高分子液晶的表征方法和原理

合集下载

第五章--高分子液晶材料

第五章--高分子液晶材料

最重要的应用是制备:
A、各种特殊性能高分子膜材料(可用于生物活性
混合物的分离纯化,如生物膜)
B、胶囊(可用于药物的控制释放,如脂子体即微胶 囊通过对药物的定点释放和缓释作用 可以增加药效及其持续时间)。
二、溶致型主链高分子液晶

溶致型主链高分子液晶的结构
溶致型主链高分子液晶分子一般不具有两亲结
构,在溶液中也不形成胶束结构。
二、高分子液晶的分子结构与性质 1、高分子液晶的典型结构
高分子液晶的结构是,由通常呈现近似棒状或片
状的刚性部分和连接刚性部分之间的柔性链组成。
刚性部分通常呈现近似棒状或片状,这是液晶
分子在液态下维持某种有序排列所必须的结构因素。
刚性结构通常由两个苯环、或者脂肪环、或者
芳香杂环,通过一个刚性连接部件[x]连接组成(如
在层内分子可以沿着层面相对运动,保持其流 动性;这类液晶具有二维有序性。由于层与层之间 允许有滑动发生,因此这种液晶在其粘度性质上仍
存在着各向异性。
根据晶型的细微差别,又可以分成 SA、SB、SC、 SD、SE、SF、SG、SH、SI 等 9个小类。
③、胆甾醇型液晶
由于这类液晶,许多是胆甾醇的衍生物,所
用会有所削弱。间隔体长度对聚合物液晶的相转变
温度也有明显影响(表5-8)。
(表5-8)。
连接方式:
间隔体与聚合物骨架的连接,经常通过酯键、
C-C键、醚键、酰胺键实现;而间隔体与刚性部分
的连接,则通过酯键、C-C键、醚键、酰胺键和碳
酸酯键实现。 连接方式不同会对液晶的稳定性产生影响。
③、刚性体(mesogen)
置和连接次序,分为主链型高分子液晶(刚性部分
处于主链上)和侧链型高分子液晶(刚性部分连接

高分子液晶

高分子液晶
晶概述 • 高分子液晶结构与性质 • 高分子液晶合成与制备方法 • 高分子液晶在显示技术领域应用 • 高分子液晶在其他领域拓展应用 • 高分子液晶未来发展趋势与挑战
01
液晶概述
液晶定义与特性
定义 光学性质 电学性质 流动性
液晶(Liquid Crystal)是一种介于液态和晶态之间的物质状态, 具有液体的流动性和晶体的光学各向异性。
典型案例分析
01
02
03
04
05
基板制备
薄膜晶体管(TFT) 液晶层制备 制备
偏振片与背光模组 驱动电路与控制系
组装
统设计
选用透明导电材料如ITO (氧化铟锡)作为基板,并 进行清洗、烘干等预处理。
在基板上制备薄膜晶体管, 用于控制每个像素点的开关 状态。
将高分子液晶材料涂覆在两 块基板之间,形成液晶层。 通过控制液晶层的厚度和液 晶分子的排列,实现光的调 制和图像显示。
行业挑战应对
面对激烈的市场竞争和不断变化的市场需求,高分 子液晶材料行业需要不断创新,加强产学研合作, 提高自主创新能力,同时关注政策法规的变化,及 时调整发展策略。
THANK YOU
传感器件领域:温度、压力等传感器设计
温度传感器
高分子液晶的相变温度对温度敏感,可用于设计温度传感器,具有响应快、精度高、稳 定性好等优点。
压力传感器
高分子液晶在压力作用下可发生形变,进而改变其光学性质,可用于设计压力传感器, 具有灵敏度高、结构简单等特点。
06
高分子液晶未来发展趋势与挑 战
新型高分子液晶材料设计思路探讨
原位聚合法
在液晶材料存在下,通过高分子单体的原位聚合得到高分子液晶。优点是液晶材料能够均匀分散在高分 子基体中,且无需使用大量有机溶剂;缺点是聚合反应条件较为苛刻,难以控制。

