2020年辽宁省盘锦市中考数学试卷(含答案解析)

合集下载

辽宁省盘锦市中考数学试题(含答案)

辽宁省盘锦市中考数学试题(含答案)

盘锦市初中毕业升学考试数学试卷(时间:120分钟满分:150分)一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共24分)1. 下列计算正确的是().A. 2(x+y)=2x+yB. x4·x3=x7C. x3-x2=xD. (x3)2=x52. 一元二次方程x2-2x=0的解是().A. x1=0,x2=2B. x1=1,x2=2C. x1=0,x2=-2D. x1=1,x2=-23. 把不等式3x-6>0的解集表示在数轴上,正确的是().4. 如图是某几何体的三视图,则该几何体的名称是().A. 圆柱B. 长方体C. 圆锥D. 球体(第4题)5. 如图,已知⊙O的半径为4,点D是直径AB延长线上一点,DC切⊙O于点C,连结AC,若∠CAB=30°,则BD的长为().A. 4 3B. 8C. 4D. 2 36. 下列事件为不可能事件的是().(第5题)A. 某射击运动员射击一次,命中靶心B. 掷一次骰子,向上的一面是5点C. 找到一个三角形,其内角和为360°D. 经过城市中某一有交通信号灯的路口,遇到红灯7. 若 |a -b |=b -a ,且|a |=3,|b |=2,则(a +b )3的值为( ). A. 1或125 B. -1 C. -125 D. -1或-1258. 如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点. 若青蛙从5这点开始跳,则经次跳后它停在的点所对应的数为( ).A. 1B. 2C. 3D. 5二、 填空题(每小题3分,共24分) (第8题) 9. -12的倒数是________.10. 反比例函数y =kx 的图象经过点(-2,3),则k =________.11. 一组数据2,3,5,9,6的极差是________.12. 如图,点A 、B 、C 在⊙O 上,∠AOB =80°,则∠ACB =________.(第12题)13. 如图,矩形纸片ABCD ,AD =2AB =4,将纸片折叠,使点C 落在AD 上的点E 处,折痕为BF ,则DE =________.(第13题)14. 关于x 的方程(k -2)x 2-4x +1=0有实数根,则k 满足的条件是________. 15. 将抛物线y =x 2-2向左平移3个单位,所得抛物线的函数表达式为________.16. 如图,在正方形ABCD 中,点E 、F 分别为AD 、AB 的中点,连接DF 、CE ,DF 与CE 交于点H ,则下列结论:①DF ⊥CE ;②DF =CE ;③DE CE =HD CD ;④DE DC =HDHE.其中正确结论的序号有________.(第16题)三、 解答题(每题8分,共16分)17. 先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.18. 如图,△ABC 的三个顶点坐标分别为A (-2,4)、B (-3,1)、C (-1,1),以坐标原点O 为位似中心,相似比为2,在第二象限内将△AB C 放大,放大后得到△A ′B ′C ′.(1)画出放大后的△A ′B ′C ′,并写出点A ′、B ′、C ′的坐标. (点A 、B 、C 的对应点为A ′、B ′、C ′)(2)求△A ′B ′C ′的面积.(第18题)四、解答题(19题8分,20题10分,共18分)19. 在一个不透明的盒子里,装有红、黄、白、黑4个小球,它们除颜色不同外,其余均相同,盒子里的小球已经摇匀,先从盒子里随机摸出一个小球,记下颜色后放回,摇匀后再随机地摸出一个小球并记下颜色.(1)用列表或画树形图的方法列出两次摸出的小球颜色的所有可能结果;(2)求两次摸出的小球颜色相同的概率.20. 3月,胡润研究院发布“胡润艺术榜”,艺术榜是依据度公开拍卖市场作品的总成交额排名,其中排名前10位的国宝国画艺术家的情况如下表:排名前10位的国宝国画艺术家排名艺术家总成交额(万元)年龄(岁)出生地现居地1范曾38 98273江苏北京2崔如琢35 04867北京美国3何家英14 00954天津天津4刘文西11 91578浙江陕西5黄永玉11 79187湖南北京6石齐10 75972福建北京7王子武9 78675陕西广东8王西京9 36265陕西陕西9白雪石9 02896北京北京10陈佩秋8 36989河南上海年龄段(岁)51~6061~7071~8081~9091~100人数(人)(2)(3)请你根据题意从不同的角度写出两条信息.五、解答题(每题10分,共20分)21. 要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(如图). 已知一梯子AB的长为6 m,梯子的底端A距离墙面的距离AC为2 m,请你通过计算说明这时人是否能够安全地攀上梯子的顶端?(参考数据:sin50°≈0.77,cos50°≈0.64,sin75°≈0.97,cos75°≈0.26)(第21题)22. 如图,风车的支杆OE垂直于桌面,风车中心O到桌面的距离OE为25cm,小小风车在风吹动下绕着中心O不停地转动,转动过程中,叶片端点A、B、C、D在同一圆O上,已知⊙O的半径为10cm.(1)风车在转动过程中,当∠AOE=45°时,求点A到桌面的距离(结果保留根号).(2)在风车转动一周的过程中,求点A相对于桌面的高度不超过20cm所经过的路径长(结果保留π).备用图1备用图2(第22题)六、解答题(23题10分,24题12分,共22分)23. 如图,二次函数y=ax2+bx的图象经过A(1,-1)、B(4,0)两点.(1)求这个二次函数解析式;(2)点M为坐标平面内一点,若以点O、A、B、M为顶点的四边形是平行四边形,请直接写出点M的坐标.(第23题)24. 如图,在一个矩形空地ABC D上修建一个矩形花坛AMPQ,要求点M在AB上,点Q在AD 上,点P在对角线BD上.若AB=6m,AD=4m,设AM的长为x m,矩形AMPQ的面积为S平方米.(1)求S与x的函数关系式;(2)当x为何值时,S有最大值?请求出最大值.(第24题)25. 已知菱形ABCD的边长为5,∠DAB=60°.将菱形ABCD绕着A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90°,连接DG、BE、CE、CF.(1)如图(1),求证:△AGD≌△AEB;(2)当α=60°时,在图(2)中画出图形并求出线段CF的长;(3)若∠CEF=90°,在图(3)中画出图形并求出△CEF的面积.(1)(2)(3)26. 如图,直线y =m3x +m (m ≠0)交x 轴负半轴于点A 、交y 轴正半轴于点B 且AB =5,过点A作直线AC ⊥AB 交y 轴于点C .点E 从坐标原点O 出发,以0.8个单位/秒的速度沿y 轴向上运动;与此同时直线l 从与直线AC 重合的位置出发,以1个单位/秒的速度沿射线AB 方向平行移动. 直线l 在平移过程中交射线AB 于点F 、交y 轴于点G .设点E 离开坐标原点O 的时间为t (t ≥0)s.(1)求直线AC 的解析式;(2)直线l 在平移过程中,请直接写出△BOF 为等腰三角形时点F 的坐标; (3)直线l 在平移过程中,设点E 到直线l 的距离为d ,求d 与t 的函数关系.备用图(第26题)参考答案1. B2. A3. C4. A5. C6. C7. D8. C9. -2 10. -6 11. 7 12. 40° 13. 4-2 3 14. k ≤6 15. y =x 2+6x +7 16. ①②③ 17. a -1a +2·a 2+2a a 2-2a +1÷1a 2-1=a -1a +2·a (a +2)(a -1)2÷1(a +1)(a -1)(3分) =a -1a +2·a (a +2)(a -1)2·(a +1)(a -1)(4分) =a (a +1)(5分)(注:结果为a 2+a 不扣分,a 2+2a =a (a +2)、a 2-2a +1=(a -1)2、a 2-1=(a +1)(a -1)各1分) ∵ a ≠±1、-2时分式有意义, 又 -3<a <2且a 为整数, ∴ a =0. (7分)∴ 当a =0时,原式=0×(0+1)=0.(8分) 18. (1)如图所示,△A ′B ′C ′即为所求.(2分)(第18题)A ′(-4,8);B ′(-6,2);C ′(-2,2).(5分) (2)∵ S △ABC =12×2×3=3,(6分)又 △A ′B ′C ′与△ABC 的相似比为2∶1, ∴S △A ′B ′C ′S △ABC=⎝⎛⎭⎫212=4,(7分)S △A ′B ′C ′=4S △ABC =12.(8分)19. (1)解法一:画树形图(3分)(第19题)解法二:用列表法(3分)第1次 第2次 红 黄 白 黑 红 红,红 黄,红 白,红 黑,红 黄 红,黄 黄,黄 白,黄 黑,黄 白 红,白 黄,白 白,白 黑,白 黑红,黑黄,黑白,黑黑,黑(2)由树形图(或列表)可知,所有可能结果共有16种,且每种结果发生的可能性相同,符合条件的结果有4种.(6分)∴ P (两次摸取小球颜色相同)=416=14. (8分)20. (1)组别(年龄) 51~60 61~70 71~80 81~90 91~100 人数12421(注:错一个空不得分)(2)排名前10位的国宝国画艺术家的平均年龄为73+67+54+78+87+72+75+65+96+8910=75.6(岁).(6分) ∵73+752=74, ∴ 年龄的中位数为74岁.(8分)(3)①排名前10位的国宝国画艺术家的年龄的最大为96岁;(9分)②排名前10位的国宝国画艺术家现居住在北京的有4人.(10分)21. 在Rt△ABC中,∵AC=AB cosα,AB=6,∴当α=50°时,AC=6cos50°≈6×0.64=3.84(m).(4分)∴当α=75°时,AC≈6cos75°≈6×0.26=1.56(m).(8分)又 1.56<2<3.84,∴人能够安全地攀上梯子的顶端.(10分)22. (1)如图(1),点A运动到点A1的位置时∠AOE=45°.(第22题(1))作A1F⊥MN于点F,A1G⊥OE于点G,∴A1F=GE.(1分)在Rt△A1OG中,∵∠A1OG=45°,OA1=10,∴OG=OA1·cos45°=10×22=5 2.(2分)∵OE=25,∴GE=OE-OG=25-5 2.∴A1F=GE=25-5 2.(3分)答:点A到桌面的距离是(25-52)厘米. (4分)(2)如图(2),点A在旋转过程中运动到点A2、A3的位置时,点A到桌面的距离等于20厘米.(第22题(2))作A 2H ⊥MN 于H ,则A 2H =20. 作A 2D ⊥OE 于点D , ∴ DE =A 2H .(5分) ∵ OE =25,∴ OD =OE -DE =25-20=5. 在Rt △A 2OD 中, ∵ OA 2=10,∴ cos ∠A 2OD =OD OA 2=510=12.∴ ∠A 2OD =60°.(7分)由圆的轴对称性可知,∠A 3OA 2=2∠A 2OD =120°. ∴ 点A 所经过的路径长为120π×10180=20π3. (9分) 答:点A 所经过的路径长为20π3厘米.(10分) 23. (1)∵ 二次函数y =ax 2+bx 的图象经过A (1,-1)、B (4,0)两点, ∴{ a +b =-1,16a +4b =0,解得⎩⎨⎧a =13,b =-43. (3分)∴ 二次函数的解析式为y =13x 2-43x . (4分)(2)M 1(3,1)、M 2(-3,-1)、M 3(5,-1).(10分) (注:每点2分,共6分)24. (1)∵ 四边形AMPQ 是矩形, ∴ PQ =AM =x .(1分) ∵ PQ ∥AB ,∴ △PQD ∽△BAD .(3分) ∴DQ DA =PQBA. ∵ AB =6,AD =4, ∴ DQ =23x .(4分)∴ AQ =4-23x . (5分)∴ S =AQ ·AM =⎝⎛⎭⎫4-23x x =-23x 2+4x (0<x <6). (7分) (注:不写自变量取值范围不扣分,若写错则扣1分)(2)解法一:∵ S =-23x 2+4x =-23(x -3)2+6,(9分)又 -23<0,∴ S 有最大值.∴ 当x =3时,S 的最大值为6. (11分)答:当AM 的长为3米时,矩形AMPQ 的面积最大;最大面积为6平方米. (12分) 解法二:∵ -23<0,∴ S 有最大值. (8分) ∴ 当x =-42×⎝⎛⎭⎫-23=3时,S 有最大值为-23×32+4×3=6. (11分)答:当AM 的长为3米时,矩形AMPQ 的面积最大;最大面积为6平方米. (12分) 25. (1)∵ 菱形ABCD 绕着点A 逆时针旋转得到菱形AEFG , ∴ AG =AD ,AE =AB ,∠GAD =∠EAB =α. ∵ 四边形AEFG 是菱形, ∴ AD =AB . ∴ AG =AE .∴ △AGD ≌△AEG . (3分)(2)解法一:如图(1),当α=60°时,AE 与AD 重合,(4分)(第25题(1))作DH ⊥CF 于H . 由已知可得∠CDF =120°,DF =DC =5. ∴ ∠CDH =12∠CDF =60°,CH =12CF .在Rt △CDH 中, ∵ CH =DC sin60°=5×32=532,(6分)∴ CF =2CH =5 3.(7分)解法二:如图(1),当α=60°时,AE 与AD 重合,(4分) 连结AF 、AC 、BD 、AC 与BD 交于点O . 由题意,知AF =AC ,∠F AC =60°. ∴ △AFC 是等边三角形. ∴ FC =AC .由已知,∠DAO =12∠BAD =30°,AC ⊥BD ,∴ AO =AD cos30°=532.(6分)∴ AC =2AO =5 3. ∴ FC =AC =5 3.(7分)(3)如图(2),当∠CEF =90°时,(8分)(第25题(2))延长CE 交AG 于M ,连接AC . ∵ 四边形AEFG 是菱形, ∴ EF ∥AG . ∵ ∠CEF =90°, ∴ ∠GME =90°. ∴ ∠AME =90°.(9分)在Rt △AME 中,AE =5,∠MAE =60°, ∴ AM =AE cos60°=52,EM =AE sin60°=532.在Rt △AMC 中,易求AC =53, ∴ MC =AC 2-AM 2=(53)2-⎝⎛⎭⎫522=5112.∴ EC =MC -ME =5112-532=52(11-3).(11分) ∴ S △CEF =12·EC ·EF =25(11-3)4. (12分)26. (1)∵ y =m3x +m 交x 轴负半轴于点A 、交y 轴正半轴于点B ,∴ B (0,m )、A (-3,0).(1分) ∵ AB =5,∴ m 2+32=52,解得m =±4. ∵ m >0, ∴ m =4. ∴ B (0,4). ∴ OB =4. (2分)∵ 直线AC ⊥AB 交y 轴于点C ,易得△BOA ∽△AOC , ∴AO BO =COAO. ∴ CO =AO 2BO =324=94.∵ 点C 在y 轴负半轴上, ∴ C ⎝⎛⎭⎫0,-94.(3分) 设直线AC 解析式为y =kx +b , ∵ A (-3,0),C ⎝⎛⎭⎫0,-94, ∴ ⎩⎨⎧ -3k +b =0,b =-94. 解得⎩⎨⎧k =-34,b =-94.∴ y =-34x -94.(5分)(2)F 1⎝⎛⎭⎫125,365、F 2⎝⎛⎭⎫-125,45、F 3⎝⎛⎭⎫-32,2.(8分) (3)分两种情况:第一种情况:当0≤t ≤5时,(第26题(1))解法一:如图(1),作ED ⊥FG 于D ,则ED =d . 由题意,FG ∥AC , ∴BF BA =BG BC, ∵ AF =t ,AB =5, ∴ BF =5-t .∵ B (0,4),C ⎝⎛⎭⎫0,-94, ∴ BC =4+94=254.∴5-t 5=BG254. ∴ BG =54(5-t ).∵ OE =0.8t ,OB =4, ∴ BE =4-0.8t .∴ EG =54(5-t )-(4-0.8t )=94-920t .∵ FG ⊥AB ,ED ⊥FG , ∴ ∠GDE =∠GFB =90°. ∴ ED ∥AB . ∴EG BG =ED BF. ∴ 94-920t 54(5-t )=d 5-t .∴ d =-925t +95. (11分)解法二:如图(2),作ED ⊥FG 于点D ,则ED =d ,连结EF .(第26题(2))则OE =0.8t ,AF =t . ∵ OB =4,AB =5, ∴ BE =4-0.8t ,BF =5-t . ∴BE BO =BF BA. 又 ∠EBF =∠OBA , ∴ △EBF ∽△OBA . ∴ ∠BFE =∠BAO . ∴ EF ∥AO . ∴EF OA =BF BA. ∴ EF =BF ·OA BA =3(5-t )5.∵ ∠AOB =90°,EF ∥AO , ∴ ∠FEB =∠AOB =90°. ∴ ∠BFE +∠FBE =90°, ∵ ∠BFE +∠EFD =90°, ∴ ∠FBE =∠EFD . 又 ∠AOB =∠EDF =90°, ∴ △OBA ∽△DFE . ∴ AB EF =OA DE . ∴53(5-t )5=3d . ∴ d =-925t +95.(11分)第二种情况:当t >5时,解法一:如图(3),(第26题(3))作ED ⊥FG 于D ,则ED =d , 则题意,FG ∥AC , ∴BF BA =BG BC. ∵ AF =t ,AB =5, ∴ BF =t -5.∵ B (0,4),C ⎝⎛⎭⎫0,-94, ∴ BC =4+94=254.∴t -55=BG254. ∴ BG =54(t -5).∵ OE =0.8t ,OB =4,∴ BE =0.8t -4,EG =54(t -5)-(0.8t -4)=920t -94. ∵ FG ⊥AB ,ED ⊥FG ,∠GDE =∠GFB =90°, ∴ ED ∥AB . ∴EG BG =EDBF. ∴ 920t -9454(t -5)=d t -5.∴ d =920t -95.(14分)解法二:如图(4),作ED ⊥FG 于点D ,则ED =d ,连接EF .(第26题(4))则OE =0.8t ,AF =t . ∵ OB =4,AB =5, ∴ BE =0.8t -4,FB =t -5. ∴BE BO =BF BA. 又 ∠EBF =∠OBA , ∴ △EBF ∽△OBA . ∴ ∠BFE =∠BAO . ∴ EF ∥AO . ∴EF OA =BF BA. ∴ EF =BF ·OA BA =3(t -5)5.∵ ∠BFE +∠EFD =90°,∠BAO +∠ABO =90°, 又 ∠BFE =∠BAO , ∴ ∠EFD =∠ABO . 又 ∠EDF =∠AOB =90°, ∴ △DFE ∽△OBA . ∴DE OA =EF AB. ∴ d3=3(t -5)55.∴ d =920t -95.∴ d =⎩⎨⎧-925t +95(0≤t ≤5),925t -95(t >5).(14分)。

