 0.8932 0.6477 10.85 5 0 细砂 13.02 9.70 334.90 233.58 568.48 20.00 0.8774 0.6876 11.59 5 0 14.02 9.70 344.60 222.37 566.97 20.00 0.8616 0.6555 11.05 5 0 15.02 9.70 354.30 211.76 566.06 20.00 0.8458 0.6250 10.53 5 0 16.02 9.70 364.00 201.75 565.75 20.00 0.8303 0.5962 10.05 5 0 17.02 9.70 373.70 192.34 566.04 20.00 0.8149 0.5691 9.59 5 0 18.02 9.70 383.40 183.49 566.89 20.00 0.7998 0.5435 9.16 5 0 19.02 9.70 393.10 175.18 568.28 20.00 0.7851 0.5194 8.76 5 0 20.02 9.70 402.80 167.38 570.18 20.00 0.7707 0.4968 8.37 5 0 21.02 9.70 412.50 160.05 572.55 20.00 0.7567 0.4755 8.01 5 021.22 9.70 414.44 153.15 567.5920.00 0.7539 0.0927 1.56 6 0 粘土 22.22 7.60 424.14 151.83 575.97 0.624 0.608 17.44 0.7403 0.4516 8.73 6 0 23.22 7.60 431.74 145.41 577.15 0.623 0.608 17.39 0.7270 0.4328 8.39 6 0 24.22 7.60 439.34 139.37 578.71 0.622 0.607 17.33 0.7142 0.4152 8.08 6 025.02 7.60 445.42 133.67 579.09 0.621 0.607 17.29 0.7041 0.3201 6.24 7 0 桩端 26.00 9.80 452.87 129.34 582.21 21.70 0.6921 0.3783 5.88 7 0 细砂 26.02 9.80 453.06 124.30 577.36 21.70 0.6919 0.0076 0.12 727.029.80462.86124.20587.0621.700.68000.37075.76总沉降计算值s'=334.45mm在基底以下27.02m 以上1m 厚度土层计算变形值 Δs Δs=5.76mm<0.025∑Δs'=8.36mm 沉降计算深度满足要求。

第7章 CFG桩复合地基

第7章 CFG桩复合地基
CFG桩若采用沉管法施工,对桩间土具有挤密效果。 3、加固地基土固结速率
岩土工程研究所
南京造纸厂软基CFG桩加固前后土性指标对比
4、桩顶设置垫层作用
形成复合地基:为桩上、下刺入
提供条件。
减小刚性基础底面的应力集中。
通过变化垫层厚度调整桩土应力比。
岩土工程研究所
岩土工程研究所
7.3设计计算
地基处理技术
第七章 CFG桩复合地基
岩土工程研究所
7.1 概述
CFG桩:水泥粉煤灰碎石桩(Cement-Flash-Gravel
Pile)。在碎石桩基础上加进一些石屑、粉煤灰和水泥,加 水拌和制成的强度较高的粘结材料桩。
CFG桩复合地基属于刚性桩复合地基。
CFG桩于1988年由中国建筑科学研究院提出,现已广泛 应用于建筑工程、公路工程、铁路工程等地基加固中。
一、设计参数 1、桩径:一般为35-60cm
2、桩距
对挤密性好的土,间距可取的较小。
对于单、双排布桩的条形基础和面积不大的独立基础,桩距可 取的较小。满堂布桩的筏板基础、箱形基础和多排布桩的条形
基础,桩距适当放大。
岩土工程研究所
3、承载力验算 复合地基承载力特征值:
f spk m Ra Ap (1 m ) f sk
关于Ra取值:
(1)极限承载力除以2 (2)计算公式:
R a u p q si l i q p A p
i 1 n
岩土工程研究所
4、沉降计算
S ms
n1
p
i 1
E si
hi
i n1 1

n2
pi E si
q p Ap
பைடு நூலகம்

10-CFG复合地基计算-国标

10-CFG复合地基计算-国标

土层顶 高程
土层底 高程
分段长度 li (m)
分பைடு நூலகம்侧 摩阻力 (kN)
桩端持力层 阻力特征值
q pa (kPa)
2 粉质粘土 3 粉质粘土夹粉土 4 粉土 5 粉质粘土
39.0 29.0 34.0 38.0
23.05 21.73 17.13 8.63
21.73 17.13 8.63 6.13
1.32 4.60 8.50 2.50
满足要求
六、地基处理后各土层的变形模量计算及结果:
土层名称 2 粉质粘土
天然地基承 载力特征值 ƒak(kPa)
220
3 粉质粘土夹粉土
180
4 粉土
210
5 粉质粘土
220
复合地基 承载力特征

ƒspk(51k4Pa) 480
506
514
ζ=ƒspk/ƒak
2.34 2.67 2.41 2.34
天然地基 压缩模量
由土层参数计算所得的桩承载力特征值Ra大于实取值Ra',满足要求
备注
桩侧土摩阻力和桩端阻力特征值 按干作业法施工工艺取值
四、桩身强度验算:
桩身混凝土强度等级
C30
由公式 f'cu=4×λ×Ra/AP×[1+γm(d-0.5)/fspa] (做深度修正)得
fcu=
30.0 N/mm2
f'cu=
21.3 N/mm2
fa= 221.85 kPa
fspa=
500 kPa
天然地基承载力不满足设计要求,需要CFG复合地基处理。
二、复合地基计算(按正三角形)
CFG复合地基承载力特征值:
fspk=fa1-γm*(d-0.5)