第四章高分子液晶材料上课版

第四章高分子液晶材料上课版
的基团,对形成的液晶具有一定稳定作用,因此也
是构成液晶分子不可缺少的结构因素。常见的 R包
括—R’、 —OR’、 —COOR’、 —CN、 —OOCR’、
—COR’、 —CH=CH—COOR’、 —Cl、 —Br、
—NO2等。
37
2.影响聚合物液晶形态与性能的因素
影响高分子液晶形态与性能的因素包括外 在因素和内在因素两部分。 内在因素为分子结构、分子组成和分子间力。 外部因素则主要包括环境温度、溶剂等。
29
高分子液晶具有以上四种结构形态,其中,以具有向 列态或近晶态的高分子较多,也是人们较为感兴趣的高 分子液晶。 由于液晶相是一种有序结构,所以,凡是可以用于 有序结构分析的方法都能用来表征液晶性质。例如,偏 光显微镜、X-射线衍射和差热分析等。
如何分析呢?
30
3.根据高分子液晶的形成过程分类
按液晶的形成条件可分为溶致性液晶、热致性液晶、压致 型液晶、流致型液晶等等。 熔融型液晶形成过程:
第四章高分子液晶材料
1
研究内容
4.1高分子液晶概述 4.2高分子液晶的性能分析与合成方法
4.3高分子液晶的研究和表征方法 4.4高分子液晶的其他性质与应用
2
高分子材料结晶形态
根据结晶条件不同,又可形成多种形态的晶体:单晶、球 晶、伸直链晶片、纤维状晶片和串晶等。 (1)单晶 具有一定几何外形的薄片 状晶体。一般聚合物的单晶只 能从极稀溶液(质量浓度小于 0.01wt%)中缓慢结晶而成。 单晶
其通常采用加成聚合或缩聚反应制备。
47
一、溶致型侧链高分子液晶
1.溶致型侧链高分子液晶的合成
A型液晶的合成
通过加聚反应形成侧链高分子液晶。 通过接枝反应与高分子骨架连接,构成侧链高 分子液晶。

《高分子液晶》课件

《高分子液晶》课件

高分子液晶材料种类有限
目前已知的高分子液晶材料种类相对较少,限制了其在各个领域 的应用范围。
加工成型困难
高分子液晶材料在加工成型过程中容易出现缺陷,如气泡、裂纹等 ,影响产品的性能和使用寿命。
稳定性有待提高
高分子液晶材料的稳定性较差,容易受到温度、湿度等环境因素的 影响,导致性能下降。
未来发展趋势预测
传感器和执行器设计原理
1 2
温度传感器
高分子液晶的相变温度对温度敏感,可用于设计 温度传感器,用于监测环境温,其光学性质会发 生变化,因此可用于设计压力传感器。
3
执行器原理
利用高分子液晶的电光效应,可以设计出电场控 制的执行器,如液晶驱动的微型机器人等。
序参数(Order Parameter):描述液晶中分子取向 有序程度的物理量,通常表示为S。S=0表示完全无序
,S=1表示完全有序。
取向分布函数(Orientation Distribution Function ):描述液晶中分子取向分布的函数,可以反映液晶
的有序程度和各向异性。
Frank弹性常数:表征液晶弹性性质的物理量,与液 晶中分子的取向有序性密切相关。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
01
高分子液晶结构与 性质
液晶态结构特点
01
02
03
分子排列有序性
液晶中分子排列具有一维 或二维的长程有序性,不 同于晶体的三维有序。
流动性
液晶具有类似液体的流动 性,分子可以在一定范围 内自由移动。
各向异性
由于分子排列的有序性, 液晶在物理性质上表现出 各向异性,如光学、电学 等性质。

第5章-液晶高分子材料

第5章-液晶高分子材料

3) 根据高分子液晶的形成过程分类
形成条件
热致液晶 溶致液晶
依靠温度的变化,在某一温度范围 形成的液晶态物质
依靠溶剂的溶解分散,在一定浓度 范围形成的液晶态物质
热致液晶

固体


液晶

液体
溶致液晶
固体 +溶剂
+溶剂
液晶
液体
- 溶剂
- 溶剂
第一节 高分子液晶概述 高分子液晶与小分子液晶相比特殊性
① 热稳定性大幅度提高; ② 热致性高分子液晶有较大的相区间温度; ③ 粘度大,流动行为与一般溶液明显不同。
CN , NO N(CH 3 )2
第一节 高分子液晶概述
1.5 高分子液晶的分子结构与性质
2) 影响聚合物液晶形态和性能的因素
内在因素:
结构, 分子组成, 分子间作用力。刚 性部分的形状,连接单元,
外部因素: 液晶形成过程中的条件主要包括: 形成
温度, 溶剂(组成、极性、量等),液晶 形成时间等。
4
第一节 高分子液晶概述
1.2 液晶的发展历史
在1888年,奥地利植物学家莱尼茨尔(F. Reinitzer)首次发现物质的液晶态。
胆甾醇苯甲酸酯
高分子化合物的液晶性能是在20世纪 50 年代发现。最 早发现的高分子液晶材料为聚(4-氨基苯甲酸)以及聚对苯 二甲酰对苯胺。 我国高分子研究是在1972年起步, 最近高分子液晶材 料已成为高分子研究领域的一个重要部分。
OR
Si CH2 m O
R
第二节 高分子液晶的性能分析和合成方法