2020年辽宁省盘锦市中考数学试卷(含答案解析)

2020年辽宁省盘锦市中考数学试卷(含答案解析)

2020年辽宁省盘锦市中考数学试卷副标题题号一总分得分一、选择题(本大题共10小题,共30.0分)1.在有理数1, ? 一1, 0中,最小的数是()A. 1B. -C. —12如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()B.3.下列运算正确的是()A. a3∙ a3 =α9B. a6÷ a3 = a2C. α3+ α3= 2α6D. (α2)3= α64.不等式4% + l>x + 7的解集在数轴上表示正确的是()A. —I _ I __ I _ ___ I __ L>・ 10 12 3 42.B.第3页•共27贞C.—J——I 1—L-J ---- L>・ 10 12 3 4 5.下列命题正确的是()A.圆内接四边形的对角互补C.菱形的四个角都相等B •平行四边形的对角线相等D.等边三角形是中心对称图形第24贞,共27页6.为了解某地区九年级男生的身髙情况,随机抽取了该地区IooO需九年级男生的身很据以上统计结果,随机抽取该地区一名九年级男生,估计他的身髙不低于170⑷ 的概率是()A. 0.32B. 0.55C. 0.68D. 0.877.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示•他们的平均成绩均是9・0环,若选一名射击成绩稳上的队员参加比第3页•共27贞设芦苇的长度是兀尺•根据题意,可列方程为()A. X2 + IO2 = (% + I)2B. (X 一I)2 + S2 =x2C. X2 + S2 = (x + I)2D. (X 一I)2 + IO2 = X29.如图,在EC中,AB = BC, ∆ABC = 90%以AB为直径的Oo交AC于点D,点E为线段OB上的一点,OE:EB = I:√3,连接DE并延长交CB的延长线于点F、连接OF交G)O于点G,若BF =2√3,则紀的长是()第24贞,共27页B-I C 2πc∙ T 3πT10.如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F 在线段DA的延长线上,且AF = AE t连接ED,将ED绕点E顺时针旋转90。

盘锦市2020年中考数学试卷C卷

盘锦市2020年中考数学试卷C卷

盘锦市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016八上·长春期中) 化简| ﹣1|+1的结果是()A . 2﹣B . 2+C . 2D .2. (2分)的倒数是()。

A .B . 2C . -2D .3. (2分)sin60°的相反数是()。

A .B .C .D .4. (2分)(2019·恩施) 下列计算正确的是()A .B .C .D .5. (2分)(2019·恩施) 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A . 88.5B . 86.5C . 90D . 90.56. (2分)(2019·恩施) 如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为()A . 60°B . 65°C . 70°D . 75°7. (2分)(2019·恩施) 函数中,自变量的取值范围是()A .B .C . 且D . 且8. (2分)(2019·恩施) 桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A .B .C .D .9. (2分)(2019·恩施) 某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A . 8%B . 9%C . 10%D . 11%10. (2分)(2019·恩施) 已知关于的不等式组恰有3个整数解,则的取值范围为()A .B .C .D .11. (2分)(2019·恩施) 如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF.把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM.若矩形纸片的宽AB=4,则折痕BM的长为()A .B .C . 8D .12. (2分)(2019·恩施) 抛物线的对称轴是直线,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断:① 且;② ;③ ;④ ;⑤直线与抛物线两个交点的横坐标分别为,则 .其中正确的个数有()A . 5个B . 4个C . 3个D . 2个二、填空题 (共4题;共4分)13. (1分)(2017·盐城) 若在实数范围内有意义,则x的取值范围是________.14. (1分)(2019·恩施) 因式分解: ________.15. (1分)(2019·恩施) 如图,在△ABC中,AB=4,若将△ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD.则点A的运动路径与线段AD、A′D围成的阴影部分面积是________.16. (1分)(2019·恩施) 观察下列一组数的排列规律:…那么,这一组数的第2019个数是________.三、解答题 (共8题;共81分)17. (5分) (2016七上·同安期中) 当x=2时,代数式px3+qx+1的值等于2016,那么当x=﹣2时,求px3+qx+1 的值.18. (5分)(2019·恩施) 如图,在四边形ABCD中,AD∥B C,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.19. (16分)(2019·恩施) 为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数________.(2)图1中,求∠α的度数,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户的概率.20. (5分)(2019·恩施) 如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:,,精确到0.1m.)21. (10分)(2019·恩施) 如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A.(1)求和的值.(2)过点B作BC∥x轴,与双曲线交于点C.求△OAC的面积.22. (10分)(2019·恩施) 某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送吨蔬菜到甲市,请问怎样调运可使总运费最少?23. (10分)(2019·恩施) 如图,在⊙ 中,AB是直径,BC是弦,BC=BD,连接CD交⊙ 于点E,∠BCD=∠DBE.(1)求证:BD是⊙ 的切线.(2)过点E作EF⊥AB于F,交BC于G,已知DE= ,EG=3,求BG的长.24. (20分)(2019·恩施) 如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1,),与轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.(4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF 是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共81分)17-1、18-1、19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-3、。

辽宁省2020年中考数学试卷(含答案)

辽宁省2020年中考数学试卷(含答案)