CFG桩复合地基承载力及变形计算

CFG桩复合地基承载力及变形计算

桩径 d=0.60m 截面积 A p =0.28m²周长 u p =1.9m 桩长 l=25.0m
桩端承载力折减系数 α=0.60
cu28a cu28p 矩形布桩
桩间距S1=2.00m
桩间距S2=2.00m
桩间土层为:2.26m 面积置换率 m=(d 2/d e )2=0.070
桩间土承载力特征值 f sk =40Kpa
λ=0.9
β=0.9
复合地基承载力如需进行深度修正时:
深度修正系数 ηd =1.5
基底以上土加权平均重度 γm =20 kN/m²f spa =f spk +ηd γm (d-0.5)=161 kN/m² 桩身抗压强度还需满足:
f cu28≥
6.81 MPa
可压缩地基深度 Z n =40.00 m 桩底标高:-25.00 m
地基处理深度25.0m 8.14 MPa
复合地基顶面附加压力值 p z =60 kPa
ψ = 0.657
沉降量变形:S=ΣS i +ΣS j =95.8 mm
3.地基变形计算
1.增强体单桩承载力计算
单桩承载力特征值Ra=572kN 取Ra=570kPa
复合地基承载力特征值f spk = λmR a / A p +β(1-m)f sk =2.复合地基承载力计算
161KPa
1杂填土
单桩分担的处理地基面积的等效圆直径 d e =水泥粉煤灰碎石桩(CFG)复合地基承载力及变形计算。

第一讲CFG桩复合地基

第一讲CFG桩复合地基

第一讲CFG桩复合地基(一)第一讲CFG桩复合地基(一)目录概述2.CFG 桩体材料3.CFG桩设计计算4.CFG桩施工工艺5.实施举例1.概述CFG桩是在碎石桩体中掺加适量石屑、粉煤灰和水泥加水拌和,制成的一种粘结强度较高的桩体,称之为水泥粉煤灰碎石桩(Cement Fly-ash Gravel Pile),简称为CFG桩。

CFG桩与碎石桩不同主要体现在:单桩承载力、复合地基承载力、地基变形、三轴应力应变曲线及适用范围等方面,如表1所示。

CFG桩、桩间土和褥垫层一起构成CFG桩复合地基。

CFG桩复合地基技术是由中国建筑科学研究院地基所研制成功的,并于1996年被国家列为重点推广项目。

CFG桩的施工早期常用振动沉管机设备,现在施工长桩多用超流态混凝土压灌工艺,即利用新型中空式长螺旋钻机一次性钻进至设计孔深,从钻杆内(内径通常不小于150mm)泵压超流态混凝土,边压注CFG料边提升钻杆至桩顶而成桩的一种工艺。

施工CFG 短桩多采用长螺旋钻机或人工洛阳铲干成孔,孔底夯实,浇灌CFG料并用碎石桩应用的工程类型有工业和民用建筑,高耸结构物、多层和高层建筑,基础形式有条形基础、独立基础、箱形基础和筏基。

有滨海一带的软土,也有承载力在200kPa左右的较密实的土。

2.CFG 桩体材料近些年,随着CFG桩在高层建筑地基处理广泛应用,桩体材料组成和早期有变化,主要由水泥、碎石、砂、粉煤灰和水组成,其中粉煤灰为Ⅱ~Ⅲ级细灰,在桩体混合料中主要提高混合料的可泵性。

在CFG桩(或素混凝土桩)工程中,一般采用如下几种外加剂,来达到工程要求,如早强剂、防冻剂、泵送剂等。

3.CFG桩设计计算3.1单桩竖向承载力特征值下式计算:单桩承载力特征值Ra式中:Ra—单桩承载力特征值(KN);qsi—第i层土侧摩阻力特征值(Kpa),可按地区经验确定;qp—桩端端阻力特征值(kPa),可按地区经验确定;Ap—单桩截面积(m2);Up—桩周长(m);li-第 i层土厚度(m);n——桩长范围内划分的土层数;ap---桩端端阻力发挥系数,与增强体的荷载传递性质、增强体长度及桩土相对刚度密切相关,CFG桩设计一般取1.0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表:18-1表:18-2
CFG桩复合地基承载力估算
CFG桩复合地基承载力估算
按正方形布桩
按正方形布桩
单桩承载力(KN):505.2574
单桩承载力(KN):310.7344
桩体强度应不小于(MPa):12.8728桩体强度应不小于(MPa):7.9168桩间距(m): 1.45桩间距(m): 1.2等效直径(m):1.6385等效直径(m):1.356面积置换率:0.059597面积置换率:0.087016
桩间土承载力发挥系数:0.9桩间土承载力发挥系数:0.85桩端端阻力发挥系数:1桩端端阻力发挥系数:1单桩承载力发挥系数:0.9
单桩承载力发挥系数:0.9
处理后桩间土承载力特征值(Kpa):140
处理后桩间土承载力特征值(Kpa):160
复合地基承载力特征值的估算值(KPa):
复合地基承载力特征值的估算值(KPa):
334.3
317.9
注:以上复合地基承载力特征值为估算值,应用时应以现场静载荷试验确定的为准。

注:以上复合地基承载力特征值为估算值,应用时应以现场静载荷试验确定的为准。

##1n
a p si pi p p p i R u q l q A α==+=
∑()()1spk a p sk f m R A m f λβ=+-=
1
n
a p si pi p p p i R u q l q A α==+=
∑()()1spk a p sk f m R A m f λβ=+-=。

相关文档
最新文档