高分子液晶的合成主要基于小分子液晶的高
分子化,即先合成小分子液晶(液晶单体),在

形成高分子液晶的条件

形成高分子液晶的条件

形成高分子液晶的条件高分子液晶是一种具有特殊结构的高分子材料,具有液晶相存在的特性。

它具有很强的自组装能力和定向性,可以形成各种形态的自组装结构,如柱状、层状、球状等。

高分子液晶材料在光电领域、生物医学领域、纳米技术等领域中有广泛的应用前景。

本文将介绍形成高分子液晶的条件。

一、高分子液晶基本概念高分子液晶是一种由含有刚性基团或侧链的高分子材料,在适当条件下可以形成液晶相态,表现出类似于小分子液晶所具有的各种特殊性质和现象。

与小分子液晶相比,高分子液晶具有更多样化和可控性更强的自组装结构,能够形成更为复杂和多样化的超分子结构。

二、形成高分子液晶条件1. 高聚物链段刚性度高聚物链段刚性度是影响高分子材料能否形成液晶相态的重要因素。

通常来说,含有大量刚性链段或侧链的高分子材料更容易形成液晶相态。

例如,含有苯环、噻吩环、三嗪环等刚性基团的高分子材料,都具有很强的液晶相态形成能力。

2. 高聚物分子量高分子材料的分子量也是影响其形成液晶相态的重要因素。

通常来说,高聚物的分子量越大,其自组装结构越稳定,形成液晶相态的能力也更强。

但是过高的分子量也会导致高聚物链段之间难以自组装,从而影响其形成液晶相态。

3. 溶剂和温度溶剂和温度是影响高分子液晶形成的两个重要因素。

通常来说,在适当的溶剂中,并在一定温度范围内处理高聚物材料可以促进其形成液晶相态。

不同类型的溶剂对于不同种类的高聚物材料具有不同程度的溶解性和作用效果,在选择溶剂时需要综合考虑多种因素。

4. 配位作用配位作用在高分子液晶中起着非常重要的作用。

通过引入含有金属离子的配体或者高分子材料中含有金属离子的侧链,可以形成具有特殊结构和性质的高分子液晶材料。

这种方法不仅可以控制高分子材料的自组装结构,还可以实现高分子液晶材料的光电响应等多种性质。

5. 外场作用外场作用是指通过外加电场、磁场、光场等外界条件来影响高分子液晶自组装结构和相态。

这种方法可以在一定程度上控制高聚物链段之间的相互作用,从而实现对高分子液晶材料性质和结构的调控。

第四章液晶高分子详解

第四章液晶高分子详解

(2)机械性质
特别是拉伸强度和硬度与聚合物分子的取向度有密切 关系。沿长轴方向的拉伸程度越高,聚合物分子的取 向度也越高,因此机械强度也越高。
由于结晶程度高,液晶聚合物的吸潮率很低。
良好的热尺寸稳定性
透气性非常低
4.热熔型主链聚合物的应用
在电子工业中得到应用,制作高精确度的电路多接点 接口部件。
目前大多数热熔型主链液晶是通过酯交换反响制备的,如 乙酰氧基芳香衍生物与芳香羧酸衍生物反响脱去乙酸,反 响在聚合物的熔点以上进行。最典型的代表是聚酯液晶。
例:PET/PHB共聚酯的制备
先合成对乙酰氧基苯甲酸〔PABA〕:
在 275℃和惰性气氛下,PET在PABA的作用下酸解,然后脱去乙 酸,与PABA缩合成共聚酯。
聚 合 反 应 C H 2 C H C (H 2 )C 8O O H
C HC H 2 n C H 2 C (H 2 )C 7O O H
② 接枝共聚
③ 缩聚反响
2.溶液型侧链聚合物液晶的晶相结构与性质
溶液型高分子液晶 在溶液中通常可以 形成三种晶相,即 近晶相的层状液晶 (lamellar)、向列型 六角型紧密排列液 晶(hexagonal)和立 方晶相液晶(cubic)。
谢谢大家!
最重要的两种是聚对苯酰胺〔PBA〕和聚对苯二甲酰对苯二胺 〔PPTA〕。在我国分别被称为芳纶14和芳纶1414。
例如:PBA的制备
H N 2
OS O C l2 O S N O H
O H C l N
O H H
O
PBA溶液属于向列型液晶,用它纺成的纤维具有很高的强度,用作 轮胎帘子线。
PPTA具有刚性很强的直链结构,分子间具有很强的氢键, 因此只能溶于浓硫酸中,用它纺成的纤维就是著名的Kevlar 纤维。