辽宁省2020年中考数学试卷一、选择题(共10小题,每题3分,共30分)1.下列各数中,比-2小的数是()A.-1B.0C.-3D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D3.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m·4m2=8m2D.m5÷m3=m24.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A B C D5.小明同学5次数学小测验成绩分别是90分、95分、85分、95分、100分,则小明这5次成绩的众数和中位数分别是()A.95分、95分 B.85分、95分 C.95分、85分 D.95分、90分6.下列事件属于必然事件的是()A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B. k>0,b>0C. k<0,b>0D. k<0, b<08.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.⎩⎨⎧=+=+1760010080200yxyxB.⎩⎨⎧=+=+1760080100200yxyxC.⎪⎩⎪⎨⎧=+=+2001008017600yxyxD.⎪⎩⎪⎨⎧=+=+2008010017600yxyx9.如图,△ABC的顶点A在反比例函数xky=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S△ABC=2,则k的值为()A.4B.-4C.7D.-710.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()10题图xyOCDA BEP37xyOB AC9题图A.2B.59 C.56D.1 二、填空题(共8小题,每题3分,共24分)11.五年以来,我国城镇新增就业人数为66000000人,数据66000000用科学计数法表示为 . 12.分解因式:2a 2-8ab+8b 2= .13.如图,AB ∥CD ,若∠E=34°,∠D=20°,则∠B 的度数为 .14.五张看上去无差别的卡片,正面分别写着数字1,2,2,3,5,现把它们的正面向下,随机地摆放在桌面上,从中任意抽出一张,则抽到数字“2”的卡片的概率是 . 15.关于x 的一元二次方程2x 2-x-k=0的一个根为1,则k 的值是 . 16.不等式组⎩⎨⎧〉+≤-03042x x 的解集是 .17.如图,矩形OABC 的顶点A ,C 分别在坐标轴上,B (8,7),D (5,0),点P 是边AB 或边BC 上的一点,连接OP ,DP ,当△ODP 为等腰三角形时,点P 的坐标为 .18.如图,A 1,A 2,A 3…,A n ,A n+1是直线x y l 3:1=上的点,且OA 1=A 1A 2=A 2A 3=…A n A n+1=2,分别过点A 1,A 2,A 3…,A n ,A n+1作1l 的垂线与直线x y l 33:2=相交于点B 1,B2,B 3…,B n ,B n+1,连接A 1B 2,B 1A 2,A 2B 3,B 2A 3…,A n B n+1,B n A n+1,交点依次为P 1,P 2,P 3…,P n ,设△P 1A 1A 2,△P 2A 2A 3,△P 3A 3A 4,…,△P n A n A n+1的面积分别为S 1,S 2,S 3…,S n ,则S n = .(用含有正整数n 的式子表示) 三、解答题(19题10分,20题12分,共22分)19.先化简,再求值:01-2)2018(2a ,4244)241(-+=-+-÷+-π其中a a a a20.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有 人;13题图 17题图(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.四、解答题(21题12分,22题12分,共24分)21.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,1000m,E在BD的中点处.E在B的北偏西30°方向上,E在A的西北方向上,C,D相距3(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五、解答题(12分)23.服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?六、解答题(12分)24.如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD ,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=2时,求⊙O的半径.DACB MFE DABCNOFD ABC (O )E MNOB CAE D F七、解答题(12分)25.在菱形ABCD 中,∠BAD=120°,点O 为射线CA 上的动点,作射线OM 与直线BC 相交于点E ,将射线OM 绕点O 逆时针旋转60°,得到射线ON ,射线ON 与直线CD 相交于点F.(1)如图1,点O 与点A 重合时,点E ,F 分别在线段BC ,CD 上,请直接写出CE ,CF ,CA 三条线段之间的数量关系;(2)如图2,点O 在CA 的延长线上,且OA=31AC ,E ,F 分别在线段BC 的延长线和线段CD 的延长线上,请写出CE ,CF ,CA 三条线段之间的数量关系,并说明理由;(3)点O 在线段AC 上,若AB=6,BO=72,当CF=1时,请直接写出BE 的长.图1 图2 备用图八、解答题(14分)26、如图,抛物线y=ax 2+2x+c (a <0)与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,OB=OC=3. (1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD. OD 交BC 于点F ,当S △COF ︰S △CDF =3︰2时,求点D 的坐标. (3)如图2,点E 的坐标为(0,23),点P 是抛物线上的点,连接EB ,PB ,PE 形成的△PBE 中,是否存在点P ,使∠PBE 或∠PEB 等于2∠OBE ?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.图2 备用图图1参考答案1-10、CBDBA DAACB11、6.6×10712、2(a-2b)213、54°14、15、116、-3<x≤217、18、19、20、21、22、23、24、25、26、1、只要朝着一个方向奋斗,一切都会变得得心应手。

盘锦市2020年部编人教版中考数学试题及答案

盘锦市2020年部编人教版中考数学试题及答案

2020年辽宁省盘锦市初中毕业升学考试数 学 试 卷(本试卷共26道题 考试时间120分钟 试卷满分150分)注意:所有试题必须在答题卡上作答,在本试卷上答题无效.1.-5的倒数是( )A. 5B.- 5C.15 D. 15- 2.病理学家研究发现,甲型H 7N 9病毒的直径约为0.00015毫米,0.00015用科学记数法表示为( )A. 41.510-⨯ B.51510-⨯ C.30.1510-⨯ D. 31.510-⨯3. 如图,下面几何体的左视图是( )A B C D4.不等式组2(3)5x x +⎧⎨-⎩≥2>4的解集是( )A. 2-≤x <1B.2-<x ≤1C. 1-<x ≤2D.1-≤x <2 5.计算231(2)2a a ⋅正确的结果是( ) A.73a B.74a C.7a D. 64a 6.甲、乙两名学生的十次数学考试成绩的平均分分别是145和146,成绩的方差分别是8.5和60.5,现在要从两人中选择一人参加数学竞赛,下列说法正确的是( )A.甲、乙两人平均分相当,选谁都可以B.乙的平均分比甲高,选乙C.乙的平均分和方差都比甲高,选乙D.两人的平均分相当,甲的方差小,成绩比乙稳定,选甲 7. 如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是( )cm.(不考虑接缝)A.5B.12C.13D.148.如图,平面直角坐标系中,点M 是直线2y =与x 轴之间的一个动点,且点M 是抛物线212y x bx c =++的顶点,则方程2112x bx c ++=的解的个数是( ) A. 0或2 B.0或 1 C.1或2 D. 0,1或2一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上.每小题3分,共30分)9.如图,四边形ABCD 是矩形,点E 和点F 是矩形ABCD 外两点,AE ⊥CF 于点H ,AD=3,DC=4,DE=52,∠EDF=90°,则DF 长是( ) A.158 B.113 C. 103 D. 165第7题图 第8题图 第9题图10.已知, A 、B 两地相距120千米,甲骑自行车以20千米/时的速度由起点A 前往终点B,乙骑摩托车以40千米/时的速度由起点B 前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s (千米),甲行驶的时间为t (小时),则下图中正确反映s 与t A B C D11. 232的值是 .12.在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为 .13.某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.14.在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生各有多少名?设获得一等奖的学生有x 名,二等奖的学生有y 名,根据题意可列方程组为 .15.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 .s t (小时)(千米)306090120s t (小时)(千米)6090120s t (千米)306090120s t (小时)(千米)306090120yO D CGNB EHF KMA二、填空题(每小题3分,共24分)BDE2OyxMHF DBA EB OAy Cx第15题图 第16题图 第18题图16.如图,已知△ABC 是等边三角形,AB=423+,点D 在AB 上,点E 在AC 上,△ADE 沿DE 折叠后点A 恰好落在BC 上的A ′点,且D A ′⊥BC. 则A ′B 的长是 .17.已知,AB 是⊙O 直径,半径OC ⊥AB ,点D 在⊙O 上,且点D 与点C 在直径AB 的两侧,连结CD ,BD ,若∠OCD=22°,则∠ABD 的度数是________.18.如图,在平面直角坐标系中,点A 和点B 分别在x 轴和y 轴的正半轴上,OA=OB=a ,以线段AB 为边在第一象限作正方形ABCD ,CD 的延长线交x 轴于点E ,再以CE 为边作第二个正方形ECGF ,…,依此方法作下去,则第n 个正方形的边长是 .三、解答题(19、20每小题9分,共18分)19. 先化简,再求值.22691()933m m m m m m m -+--÷-++其中tan 452cos30m =+oo20.某城市的A 商场和B 商场都卖同一种电动玩具,A 商场的单价与B 商场的单价之比是5 :4,用120元在A 商场买这种电动玩具比在B 商场少买2个,求这种电动玩具在A 商场和B 商场的单价.四、解答题(本题14分)21.某电视台为了了解本地区电视节目的收视率情况,对部分观众开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图.根据要求回答下列问题:第21题图1 第21题图2(1)本次问卷调查共调查了多少名观众?(2)补全图1中的条形统计图;并求出图2中收看“综艺节目”的人数占调查总人数的百分比;(3)求出图2中“科普节目”在扇形图中所对应的圆心角的度数; (4) 现有喜欢“新闻节目”(记为A )、“体育节目”(记为B )、“综艺节目”(记为C )、“科普节目”(记为D )的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用“列表法”或“画树形图”的方法求出恰好抽到喜欢“新闻节目”和“体育节目”两位观30%科普综艺新闻体育人数节目24168162432众的概率.五、解答题(22小题10分、23小题14分,共24分)22.如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC ,AB 垂直于地面,线段AB 与线段BC 所成的角∠ABC=120°,若路灯杆顶端C 到地面的距离CD=5.5米,求AB 长.第22题图23.如图,△ABC 中,∠C=90°,点G 是线段AC 上的一动点(点G 不与A 、C 重合),以AG 为直径的⊙O 交AB 于点D ,直线EF 垂直平分BD ,垂足为F ,EF 交B C 于点E ,连结DE.(1)求证:DE 是⊙O 的切线;(2)若cosA=12,AB=83,AG=23,求BE 的长; (3)若cosA=12,AB=83,直接写出线段BE 的取值范围.第23题 图六、解答题(本题12分)24.某旅游景点的门票价格是20元/人,日接待游客500人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高5元,日接待游客人数就会减少50人. 设提价后的门票价格为x (元/人)(x >20),日接待游客的人数为y(人).(1)求y 与x (x >20)的函数关系式;(2)已知景点每日的接待成本为z(元),z 与y 满足函数关系式:z=100+10y.求z 与x 的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多G FEDOCAC AD B少?(利润=门票收入-接待成本)七、解答题(本题14分)25.已知,四边形ABCD 是正方形,点P 在直线BC 上,点G 在直线AD 上(P 、G 不与正方形顶点重合,且在CD 的同侧),PD=PG ,DF ⊥PG 于点H ,交直线AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连结EF.(1)如图1,当点P 与点G 分别在线段BC 与线段AD 上时. ①求证:DG=2PC ;②求证:四边形PEFD 是菱形;(2)如图2,当点P 与点G 分别在线段BC 与线段AD 的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.第25题图1 第25题图2八、解答题(本题14分)26.如图,抛物线y=ax 2+bx+c 经过原点,与x 轴相交于点E(8, 0 ), 抛物线的顶点A 在第四象限,点A 到x 轴的距离AB=4,点P (m, 0)是线段OE 上一动点,连结PA ,将线段PA 绕点P 逆时针旋转90°得到线段PC ,过点C 作y 轴的平行线交x 轴于点G ,交抛物线于点D ,连结BC 和AD.(1)求抛物线的解析式;(2)求点C 的坐标(用含m 的代数式表示);(3)当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,求点P 的坐标.第26题图 备用图2020年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.D2.A3.C4.A5.B6.D7.B8.D9.C 10.B 二、填空题(每小题3分,共24分)12. 914 13. 92 14.302016528x y x y +=⎧⎨+=⎩15. 24 16.2 17.23°或67°18. 12n -三、解答题(19、20每小题9分,共18分)19.解: 22691()933m m m m m m m -+--÷-++ =2(3)1(3)(3)33m m m m m m m ⎡⎤---÷⎢⎥+-++⎣⎦ …………………………2分 =31()333m m m m m m ---÷+++ …………………………3分=3331m m m -+⨯+- ……………………………4分 = 31m- …………………………5分tan 452cos30121m =+=+=+o o …………………………7分原式=31m -= …………………………9分20. 解:设电动玩具在 A 商场和B 商场的单价分别为5x 元和4x 元,……1分120120245x x-= …………………………4分 两边同时乘以20x ,得 1205120440x ⨯-⨯=……………………5分解得 x=3 ………………………6分 经检验x=3是分式方程的解 …………………… 7分 所以5x=15 4x=12 ………………… 8分 答:电动玩具在A 商场和B 商场的单价分别为15元和12元 ………9分 四、解答题(本题14分) 21.解:(1)2430%80÷=(人) ………………………2分………………………4分(2)如图收看“综艺节目”的百分比:16100%20%80⨯= ……………………6分 (3)83603680⨯=oo ……………………8分(4)解: 解法一:画树形图如下:……………12分由树形图可知,所有可能出现的结果共有12个,且每种结果出现的可能性相等,其中恰好抽到喜欢“新闻节目”和“体育节目”两位观众(记为事件A )的结果有2个……… 13分∴P (A )=122=1………………………14分 解法二:列表如下由表可知,所有可能出现的结果共有12个,且每种结果出现的可能性相等,其中恰好抽到喜欢“新闻节目”和“体育节目”两位观众(记为事件A )的结果有2个 ……… 13分节目开始∴ P (A )=122=61…………………14分五、解答题(22小题10分,23小题14,共24分)22.解:过点B 作BE ⊥CD,垂足为E. ……………1分 ∵ ∠ABC=120°∴ ∠EBC=30° ……………2分 设AB=x 米,则BC=(6-x )米 ………3分在Rt △BCE 中,CE=12BC=12(6-x ) …………4分 ∵CE+ED=5.5 ∴12(6-x )+ x=5.5 …………………7分 第22题图 解得x=5 ………9分 答:AB 长度是5米 …………………10分 23. .解:(1)连结OD∵OA=OD∴∠A=∠ODA …………………………1分∵EF 垂直平分BD∴ED=EB∴∠B=∠EDB …………………………2分 ∵∠C=90°∴∠A+∠B=90° …………………………3分 ∴∠ODA+∠EDB=90° …………………………4分∴∠ODE=90° 第23题图 ∴ DE ⊥OD ………………………………5分 ∴DE 是⊙O 的切线 ………………………………6分(2) ∵AG=∵cosA=12,∴∠A=60° …………………………7分 又∵OA=OD∴△OAD 是等边三角形∴…………………………8分 ∴BD=AB-AD=………………………10分 ∵直线EF 垂直平分BD ∴BF =12…………………………11分∵∠C=90°,∠A=60°∴∠B=30°A ∴BE=cos BFB=7 …………………………12分 (3)6<BE <8 …………………………14分六、解答题(本题12分)24.解:(1)y=500-205x -×50 ………………2分 y = -10x+700 …………………4分 (2)z=100+10y ……………………6分 =100+10(-10x+700) ……………………7分= -100x+7100 ……………………8分 (3)w= x(-10x+700) - (-100x+7100) …………9分 =2108007100x x -+- …………………10分=210(40)8900x --+ …………………11分∴当 x=40时,w 有最大值,最大值是8900 元. ……12分 七、解答题(本题14分) 25. (1)①证明:如图1 作PM ⊥AD 于点M∵PD=PG , ∴MG=MD , 又∵MD=PC∴DG=2PC ……………2分 ②证明:∵PG ⊥FD 于H ∴∠DGH+∠ADF= 90°1又∵∠ADF+∠AFD= 90°∴∠DGP=∠AFD ………………3分 ∵四边形ABCD 是正方形,PM ⊥AD 于点M , ∴∠A=∠PMD= 90°,PM=AD ,∴△PMG ≌△DAF ……………5分 ∴DF=PG ∵PG=PE∴FD=PE , ∵DF ⊥PG ,PE ⊥PG ∴DF ∥PE ∴四边形PEFD 是平行四边形. ……………6分又∵PE=PD∴□PEFD 是菱形 ……………7分 (2)四边形PEFD 是菱形 ………… 8分证明:如图②∵四边形ABCD 是正方形,DH ⊥PG 于H 第25题图2 ∴∠ADC=∠DHG=90°∴∠CDG=∠DHG=90°∴∠CDP+∠PDG=90°,∠GDH+∠G=90° ∵PD=PG ∴∠PDG=∠G∴∠CDP=∠GDH ……………9分 ∴∠CDP=∠ADF ……………10分 又∵AD=DC ,∠FAD=∠PCD=90°∴△PCD ≌△FAD ……………11分∴FD=PD∵ PD=PG=PE∴FD=PE又∵FD ⊥PG ,PE ⊥PG ∴FD ∥PE∴四边形PEFD 是平行四边形. ……………13分 又∵FD=PD∴□PEFD 是菱形 ……………14分 八、解答题(本题14分)26.(1)解:点E (8,0),AB ⊥x 轴,由抛物线的轴对称性可知B (4,0)点A (4,-4),抛物线经过点O (0,0),A (4,-4)、E (8,0)得, ………1分 解得……2分 ∴抛物线的解析式为2124y x x =- ………3分 (2)解: ∵∠APC=90°∴∠APB+∠CPG=90°∵AB ⊥PE ∴∠APB+∠PAB=90°∴∠CPG=∠PAB∵∠ABP=∠PGC=90°,PC=PA ∴△ABP ≌△PGC ………………………………………4分∴PB=CG ,∵P (m ,0),OP=m ,且点P 是线段OE 上的动点∴PB=CG=︱4-m ︱, OG=︱m+4︱ ……………………5分① 如图1,当点P 在点B 左边时,点C 在x 轴上方, m <4,4-m >0,PB=CG=4-m ∴C (m+4,4-m ) ……………………………………6分②如图2,当点P 在点B 右边时,点C 在x 轴下方, m >4,4-m <0, ∴PB=︱4-m ︱=-(4-m)=m-4∴CG=m-4 第26题 图2 ∴C (m+4,4-m ) ……………………………………7分 综上所述,点C 坐标是C (m+4,4-m ) ………………8分 (3)解:如图1,当点P 在OB 上时1420a b c ⎧=⎪⎪⎨=-⎪⎪=⎩041640648c a b c a b c =⎧⎪-=++⎨⎪=++⎩∵CD ∥y 轴,则CD ⊥OE∵点D 在抛物线上,横坐标是m+4,将x= m+4代入2124y x x =-得 21(4)2(4)4y m m =+-+ 化简得:2144y m =- ∴D (m+4,2144m -) …………………………9分∴CD=4-m-(2144m -)=2184m m --+ ∵四边形ABCD 是平行四边形 第26题图1∴AB=CD=4,∴2184mm --+=4 …………………………10分 解得12m =-+,22m =--∵点P 在线段OE 上,∴22m =--不符合题意,舍去∴P (2-+,0) ……………………11分如图2,当点P 在线段BE 上时,∵C (m+4,4- m )∵点D 在抛物线上,横坐标是m+4,将x= m+4代入2124y x x =-得 21(4)2(4)4y m m =+-+ 化简得:2144y m =- ∴D (m+4,2144m -) …………………12分∴ CD=22114(4)844m m m m ---=++ ∵四边形ABDC 是平行四边形第26题 图2∴AB=CD=4,∴21844m m +-= 解得12m =-+22m =--∵点P 在线段OE 上,∴22m =--∴P (2-+,0) ………………………13分综上所述,当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,点P 的坐标为P (2-+0)或P (2-+,0)………14分。

中考数学真题试题(含答案)

中考数学真题试题(含答案)

2020年辽宁省盘锦市中考数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是( ) A .2 B .12 C .﹣12D .﹣2 【答案】A .2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .【答案】C .3.下列等式从左到右的变形,属于因式分解的是( )A .2221(1)x x x +-=- B .22()()a b a b a b +-=-C .2244(2)x x x ++=+D .22(1)ax a a x -=- 【答案】C .4.如图,下面几何体的俯视图是( )A .B .C .D .【答案】D .5.在我市举办的中学生“争做文明盘锦人”演讲比赛中,有15名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这15名学生成绩的( ) A .众数 B .方差 C .平均数 D .中位数 【答案】D .6.不等式组1122(2)13x x -⎧<⎪⎨⎪++≥⎩的解集是( )A .﹣1<x ≤3B .1≤x <3C .﹣1≤x <3D .1<x ≤3 【答案】C .7.样本数据3,2,4,a ,8的平均数是4,则这组数据的众数是( ) A .2 B .3 C .4 D .8 【答案】B .8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x 名,则可得方程( )A .48048044x x -=+ B .48048044x x -=- C .48048044x x -=- D .48048044x x -=+【答案】D .9.如图,双曲线32y x=-(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( )A .32 B .94C .3D .6 【答案】C .10.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a+b <0;③﹣43≤a ≤﹣1;④a+b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个 【答案】B .二、填空题(每小题3分,共24分)11.2020年我国对“一带一路”沿线国家直接投资145亿美元,将145亿用科学记数法表示为 . 【答案】1.45×1010. 12.若式子123x +有意义,则x 的取值范围是 .【答案】x >32-. 13.计算:310(5)ab ab ÷-= . 【答案】22b -.14.对于▱ABCD ,从以下五个关系式中任取一个作为条件:①AB=BC ;②∠BAD=90°;③AC=BD ;④AC ⊥BD ;⑤∠DAB=∠ABC ,能判定▱ABCD 是矩形的概率是 . 【答案】35. 15.如图,在△ABC 中,∠B=30°,∠C =45°,AD 是BC 边上的高,AB=4cm ,分别以B 、C 为圆心,以BD 、CD 为半径画弧,交边AB 、AC 于点E 、F ,则图中阴影部分的面积是 cm 2.【答案】32322π-. 16.在平面直角坐标系中,点P 的坐标为(0,﹣5),以P 为圆心的圆与x 轴相切,⊙P 的弦AB (B 点在A 点右侧)垂直于y 轴,且AB=8,反比例函数ky x=(k ≠0)经过点B ,则k= . 【答案】﹣8或﹣32.17.如图,⊙O 的半径OA=3,OA 的垂直平分线交⊙O 于B 、C 两点,连接OB 、OC ,用扇形OBC 围成一个圆锥的侧面,则这个圆锥的高为 .【答案】22.18.如图,点A 1(1,1)在直线y=x 上,过点A 1分别作y 轴、x 轴的平行线交直线32y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y=x 于点A 2,过点A 2作x 轴的平行线交直线32y x =于点B 3,…,按照此规律进行下去,则点A n 的横坐标为 .【答案】13()3n -. 三、解答题(19小题8分,20小题10分,共18分) 19.先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中a=011(3)()2π-+. 【答案】21(2)a -,1.20.如图,码头A 、B 分别在海岛O 的北偏东45°和北偏东60°方向上,仓库C 在海岛O 的北偏东75°方向上,码头A 、B 均在仓库C 的正西方向,码头B 和仓库C 的距离BC=50km ,若将一批物资从仓库C 用汽车运送到A 、B 两个码头中的一处,再用货船运送到海岛O ,若汽车的行驶速度为50km/h ,货船航行的速度为25km/h ,问这批物资在哪个码头装船,最早运抵海岛O ?(两个码头物资装船所用的时间相同,参2≈1.43≈1.7)【答案】这批物资在B码头装船,最早运抵海岛O.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?饮品名称自带白开水瓶装矿泉水碳酸饮料非碳酸饮料平均价格(元/瓶)0234(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)50;(2)2.6;(3)104000元;(4)35.22.如图,在平面直角坐标系中,直线l:343y x=-+与x轴、y轴分别交于点M,N,高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A1C1所在直线的解析式;(3)在坐标平面内找一点P ,使得以P 、A 1、C 1、M 为顶点的四边形是平行四边形,请直接写出P 点坐标.【答案】(1)A 1(3,3),在直线上;(2)36y x =-+;(3)P 1(33,3),P 2(53,﹣3),P 3(﹣3,3).23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:8580元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.24.如图,在等腰△ABC 中,AB=BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 延长线于点E ,垂足为点F .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径R=5,tanC=12,求EF 的长.【答案】(1)直线DE 是⊙O 的切线;(2)83. 25.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 顺时针旋转60°,得到线段PQ ,连接BQ . (1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO=15°,BP=4,请求出BQ 的长.【答案】(1)BQ=CP ;(2)成立:PC=BQ ;(3)434-. 26.如图,直线y=﹣2x+4交y 轴于点A ,交抛物线212y x bx c =++ 于点B (3,﹣2),抛物线经过点C (﹣1,0),交y 轴于点D ,点P 是抛物线上的动点,作PE ⊥DB 交DB 所在直线于点E . (1)求抛物线的解析式;(2)当△PDE 为等腰直角三角形时,求出PE 的长及P 点坐标;(3)在(2)的条件下,连接PB ,将△PBE 沿直线AB 翻折,直接写出翻折点后E 的对称点坐标.【答案】(1)213222y x x =--;(2)PE=5或2,P (2,﹣3)或(5,3);(3)E 的对称点坐标为(95,﹣185)或(3.6,﹣1.2).2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1B .2C .3D .42.若55+55+55+55+55=25n ,则n 的值为( ) A .10B .6C .5D .33.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .5.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为26.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23MABN 的面积是( )A .63B .123C .183D .2437.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A .(2,23)B .(﹣2,4)C .(﹣2,22)D .(﹣2,23)8.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点9.如图,在矩形ABCD 中,AB=2,AD=3,点E 是BC 边上靠近点B 的三等分点,动点P 从点A 出发,沿路径A→D→C→E 运动,则△APE 的面积y 与点P 经过的路径长x 之间的函数关系用图象表示大致是( )A .B .C .D.10.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°11.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥12.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程3x(x-1)=2(x-1)的根是14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.15.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.16.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 17.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=_____.18.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)20.(6分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A 、B 、C 、D 四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C 厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D 厂家的零件为 件,扇形统计图中D 厂家对应的圆心角为 ;抽查C 厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A 、B 、C 、D 四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.21.(6分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?22.(8分)如图,在平面直角坐标系中,一次函数()10y kx b k =+≠与反比例函数()20m y m x=≠的图像交于点()3,1A 和点B ,且经过点()0,2C -. 求反比例函数和一次函数的表达式;求当12y y >时自变量x 的取值范围.23.(8分)如图1,已知△ABC 是等腰直角三角形,∠BAC =90°,点D 是BC 的中点.作正方形DEFG ,使点A 、C 分别在DG 和DE 上,连接AE ,BG .试猜想线段BG 和AE 的数量关系是_____;将正方形DEFG 绕点D 逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC =DE =4,当AE 取最大值时,求AF 的值.24.(10分)先化简22121211x x x x x ÷---++,然后从﹣1,0,2中选一个合适的x 的值,代入求值. 25.(10分)如图,在等边△ABC 中,点D 是 AB 边上一点,连接CD ,将线段CD 绕点C 按顺时针方向旋转60°后得到CE ,连接AE .求证:AE ∥BC .26.(12分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°.求∠ABC 的度数;求证:AE 是⊙O 的切线;当BC=4时,求劣弧AC 的长.27.(12分)先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++( =2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.2.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.3.D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键.4.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B .考点:简单组合体的三视图.5.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1. 故选A .【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型. 6.C【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB . ∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=.∴CAB CMN MABN S S S 24?36?318?3∆∆=-=-=四边形.故选C . 7.D【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=,则易得A 点坐标和O 点坐标,再利用勾股定理计算出224223BC =-=,然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='=',则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=,∴A 点坐标为(−4,0),O 点坐标为(0,0),在Rt △BOC 中,224223BC =-=,∴B 点坐标为(2,3)-;∵△OAB 按顺时针方向旋转60,得到△OA′B′,∴60,AOA BOB OA OB OA OB ∠'=∠'==='=',∴点A′与点B 重合,即点A′的坐标为(2,3)-,故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质.8.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.9.B【解析】【详解】由题意可知,当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时, ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式,可知选项B 正确.【点睛】考点:1.动点问题的函数图象;2.三角形的面积.10.C【解析】【分析】 根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN 垂直平分线段BC ,根据线段垂直平分线定理可知BD=CD ,根据等边对等角得到∠B=∠BCD ,根据三角形外角性质可知∠B+∠BCD=∠CDA ,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD ,即可解决问题.【详解】∵CD=AC ,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN 垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.11.A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A.考点:由三视图判定几何体.12.A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x 1=1,x 2=-.考点:解一元二次方程---因式分解法.14.55【解析】【详解】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,22224225AC OC ++=,∴sin ∠OAB=525OCOA ==. 5.15.2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,,所以()22212111πππ162π888S S AC BC AB +=+==⨯=.故答案为2π.16.k>1【解析】【分析】根据正比例函数y=(k-1)x 的图象经过第一、三象限得出k 的取值范围即可.【详解】因为正比例函数y=(k-1)x 的图象经过第一、三象限,所以k-1>0,解得:k >1,故答案为:k >1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答. 17.23 【解析】 【分析】 首先连接BD ,由AB 是⊙O 的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD 平分∠BAC ,求得∠BAD 的度数,又由AD=6,求得AB 的长,继而求得答案.【详解】解:连接BD ,∵AB 是⊙O 的直径,∴∠C=∠D=90°,∵∠BAC=60°,弦AD 平分∠BAC ,∴∠BAD=12∠BAC=30°,∴在Rt △ABD 中,AB=AD cos30︒=43,∴在Rt △ABC 中,AC=AB•cos60°=43×12=23.故答案为23.18.5245 1【解析】【详解】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP 是等腰直角三角形,∴底边2AE=52 ②当PE=AE=1时,∵BE=AB ﹣AE=8﹣1=3,∠B=90°,∴22PE BE -=4,∴底边22AB PB +2284+5③当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为52或45或1;故答案为52或45或1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(20-53)千米.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=3x,在Rt△BCD中求得CD=433x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=BDcos DBC∠可得答案.详解:过点B作BD⊥ AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=AD BD即tan30°=3 ADBD=∴3,在Rt△DCB中,∴tan∠CBD=CD BD即tan53°=43 CDBD=,∴∵CD+AD=AC,∴x+3=13,解得,x=3∴BD=12-在Rt△BDC中,∴cos∠CBD=tan60°=BD BC,即:BC=205BDcos DBC==-∠千米),故B、C两地的距离为()千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法. 21.软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x-=++,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1.答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22. (1) 3y x=,2y x =-;(2)10x -<<或3x >. 【解析】【分析】 (1)把点A 坐标代入()m y m 0x=≠可求出m 的值即可得反比例函数解析式;把点A 、点C 代入()1y kx b k 0=+≠可求出k 、b 的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B 的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x 的取值范围即可.【详解】(1)把()A 3,1代入()m y m 0x=≠得m 3=. ∴反比例函数的表达式为3y x = 把()A 3,1和()B 0,2-代入y kx b =+得132k b b =+⎧⎨-=⎩, 解得12k b =⎧⎨=-⎩∴一次函数的表达式为y x 2=-.(2)由3x 2y y x ⎧=⎪⎨⎪=-⎩得()B 1,3--∴当1x 0-<<或x 3>时,12y y >.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.23.(1)BG=AE .(2)①成立BG=AE .证明见解析.②AF=【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;(2)①如图2,连接AD ,由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;②由①可知BG=AE ,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG是正方形,∴DE=DG.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得AF=22AE EF+=3616+,∴AF=213.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.24.-11 ,2 x-.【解析】【分析】先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=22121·1x xx x-+--21x+=2 1(1)·1)(1)xx x x-+-(-21 x+=121)1 xx x x(--++=()121)1x x x x x x --++( =-1x. 当x=-1或者x=1时分式没有意义 所以选择当x=2时,原式=12-. 【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.25.见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.26.(1)60°;(2)证明略;(3)83π 【解析】【分析】(1)根据∠ABC 与∠D 都是劣弧AC 所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°; (2)根据AB 是⊙O 的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180π=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.27.1.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【详解】原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=1.【点睛】本题考查的知识点是分式的化简求值,解题的关键是熟练的掌握分式的化简求值.。