高分子液晶

高分子液晶

SD
无织构
SE

镶嵌织构;假各向同性织构;假象或寄形(焦锥,镶嵌)织构;
SF
镶嵌-纹影织构;假象或寄形(焦锥,纹影-镶嵌,镶嵌)织构;
SG
镶嵌板块织构;假象或寄形(焦锥,镶嵌)织构
SH
假象或寄形(焦锥,镶嵌,纹影)织构
SI
焦锥织构;纹影织构
液晶的DSC分析
H19C9
NN
C9H19
CH3 CH2 C
CO
彩色的显示方法
高分子液晶的研发历史
1888 1940-1956 1956 1961 1962 1965 1972 1974 1975-76 1975 1977 1978 1983 1984 1985 1986 1987 1989 1991 1994 2001
Recognition of liquid crystals Lyotropic biopolymers: tobacco mosaic virus, cucumber virus, collagen and poly(γ-benzyl-L-glutamate) Anisotropic theory: P. J. Flory (“rigid rod” → liquid crystalline solution) Lyotropic solution of DNA Lyotropic solution of tRNA obtained from baker’s yeast Lyotropic wholly aromatic polyamides, Kevlar™(Du Pont) and Twaron™(Akzo) Melt-processable wholly aromatic polyesters, Ekkeel I-2000™ Thermotropic polyesters, aromatic-aliphatic copolyesters: X7G™ Wholly aromatic polyesters, polyazomethines “Linkageless” lyotropic polymers: poly(1,4-phenylenebenzobisoxazole) and poly(1,4-phenylenebenzobisthaizole) Lyotropic solution of sickle-cell hemoglobin Lyotropic solution of RNA Ekonol™ (Sumitomo Chemical) Xydar™ (Amoco Chemical) Vectra™ (Hoechst Celanese) Rodrun™ (Unitika) Victrex-SRP™ and Vectran-HS™ (ICI) Granlar™ (Granmont-Montedison) Zylon™ (Toyobo) Zenite™ (Du Pont) Titan™ (Eastman Chemical)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子液晶的表征方法和原理
高分子液晶的表征方法和原理
高分子液晶的表征是一个较为复杂的问题。

结构上细微的差别常常难以明显地区分,因此,经常出现对同一物质得出不同研究结论的现象。

因此经常需要几种方法同时使用,互相参照,才能确定最终的结构。

目前常用于研究和表征高分子液晶的有以下一些手段。

热台偏光显微镜法(POM法)
示差扫描量热计法(DSC法)
X射线衍射法
核磁共振光谱法
介电松弛谱法
相容性判别法
光学双折射法
(1)偏光显微镜(PLM)表征液晶态及织构特点。

利用普通偏光显微镜,可以测定溶致高分子液晶的临界浓度(当高分子浓溶液超过此浓度后,即出现液晶相。

)。

方法是将不同浓度的高分子浓溶液,以薄层形式置于偏光显微镜载物台上观测,出现双折射时(物镜看到图像时)高分子容易浓度,即是该高分子溶液出现液晶相的临界浓度;用带有控温加热台的偏光显微镜,在观测中变化加热台的温度,可以测定热致液晶高分子熔体的液晶化温度(即逐步对被测样品升温,当高分子熔融,至物镜出现液晶图像时,样品的温度即为该高分子熔体的液晶化温度。

);用锥光系统偏光显微镜可以观测高分子液晶态的干涉图像,由干涉图的形状可以确定液晶态的光轴数及光性的正负;用偏光显微镜可观测到不同高分子液晶所具有的不同织构图像,由液晶的织构图象可以定性判断高分子液晶的类型。

(2)示差扫描量热(DSC)法测定热致高分子液晶的液晶化温度。

用DSC测定高聚物程序升温时的DSC曲线,,在熔点以上出现的吸热峰所对应的温度,即是该高分子的热致液晶化温度。

相关文档
最新文档