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷及答案解析

2020年辽宁省中考数学试卷一、选择题(本大题共10小题,共30.0分)1.−13的绝对值是()A. 13B. −13C. 3D. −32.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.3.下列运算正确的是()A. a2⋅a3=a6B. a8÷a4=a2C. 5a−3a=2aD. (−ab2)2=−a2b44.一组数据1,4,3,1,7,5的众数是()A. 1B. 2C. 2.5D. 3.55.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A. 16B. 13C. 12D. 236.不等式组{3+x>12x−3≤1的整数解的个数是()A. 2B. 3C. 4D. 57. 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工x 米,乙工程队每天施工y 米.根据题意,所列方程组正确的是( )A. {x =y −22x +3y =400 B. {x =y −22x +3(x +y)=400−50 C. {x =y +22x +3y =400−50D. {x =y +22x +3(x +y)=400−508. 一个零件的形状如图所示,AB//DE ,AD//BC ,∠CBD =60°,∠BDE =40°,则∠A 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图,矩形ABCD 的顶点D 在反比例函数y =kx (x >0)的图象上,点E(1,0)和点F(0,1)在AB 边上,AE =EF ,连接DF ,DF//x 轴,则k 的值为( )A. 2√2B. 3C. 4D. 4√210. 如图,二次函数y =ax 2+bx +c(a ≠0)的图象的对称轴是直线x =1,则以下四个结论中:①abc >0,②2a +b =0,③4a +b 2<4ac ,④3a +c <0.正确的个数是( )A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共24.0分)11.伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.12.分解因式:ab2−9a=______.13.甲、乙两人参加“环保知识”竞赛,经过6轮比赛,他们的平均成绩都是97分.如果甲、乙两人比赛成绩的方差分别为s甲2=6.67,s乙2=2.50,则这6次比赛成绩比较稳定的是______.(填“甲”或“乙”)14.关于x的一元二次方程x2−2x−k=0有两个不相等的实数根,则k的取值范围是______.15.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径MN的长为半径作弧,交AB于点M,交AC于点N.分别以M,N为圆心,以大于12作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连接DF,则△CDF的周长为______.16.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EFA的度数是______.17. 一张菱形纸片ABCD 的边长为6cm ,高AE 等于边长的一半,将菱形纸片沿直线MN 折叠,使点A 与点B 重合,直线MN 交直线CD 于点F ,则DF 的长为______cm . 18. 如图,∠MON =45°,正方形ABB 1C ,正方形A 1B 1B 2C 1,正方形A 2B 2B 3C 2,正方形A 3B 3B 4C 3,…,的顶点A ,A 1,A 2,A 3,…,在射线OM 上,顶点B ,B 1,B 2,B 3,B 4,…,在射线ON 上,连接AB 2交A 1B 1于点D ,连接A 1B 3交A 2B 2于点D 1,连接A 2B 4交A 3B 3于点D 2,…,连接B 1D 1交AB 2于点E ,连接B 2D 2交A 1B 3于点E 1,…,按照这个规律进行下去,设△ACD 与△B 1DE 的面积之和为S 1,△A 1C 1D 1与△B 2D 1E 1的面积之和为S 2,△A 2C 2D 2与△B 3D 2E 2的面积之和为S 3,…,若AB =2,则S n 等于______.(用含有正整数n 的式子表示)三、解答题(本大题共8小题,共96.0分)19. 先化简,再求值:(x −1−x 2x+1)÷xx 2+2x+1,其中x =3.20. 某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有______人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.21.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?22.如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大桥主架的水平距离CM为60米,且AB垂直于桥面.(点A,B,C,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)23.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?24.如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.在等腰△ADC和等腰△BEC中,∠ADC=∠BEC=90°,BC<CD,将△BEC绕点C逆时针旋转,连接AB,点O为线段AB的中点,连接DO,EO.(1)如图1,当点B旋转到CD边上时,请直接写出线段DO与EO的位置关系和数量关系;(2)如图2,当点B旋转到AC边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由;(3)若BC=4,CD=2√6,在△BEC绕点C逆时针旋转的过程中,当∠ACB=60°时,请直接写出线段OD的长.x+c(a≠0)与x轴相交于点A(−1,0)和点B,与y轴相交26.如图,抛物线y=ax2+94于点C(0,3),作直线BC.(1)求抛物线的解析式;(2)在直线BC上方的抛物线上存在点D,使∠DCB=2∠ABC,求点D的坐标;),点M在抛物线上,点N在直线BC上.当(3)在(2)的条件下,点F的坐标为(0,72以D,F,M,N为顶点的四边形是平行四边形时,请直接写出点N的坐标.答案和解析1.【答案】A【解析】解:|−13|=13.故选:A.依据绝对值的性质求解即可.本题主要考查的是绝对值的性质,熟练掌握绝对值的性质是解题的关键.2.【答案】B【解析】解:从上面看,底层左边是一个小正方形,上层是两个小正方形.故选:B.根据从上面看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.【答案】C【解析】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a4b2,故D错误.故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.【答案】A【解析】解:本题中数据1出现了2次,出现的次数最多,所以本组数据的众数是1.故选:A.众数是指一组数据中出现次数最多的数据;据此即可求得正确答案.主要考查了众数的概念.注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.【答案】D【解析】解:根据题意可得:袋中有4个红球、2个白球,共6个, 从袋子中随机摸出1个球,则摸到红球的概率是46=23. 故选:D .根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.【答案】C【解析】解:解不等式3+x >1,得:x >−2, 解不等式2x −3≤1,得:x ≤2, 则不等式组的解集为−2<x ≤2,所以不等式组的整数解有−1、0、1、2这4个, 故选:C .分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.【答案】D【解析】解:由题意可得, {x =y +22x +3(x +y)=400−50, 故选:D .根据甲工程队独立施工2天后,乙工程队加入,两工程队联合施工3天后,还剩50米的工程和甲工程队每天比乙工程队多施工2米,可以列出相应的二元一次方程组,本题得以解决.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【答案】B【解析】解:∵AB//DE ,AD//BC , ∴∠ABD =∠BDE ,∠ADB =∠CBD ,∵∠CBD=60°,∠BDE=40°,∴∠ADB=60°,∠ABD=40°,∴∠A=180°−∠ADB−∠ABD=80°,故选:B.根据平行线的性质,可以得到∠ADB=60°和∠ABD的度数,再根据三角形内角和,即可得到∠A的度数.本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】C【解析】解:如图,过点D作DH⊥x轴于点H,设AD交x轴于点G,∵DF//x轴,∴得矩形OFDH,∴DF=OH,DH=OF,∵E(1,0)和点F(0,1),∴OE=OF=1,∠OEF=45,∴AE=EF=√2,∵四边形ABCD是矩形,∴∠A=90°,∵∠AEG=∠OEF=45°,∴AG=AE=√2,∴EG=2,∵DH=OF=1,∠DHG=90°,∠DGH=∠AGE=45°,∴GH=DH=1,∴DF=OH=OE+EG+GH=1+2+1=4,∴D(4,1),(x>0)的图象上,∵矩形ABCD的顶点D在反比例函数y=kx∵k=4.则k的值为4.故选:C.过点D作DH⊥x轴于点H,设AD交x轴于点G,得矩形OFDH,根据点E(1,0)和点F(0,1)在AB边上,AE=EF,可以求出EG和DH的长,进而可得OH的长,所以得点D的坐标,即可得k的值.本题考查了反比例函数图象上点的坐标特征、矩形的性质,解决本题的关键是掌握反比例函数图象和性质.10.【答案】B【解析】解:①根据抛物线开口向下可知:a<0,因为对称轴在y轴右侧,所以b>0,因为抛物线与y轴正半轴相交,所以c>0,所以abc<0,所以①错误;②因为抛物线对称轴是直线x=1,=1,即−b2a所以b=−2a,所以b+2a=0,所以②正确;③因为抛物线与x轴有2个交点,所以Δ>0,即b2−4ac>0,所以b2−4ac+4a>4a,所以4a+b2>4ac+4a,所以③错误;④当x=−1时,y<0,即a−b+c<0,因为b=−2a,所以3a+c<0,所以④正确.所以正确的个数是②④2个.故选:B.①根据抛物线开口向下可得a<0,对称轴在y轴右侧,得b>0,抛物线与y轴正半轴相交,得c>0,进而即可判断;=1,可得b=−2a,进而可以判断;②根据抛物线对称轴是直线x=1,即−b2a③根据抛物线与x轴有2个交点,可得Δ>0,即b2−4ac>0,进而可以判断;④当x=−1时,y<0,即a−b+c<0,根据b=−2a,可得3a+c<0,即可判断.本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象和性质.11.【答案】4.5×108【解析】解:将数据450000000用科学记数法表示为4.5×108.故答案为:4.5×108.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.【答案】a(b+3)(b−3)【解析】解:原式=a(b2−9)=a(b+3)(b−3),故答案为:a(b+3)(b−3).根据提公因式,平方差公式,可得答案.本题考查了因式分解,一提,二套,三检查,分解要彻底.13.【答案】乙【解析】解:∵s 甲2=6.67,s 乙2=2.50, ∴s 甲2=>s 乙2,∴这6次比赛成绩比较稳定的是乙, 故答案为:乙.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义.14.【答案】k >−1【解析】解:∵关于x 的一元二次方程x 2−2x −k =0有两个不相等的实数根, ∴△=(−2)2+4k >0, 解得k >−1. 故答案为:k >−1.根据判别式的意义得到△=(−2)2+4k >0,然后解不等式即可.此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2−4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.【答案】12【解析】解:∵AB =5,AC =8,AF =AB , ∴FC =AC −AF =8−5=3, 由作图方法可得:AD 平分∠BAC , ∴∠BAD =∠CAD , 在△ABD 和△AFD 中 {AB =AF∠BAD =∠FAD AD =AD, ∴△ABD≌△AFD(SAS), ∴BD =DF ,∴△DFC 的周长为:DF +FC +DC =BD +DC +FC =BC +FC =9+3=12. 故答案为:12.直接利用基本作图方法结合全等三角形的判定与性质进而得出BD =DF ,即可得出答案. 此题主要考查了基本作图以及全等三角形的判定与性质,正确理解基本作图方法是解题关键.16.【答案】66°【解析】解:∵正五边形ABCDE,∴∠EAB=(5−2)×180°5=108°,∵△ABF是等边三角形,∴∠FAB=60°,∴∠EAF=108°−60°=48°,∵AE=AF,∴∠AE=∠AFE=12×(180°−48°)=66°,故答案为:66°.根据正五边形和电视背景下的性质得到∠EAF=108°−60°=48°,根据等腰三角形的性质即可得到结论.本题考查了正多边形与圆,正五边形和等边三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键.17.【答案】(3√3+3)或(3√3−3)【解析】解:①根据题意画出如图1:∵菱形纸片ABCD的边长为6cm,∴AB=BC=CD=AD=6,∵高AE等于边长的一半,∴AE=3,∵sin∠B=AEAB =12,∴∠B=30°,将菱形纸片沿直线MN折叠,使点A与点B重合,∴BH=AH=3,∴BG=BHcos30∘=2√3,∴CG=BC−BG=6−2√3,∵AB//CD,∴∠GCF=∠B=30°,∴CF=CG⋅cos30°=(6−2√3)×√32=3√3−3,∴DF=DC+CF=6+3√3−3=(3√3+3)cm;②如图2,BE=AE=3,同理可得DF=3√3−3.综上所述:则DF的长为(3√3+3)或(3√3−3)cm.故答案为:(3√3+3)或(3√3−3).根据题意分两种情况:①如图1:根据菱形纸片ABCD的边长为6cm,高AE等于边长的一半,可得菱形的一个内角为30°,根据折叠可得BH=AH=3,再根据特殊角三角函数即可求出CF的长,进而可得DF的长;如图2,将如图1中的点A和点B交换一下位置,同理即可求出DF的长就是如图1中的CF的长.本题考查了翻折变换、菱形的性质,解决本题的关键是分两种情况分类讨论,进行计算.18.【答案】149×4n−1【解析】解:设△ADC的面积为S,由题意,AC//B1B2,AC=AB=2,B1B2=4,∴△ACD∽△B2B1D,∴S△ADCS△B1B2D =(ACB1B2)2=14,∴S△B1B2D=4S,∵CDDB1=ACB1B2=12,CB1=2,∴DB1=43,同法D 1B 2=83, ∵DB 1//D 1B 2, ∴DEEB 2=DB 1D1B 2=12,∴S △DB 1E =4S3, ∴S 1=S +4S 3=7S 3,∵△A 1C 1D 1∽△ACD , ∴S △A 1C 1D 1S △ACD=(A 1C 1AC)2=14, ∴S △A 1C 1D 1=4S , 同法可得,S △D 1B 1E 1=16S 3, ∴S 2=4S +16S 3=28S 3=7S 3×4,…S n =7S 3×4n−1,∵S =12×2×23=23, ∴S n =149×4n−1.故答案为:149×4n−1.设△ADC 的面积为S ,利用相似三角形的性质求出S 1,S 2,…S n 与S 的关系即可解决问题.本题考查正方形的性质,三角形的面积,相似三角形的判定和性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.19.【答案】解:(x −1−x 2x+1)÷xx 2+2x+1=[(x −1)(x +1)x +1−x 2x +1]⋅(x +1)2x =x 2−1−x 2x +1⋅(x +1)2x=−x+1x,当x =3时,原式=−3+13=−43.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.【答案】60【解析】解:(1)本次被调查的学生有:9÷15%=60(人);故答案为:60;(2)航模的人数有:60−9−15−12=24(人),补全条形统计图如图:“航模”所对应的圆心角的度数是:360°×2460=144°;(3)设两名男生分别为男1,男2,两名女生分别为女1,女2,列表如下:男1男2女1女2男1(男2,男1)(女1,男1)(女2,男1)男2(男1,男2)(女1,男2)(女2,男2)女1(男1,女1)(男2,女1)(女2,女1)女2(男1,女2)(男2,女2)(女1,女2)由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好是1名男生和1名女生的情况有8种.则所选的2人恰好是1名男生和1名女生的概率是812=23.(1)根据摄影的人数和所占的百分比求出抽取的总人数;(2)用总人数减去其他兴趣小组的人数求出航模的人数,从而补全统计图;用360°乘以“航模”所占的百分比即可得出扇形统计图中“航模”所对应的圆心角的度数;(3)根据题意画出图表得出所有等可能的情况数和所选的2人恰好是1名男生和1名女生的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设B种书架的单价为x元,根据题意,得600x+20=480x.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15−m)≤1400.解得m≤10.答:最多可购买10个A种书架.【解析】(1)设B种书架的单价为x元,则A种书架的单价为(x+20)元,根据数量=总价÷单价结合用600元购买A种书架的个数与用480元购买B种书架的个数相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设准备购买m个A种书架,则购买B种书架(15−m)个,根据题意列出不等式并解答.本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.【答案】解:(1)∵AB垂直于桥面,∴∠AMC=∠BMC=90°,在Rt△AMC中,CM=60,∠ACM=30°,tan∠ACM=AMCM,∴AM=CM⋅tan∠ACM=60×√33=20√3(米),答:大桥主架在桥面以上的高度AM为20√3米;(2)在Rt△BMC中,CM=60,∠BCM=14°,tan∠BCM=BMCM,∴MB=CM⋅tan∠BCM≈60×0.25=15,∴AB=AM+MB=15+20√3≈50(米)答:大桥主架在水面以上的高度AB约为50米.【解析】(1)根据正切的定义求出AM ;(2)根据正切的定义求出BM ,结合图形计算即可.本题考查的是解直角三角形的应用−仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式是y =kx +b(k ≠0),{12k +b =50014k +b =400,得{k =−50b =1100, 即y 与x 之间的函数关系式为y =−50x +1100; (2)由题意可得,w =(x −10)y =(x −10)(−50x +1100)=−50(x −16)2+1800,∵a =−50<0∴w 有最大值∴当x <16时,w 随x 的增大而增大, ∵12≤x ≤15,x 为整数, ∴当x =15时,w 有最大值,∴w =−50(15−16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.【解析】(1)根据题意和表格中的数据,可以求得y 与x 之间的函数关系式; (2)根据题意,可以得到w 与x 的函数关系式,然后根据二次函数的性质,可以解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.【答案】(1)证明:连接OD ,∵OC =OD , ∴∠OCD =∠ODC , ∵AC 是直径, ∴∠ADC =90°, ∵∠EDA =∠ACD ,∴∠ADO +∠ODC =∠EDA +∠ADO , ∴∠EDO =∠EDA +∠ADO =90°, ∴OD ⊥DE , ∵OD 是半径,∴直线DE 是⊙O 的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵sin∠ACB=AB,AC∴AB=sin45°⋅AC=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵sin∠ADF=AF,AD∴AF=sin45°⋅AD=3√2,∴DF=AF=3√2,∵在Rt△ABF中,∴BF2=AB2−AF2=(5√2)2−(3√2)2=32,∴BF=4√2,∴BD=BF+DF=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°−∠DBC∠CBH=90°−∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD=CH,BD=BH,∵AD=6,CD=8,∴DH=CD+CH=14,在Rt△BDH中,∵BD2=DH2−BH2=98,∴BD=7√2.【解析】(1)连接OD.想办法证明OD⊥DE即可.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,想办法求出BF,DF 即可.解法二:过点B作BH⊥BD交DC延长线于点H.证明△BDH是等腰直角三角形,求出DH即可.本题考查切线的判定和性质,圆周角定理,圆内接四边形的性质,解直角三角形,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)DO⊥EO,DO=EO;理由:当点B旋转到CD边上时,点E必在边AC上,∴∠AEB=∠CEB=90°,在Rt△ABE中,点O是AB的中点,AB,∴OE=OA=12∴∠BOE=2∠BAE,在Rt△ABD中,点O是AB的中点,AB,∴OD=OA=12∴∠DOE=2∠BAD,∴OD=OE,∵等腰△ADC,且∠ADC=90°,∴∠DAC=45°,∴∠DOE=∠BOE+DOE=2∠BAE+2∠BAD=2(∠BAE+∠DAE)=2∠DAC=90°,∴OD⊥OE;(2)仍然成立,理由:如图1,延长ED到点M,使得OM=OE,连接AM,DM,DE,∵O是AB的中点,∴OA=OB,∵∠AOM=∠BOE,∴△AOM≌△BOE(SAS),∴∠MAO=∠EBO,MA=EB,∵△ACD和△CBE是等腰三角形,∠ADC=∠CEB=90°,∴∠CAD=∠ACD=∠EBC=∠BCE=45°,∵∠OBE=180°−∠EBC=135°,∴∠MAO=135°,∴∠MAD=∠MAO−∠DAC=90°,∵∠DCE=∠DCA+∠BCE=90°,∴∠MAD=∠DCE,∵MA=EB,EB=EC,∴MA=EC,∵AD=DC,∴△MAD≌△ECD,∴MD=ED,∠ADM=∠CDE,∵∠CDE+∠ADE=90°,∴∠ADM+∠ADE=90°,∴∠MDE=90°,∵MO=EO,MD=DE,ME,OD⊥ME,∴OD=12∵OE=1ME,2∴OD=OE,OD⊥OE;(3)①当点B在AC左侧时,如图3,延长ED到点M,使得OM=OE,连接AM,DM,DE,同(2)的方法得,△OBE≌△OAM(SAS),∴∠OBE=∠OAM,OM=OE,BE=AM,∵BE=CE,∴AM=CE,在四边形ABECD中,∠ADC+∠DCE+∠BEC+∠OBE+∠BAD=540°,∵∠ADC=∠BEC=90°,∴∠DCE=540°−90°−90°−∠OBE−∠BAD=360°−∠OBE=360°−∠OAM−∠BAD,∵∠DAM+∠OAM+∠BAD=360°,∴∠DAM=360°−∠OAM−∠BAD,∴∠DAM=∠DCE,∵AD=CD,∴△DAM≌△DCE(SAS),∴DM=DE,∠ADM=∠CDE,∴∠EDM=∠ADM+∠ADE=∠CDE+∠ADE=∠ADC=90°,∵OM=OE,∴OD=OE=1ME,∠DOE=90°,2BC=2√2,在Rt△BCE中,CE=√22过点E作EH⊥DC交DC的延长线于H,在Rt△CHE中,∠ECH=180°−∠ACD−∠ACB−∠BCE=180°−45°−60°−45°= 30°,CE=√2,∴EH=12根据勾股定理得,CH=√3EH=√6,∴DH=CD+CH=3√6,在Rt△DHE中,根据勾股定理得,DE=√EH2+DH2=2√14,DE=2√7,∴OD=√22②当点B在AC右侧时,如图4,同①的方法得,OD=OE,∠DOE=90°,连接DE,过点E作EH⊥CD于H,在Rt△EHC中,∠ECH=30°,CE=√2,∴EH=12根据勾股定理得,CH=√6,∴DH=CD−CH=√6,在Rt△DHE中,根据勾股定理得,DE=2√2,∴OD=√22DE=2,即:线段OD的长为2或2√7.【解析】(1)利用直角三角形斜边的中线等于斜边的一半,得出OE=OA=12AB,进而得出∠BOE=2∠BAE,同理得出OD=OA=12AB,∠DOE=2∠BAD,即可得出结论;(2)先判断出△AOM≌△BOE(SAS),得出∠MAO=∠EBO,MA=EB,再判断出∠MAD=∠DCE,进而判断出△MAD≌△ECD,即可得出结论;(3)分点B在AC左侧和右侧两种情况,类似(2)的方法判断出OD=OE,即可得出结论.此题是几何变换综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,五边形的内角和,判断出∠DAM=∠DCE是解本题的关键.26.【答案】解:(1)∵抛物线y=ax2+94x+c经过点A(−1,0),C(0,3),∴{a−94+c=0c=3,解得:{a=−34c=3,∴抛物线的解析式为:y=−34x2+94x+3;(2)如图1,过点C作CE//x轴交抛物线于点E,则∠ECB=∠ABC,过点D作DH⊥CE于点H,则∠DHC=90°,∵∠DCB=∠DCH+∠ECB=2∠ABC,∴∠DCH=∠ABC,∵∠DHC=∠COB=90°,∴△DCH∽△CBO,∴DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),∵C(0,3),∴DH =−34t 2+94t , ∵点B 是y =−34x 2+94x +3与x 轴的交点,∴−34x 2+94x +3=0,解得x 1=4,x 2=−1,∴B 的坐标为(4,0),∴OB =4,∴−34t 2+94t3=t 4, 解得t 1=0(舍去),t 2=2,∴点D 的纵坐标为:−34t 2+94t +3=92,则点D 坐标为(2,92);(3)设直线BC 的解析式为:y =kx +b ,则{4k +b =0b =3,解得:{k =−34b =3, ∴直线BC 的解析式为:y =−34x +3,设N(m,−34m +3),分两种情况:①如图2,以DF 为边,N 在x 轴的上方时,四边形DFNM 是平行四边形,∵D(2,92),F(0,72),∴M(m +2,−34m +4),代入抛物线的解析式得:−34(m +2)2+94(m +2)+3=−34m +4,解得:m =±√63,∴N(√63,3−√64)或(−√63,3+√64);②如图3,以DF为边,N在x轴的下方时,四边形DFMN是平行四边形,同理得:M(m−2,−34m+2),代入抛物线的解析式得:−34(m−2)2+94(m−2)+3=−34m+2,解得:m=4±√663,∴N(4+√663,−√664)或(4−√663,√664);综上,点N的坐标分别为:(√63,3−√64)或(−√63,3+√64)或(4+√663,−√664)或(4−√663,√664).【解析】(1)把点A(−1,0),C(0,3)代入抛物线的解析式中,列方程组解出即可;(2)如图1,作辅助线,构建相似三角形,证明△DCH∽△CBO,则DHCO =CHBO,设点D的横坐标为t,则D(t,−34t2+94t+3),列关于t的方程解出可得结论;(3)利用待定系数法求直线BC的解析式为:y=−34x+3,设N(m,−34m+3),当以D,F,M,N为顶点的四边形是平行四边形时,存在两种情况:如图2和图3,分别画图,根据平移的性质可表示M的坐标,代入抛物线的解析式列方程可解答.本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、平行四边形的性质以及解一元二次方程,解题的关键是:(1)根据点A、C的坐标,利用待定系数法求出二次函数解析式;(2)利用相似三角形可解决问题;(3)分N在x轴的上方和下方两种情况,表示M和N两点的坐标,确定关于m的一元二次方程.。

辽宁省盘锦市2020年中考数学试卷A卷

辽宁省盘锦市2020年中考数学试卷A卷

辽宁省盘锦市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·天水) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分) (2016七上·重庆期中) 在﹣2,0,﹣4,π这四个数中,最小的数是()A . ﹣2B . 0C . ﹣4D . π3. (2分) (2019八上·绥化月考) 如果是任意实数,下列各式中一定有意义的是()A .B .C .D .4. (2分)(2016·巴彦) 下列运算正确的是()A . ﹣2x2y•3xy2=﹣6x2y2B . (﹣x﹣2y)(x+2y)=x2﹣4y2C . 6x3y2÷2x2y=3xyD . (4x3y2)2=16x9y45. (2分)(2019·南县模拟) 如图,直线,,则c与b相交所形成的度数为()A .B .C .D .6. (2分) (2019七下·长沙期末) 已知点M(3,﹣2),N(3,﹣1),则线段MN与x轴()A . 垂直B . 平行C . 相交D . 不垂直7. (2分)(2020八下·重庆月考) 已知、是方程的两根,且,则的值等于()A .B .C .D .8. (2分) (2018九上·西湖期中) 如图,⊙O 中,弦 AB、CD 相交于点 P,∠A=40°,∠APD=75°,则∠B=()A . 15°B . 40°C . 75°D . 35°9. (2分) (2017九上·信阳开学考) 小明同学统计我市2016年春节后某一周的最低气温如下表:最低气温(℃)﹣1021天数1123则这组数据的中位数与众数分别是()A . 2,3B . 2,1C . 1.5,1D . 1,110. (2分)若一次函数()的图象与x轴的交点坐标为(-2,0),则抛物线的对称轴为()A . 直线B . 直线C . 直线D . 直线二、填空题 (共8题;共8分)11. (1分)分解因式:m3﹣4m2+4m=________ .12. (1分)不等式组的整数解是________ .13. (1分)(2020·涡阳模拟) 方程的根是________.14. (1分)如图,∠α的顶点为O,它的一边在x轴的正半轴上,另一边OA上有一点P(b,4),若sinα= ,则b= .15. (1分)(2018·白银) 已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为________.16. (1分) (2020八下·迁西期末) 如图,在直角坐标平面内,已知点的坐标是,点的坐标是(1)图中点的坐标是________;(2)三角形的面积为________;(3)点关于轴对称的点的坐标是________;(4)如果将点沿着轴平行的方向向右平移3个单位得到点,那么、两点之间的距离是________;(5)图中四边形的面积是________.17. (1分) (2019九上·安庆期中) 如图,在中,,,,,分别为、上的点,沿直线将折叠,使点B恰好落在上的处,当恰好为直角三角形时,BE的长为________.18. (1分)如图,正三角形△的面积为1,取△各边的中点、、,作第二个正三角形△,再取△各边的中点、、,作第三个正三角形△,…用同样的方法作正三角形,则第2个正三角形△的面积是________ ,第10个正三角形△的面积是________ .三、解答题 (共10题;共95分)19. (5分) (2019八上·吴江期末) 化简计算:(1)化简: .(2)计算: .20. (5分) (2019九下·象山月考) 如图,一圆弧形钢梁(1)请用直尺和圆规补全钢梁所在圆(2)若钢梁的拱高为8米,跨径为40米,求这钢梁圆弧的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年辽宁省盘锦市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在有理数1,1,−1,0中,最小的数是()2C. −1D. 0A. 1B. 122.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是()A. B.C. D.3.下列运算正确的是()A. a3⋅a3=a9B. a6÷a3=a2C. a3+a3=2a6D. (a2)3=a64.不等式4x+1>x+7的解集在数轴上表示正确的是()A. B.C. D.5.下列命题正确的是()A. 圆内接四边形的对角互补B. 平行四边形的对角线相等C. 菱形的四个角都相等D. 等边三角形是中心对称图形6.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm 的概率是()A. 0.32B. 0.55C. 0.68D. 0.877.在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A. 甲B. 乙C. 丙D. 丁8.我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x尺.根据题意,可列方程为()A. x2+102=(x+1)2B. (x−1)2+52=x2C. x2+52=(x+1)2D. (x−1)2+102=x29.如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为线段OB上的一点,OE:EB=1:√3,连接DE并延长交CB的延长线于点F,连接OF交⊙O于点G,若BF=2√3,则BG⏜的长是()A. π3B. π2C. 2π3D. 3π410.如图,四边形ABCD是边长为1的正方形,点E是射线AB上的动点(点E不与点A,点B重合),点F 在线段DA的延长线上,且AF=AE,连接ED,将ED绕点E顺时针旋转90°得到EG,连接EF,FB,BG.设AE=x,四边形EFBG的面积为y,下列图象能正确反映出y与x的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)11.《2019年中国国土绿化状况公报》表明,全国保护修复湿地93000公顷,将数据93000用科学记数法表示为______.12.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是______.13.如图,直线a//b,△ABC的顶点A和C分别落在直线a和b上,若∠1=60°,∠ACB=40°,则∠2的度数是______.14.如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为2,将△AOB缩小,3则点B的对应点B′的坐标是______.15.如图,菱形ABCD的边长为4,∠A=45°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M,N两点,直线MN交AD于点E,连接CE,则CE 的长为______.16.如图,在矩形ABCD中,AB=1,BC=2,点E和点F分别为AD,CD上的点,将△DEF沿EF翻折,使点D落在BC上的点M处,过点E作EH//AB交BC于点H,过点F作FG//BC交AB于点G.若四边形ABHE与四边形BCFG的面积相等,则CF 的长为______.三、解答题(本大题共9小题,共72.0分)17.先化简,再求值:a2+2a+1a2−1⋅1a+1,其中a=√3+1.18.有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为______.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.19.某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.20.如图,A、B两点的坐标分别为(−2,0),(0,3),将线段AB绕点B逆时针旋转90°得到线段BC,过点C作CD⊥OB,垂足为D,反比例函数y=k的图象经过点C.x(1)直接写出点C的坐标,并求反比例函数的解析式;(2)点P在反比例函数y=k的图象上,当△PCD的面积为3时,求点P的坐标.x21.如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.测量项目测量数据测角仪到地面的距离CD=1.6m点D到建筑物的距离BD=4m从C处观测建筑物顶部A的仰角∠ACE=67°从C处观测建筑物底部B的俯角∠BCE=22°请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36.sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(选择一种方法解答即可)22.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD,过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当AFBF =25,CE=4时,直接写出CG的长.23.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y 元,y 与x 之间满足如图所示的函数关系,其中批发件数x 为10的正整数倍. (1)当100≤x ≤300时,y 与x 的函数关系式为______.(2)某零售商到此服装厂一次性批发A 品牌服装200件,需要支付多少元? (3)零售商到此服装厂一次性批发A 品牌服装x(100≤x ≤400)件,服装厂的利润为w 元,问:x 为何值时,w 最大?最大值是多少?24. 如图,四边形ABCD 是正方形,点F 是射线AD 上的动点,连接CF ,以CF 为对角线作正方形CGFE(C,G ,F ,E 按逆时针排列),连接BE ,DG . (1)当点F 在线段AD 上时. ①求证:BE =DG ; ②求证:CD −FD =√2BE ;(2)设正方形ABCD 的面积为S 1,正方形CGFE 的面积为S 2,以C ,G ,D ,F 为顶点的四边形的面积为S 3,当S 2S 1=1325时,请直接写出S3S 1的值.25. 如图1,直线y =x −4与x 轴交于点B ,与y 轴交于点A ,抛物线y =−12x 2+bx +c经过点B 和点C(0,4),△ABO 从点,开始沿射线AB 方向以每秒√2个单位长度的速度平移,平移后的三角形记为△DEF(点A ,B ,O 的对应点分别为点D ,E ,F),平移时间为t(0<t <4)秒,射线DF 交x 轴于点G ,交抛物线于点M ,连接ME .(1)求抛物线的解析式;(2)当tan∠EMF=4时,请直接写出t的值;3(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的1,连接OM,NF,2OM与NF相交于点P,当NP=FP时,求t的值.答案和解析1.【答案】C【解析】解:根据有理数比较大小的方法,可得−1<0<1<1,2∴在1,1,−1,0这四个数中,最小的数是−1.2故选:C.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】D【解析】解:A、a3⋅a3=a6,原式计算错误,故此选项不合题意;B、a6÷a3=a3,原式计算错误,故此选项不合题意;C、a3+a3=2a3,原式计算错误,故此选项不合题意;D、(a2)3=a6,正确;故选:D.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:4x+1>x+7,4x−x>7−1,3x>6,x>2;在数轴上表示为:故选:A.移项,合并同类项,系数化成1,求得不等式的解集,在数轴上表示即可.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.5.【答案】A【解析】解:A、圆内接四边形的对角互补,本选项说法正确,符合题意;B、平行四边形的对角线不一定相等,本选项说法错误,不符合题意;C、菱形的四条边相等,但四个角不一定都相等,本选项说法错误,不符合题意;D、等边三角形不是中心对称图形,本选项说法错误,不符合题意;故选:A.根据圆内接四边形的性质、平行四边形和菱形的性质、中心对称图形的概念判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.【答案】C=0.68,【解析】解:样本中身高不低于170cm的频率=550+1301000所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.7.【答案】A【解析】解:∵四人的平均成绩相同,而观察图形可知:甲的成绩最稳定,即甲的方差最小,∴最合适的人选是甲,故选:A.根据方差的意义求解可得.本题考查方差,解答本题的关键是明确题意,掌握方差的意义.8.【答案】B【解析】解:设芦苇长x尺,由题意得:(x−1)2+52=x2,故选:B.首先设芦苇长x尺,则为水深为(x−1)尺,根据勾股定理可得方程(x−1)2+52=x2.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型.9.【答案】C【解析】解:连接OD、BD,∵在△ABC中,AB=BC,∠ABC=90°,∴∠A=∠C=45°,∵AB是直径,∴∠ADB=90°,∵OA=OB,∴OD⊥AB,∴∠AOD=90°,∴∠AOD=∠ABC,∴OD//FC,∴△DOE∽△FBE,∴BFOD =BEOE,∵OB=OD,OE:EB=1:√3,∴BFOB=√3,∴∠BOF=60°,∴BF=2√3,∴OB=2,∴BG⏜的长=60π×2180=23π,故选:C.连接OD、BD,通过证得△ABD是等腰直角三角形得出OD⊥AB,进而证得OD//FC,即可得到△DOE∽△FBE,得出BFOD =BEOE,进一步得到∠BOF=60°,OB=2,然后根据弧长公式求得即可.本题考查了等腰直角三角形的性质,圆周角定理,三角形相似的判定和性质解直角三角形以及弧长公式等,作出辅助性构建直角三角形是解题的关键.10.【答案】B【解析】解:∵四边形ABCD是边长为1的正方形,∴∠DAB=90°,AD=AB,在△ADE和△ABF中,{AD=AB∠DAE=∠BAF AE=AF,∴△ADE≌△ABF(SAS),∴∠ADE=∠ABF,DE=BF,∵∠DEG=90°,∴∠ADE+∠AED=∠AED+∠BEG,∴∠BEG=∠ADE,∴∠BEG=∠ABF,∴EG//BF,∵DE=BF,DE=GE,∴EG=BF,∴四边形BFEG是平行四边形,∴四边形EFBG的面积=2△BEF的面积=2×12BE⋅AF,设AE=x,四边形EFBG的面积为y,当0≤x≤1时,y=(1−x)⋅x=−x2+x;当x>1时,y=(x−1)⋅x=x2−x;综上可知,当0≤x≤1时,函数图象是开口向下的抛物线;当x>1时,函数图象是开口向上的抛物线,符合上述特征的只有B,故选:B.分两种情况求出函数的解析式,再由函数解析式对各选项进行判断.本题综合考查了正方形的性质和二次函数图象及性质,分段求出函数的解析式是解题的关键.11.【答案】9.3×104【解析】解:将数据93000用科学记数法表示为9.3×104.故答案为:9.3×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】m≤1【解析】解:根据题意得△=22−4m≥0,解得m≤1.故答案为m≤1.利用判别式的意义得到△=22−4m≥0,然后解关于m的不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.13.【答案】20°【解析】解:∵直线a//b,∴∠1=∠ACB+∠2,∵∠1=60°,∠ACB=40°,∴∠2=60°−40°=20°,故答案为20°.根据平行线的性质可证得∠1=∠ACB+∠2,由∠1=60°,∠ACB=40°可求解∠2的度数.本题主要考查平行线的性质,掌握平行线的性质是解决问题的关键.14.【答案】(2,4)或(−2,−4)【解析】解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(−2,−4),∴满足条件的点B′的坐标为(2,4)或(−2,−4).故答案为(2,4)或(−2,−4).利用相似三角形的性质求解即可.本题考查位似变换,相似三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,注意一题多解.15.【答案】2√6【解析】解:如图,连接EB.由作图可知,MN垂直平分线段AB,∴EA=EB,∴∠A=∠EBA=45°,∴∠AEB=90°,∵AB=4,∴EA=EB=2√2,∵四边形ABCD是菱形,∴AD//BC,∴∠EBC=∠AEB=90°,∴EC=√EB2+BC2=√(2√2)2+42=2√6,故答案为2√6.如图,连接EB.证明△AEB是等腰直角三角形,利用勾股定理求出AE,EB,EC即可.本题考查作图−基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.【答案】38【解析】解:设CF=x,CH=y,则BH=2−y,∵四边形ABHE与四边形BCFG的面积相等,∴2−y=2x,∴y=2−2x,由折叠知,MF=DF=1−x,EM=ED=CH=y=2−2x,∠EMF=∠D=90°,∴∠EMH+∠CMF=90°,∵∠C=90°,∴∠CMF+∠CFM=90°,∴∠EMH=∠MFC,∵∠EHM=∠C=90°,∴△EMH∽△MFC,∴EMMF =EHMC,即2−2x1−x=√(1−x)2−x2,解得,x=38.设CF=x,CH=y,根据“四边形ABHE与四边形BCFG的面积相等”得出x与y的关系式,再证明△EMH∽△MFC,由相似三角形的性质列出x的方程,便可解答得出答案.本题主要考查了矩形的性质,矩形的面积,相似三角形的性质与判定,勾股定理,方程思想,关键是证明三角形相似列出方程.17.【答案】解:a2+2a+1a2−1⋅1a+1=(a+1)2(a+1)(a−1)⋅1a+1=1a−1,当a=√3+1时,原式=1√3+1−1=√33.【解析】根据分式的乘法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.【答案】12【解析】解:(1)随机抽取一张卡片,卡片上的数字是奇数的概率为24=12;故答案为:12;(2)画树状图如图:共有16个等可能的结果,两次抽取的卡片上的数字和等于6的结果有3个,∴两次抽取的卡片上的数字和等于6的概率=316.(1)由概率公式即可得出结果;(2)画出树状图,由树状图求得所有等可能的结果与抽到的两张卡片上标有的数字之和等于6的结果,再由概率公式即可求得答案.本题考查了列表法与树状图法、概率公式,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.19.【答案】解:(1)m=20÷40%=50,2n+(n+10)=50−20−5,解得,n=5,A组所占的百分比为:2×5÷50×100%=20%,C组所占的百分比为:(5+10)÷50×100%═30%,补全的扇形统计图如右图所示;(2)∵A组有2×5=10(人),B组有20人,抽查的学生一共有50人,∴所抽取的m名学生平均每天课外阅读时间的中位数落在B组;(3)1500×5+10+550=600(名),答:该校有600名学生平均每天课外阅读时间不少于1小时.【解析】(1)根据B组的频数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据频数分布表中的数据,可以得到中位数落在哪一组;(3)根据频数分布表中的数据,可以计算出该校有多少名学生平均每天课外阅读时间不少于1小时.本题考查频数分布表、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BC,∴AB=BC,∠ABC=90°,∵CD⊥OB,∴∠CDB=∠AOB=∠ABC=90°,∴∠ABO+∠CBD=∠CBD+∠DCB=90°,∴∠ABO=∠DCB,∴△ABO≌△BCD(AAS),∴CD=OB=3,BD=OA=2,∴OD=3−2=1,∴C点的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为:y=3x;(2)设P(3m,m),∵CD⊥y轴,CD=3,由△PCD的面积为3得:12CD⋅|m−1|=3,∴12×3|m−1|=3,∴m−1=±2,∴m=3或m=−1,当m=3时,3m =1,当m=−3时,3m=−1,∴点P的坐标为(1,3)或(−3,−1).【解析】(1)根据旋转的性质和全等三角形的性质求得C点的坐标,即可求得结论;(2)由解析式设出P点的坐标,根据三角形面积公式得出方程,解方程可求得P点坐标.本题考查了待定系数法求反比例函数的解析式,全等三角形的判定和性质,旋转的性质,三角形的面积的计算,正确的识别图形是解题的关键.21.【答案】解:选择CD=1.6m,BD=4m,∠ACE=67°,过E作CE⊥AB于E,则四边形BDCE是矩形,∴BE=CD=1.6m,CE=BD=4m,在Rt△ACE中,∵∠ACE=67°,∴tan∠ACE=AE,CE=2.36,∴AE4∴AE≈9.2m,∴AB=AE+BE=9.4+1.6=11.0(m),答:建筑物AB的高度为11.0m.【解析】过E作CE⊥AB于E,则四边形BDCE是矩形,由矩形的性质得到BE=CD= 1.6m,CE=BD=4m,根据三角函数的定义即可得到结论.本题考查了解直角三角形−仰角俯角问题,矩形的性质,正确的作出辅助线构造直角三角形是解题的关键.22.【答案】(1)证明:∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC.(2)①证明:连接OA,AC.∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线.②解:过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF//AC,∴ECBE =AFBF=25,∵CE=4,∴BE=10,∵BC⊥AD,∴AC⏜=CD⏜,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴AECE =EBEA,∴AE2=4×10,∵AE >0,∴AE =2√10,∴AH =AE =2√10,∵∠G =∠G ,∠CHG =∠AEG =90°,∴△GHC∽△GEA ,∴GH GE=HC EA =GC GA , ∴y x+4=2√10=2√10+y , 解得x =283. 【解析】(1)想办法证明∠B +∠BAE =90°即可解决问题.(2)①连接OA ,想办法证明OA ⊥AG 即可解决问题.②过点C 作CH ⊥AG 于H.设CG =x ,GH =y.利用相似三角形的性质构建方程组解决问题即可.本题属于圆综合题,考查了切线的判定,垂径定理,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型. 23.【答案】y =−110x +110【解析】解:(1)当100≤x ≤300时,设y 与x 的函数关系式为:y =kx +b ,根据题意得出:{100k +b =100300k +b =80, 解得:{k =−110b =110, ∴y 与x 的函数关系式为:y =−110x +110,故答案为:y =−110x +110;(2)当x =200时,y =−20+110=90,∴90×200=18000(元),答:某零售商一次性批发A 品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(−110x+110−71)x=−110x2+39x=−110(x−195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:−110(200−195)2+3802.5=3800;②当300<x≤400时,w=(80−71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190元或200元时,w最大,最大值是3800元.(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=−110x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.此题主要考查了二次函数的应用,待定系数法求一次函数解析式以及二次函数最值求法等知识,利用x的取值范围不同得出函数解析式是解题关键.24.【答案】(1)①证明:如图1中,∵四边形ABCD,四边形EFGC都是正方形,∴∠BCD=∠ECG=90°,CB=CD,CE=CG,∴∠BCE=∠DCG,∴△BCE≌△DCG(SAS),∴BE=DG.②证明:如图1中,设CD交FG于点O,过点G作GT⊥DG交CD于T.∵∠EDC=∠EGC=90°,∴C,F,D,G四点共圆,∴∠CDG=∠CFG=45°,∵GT⊥DG,∴∠DGT=90°,∴∠GDT=∠DTG=45°,∴GD=GT,∵∠DGT=∠FGC=90°,∴∠DGF=∠TGC,∵GF=GC,∴△GDF≌△GTC(SAS),∴DF=CT,∴CD−DF=CD−CT=DT=√2DG.(2)解:当点F在线段AD上时,如图1中,∵S2S1=1325,∴可以假设S2=13k,S1=25k,∴BC=CD=5√k,CE=CG=√13k,∴CF=√26k,在Rt△CDF中,DF=√CF2−CD2=√k,∴DF=CT=√k,DT=4√k∴DG=GT=2√2k,∴S3=S△GFC+S△DFG=12×√13k×√13k+12×√k×2√k=152k,∴S3S1=152k25k=310.当点F在AD的延长线上时,同法可得,S3=S△DCF+S△FGC=12×5√k×√k+12×√13k×√13k=9k,∴S3S1=925,综上所述,S 3S 1的值为310或925.【解析】(1)①证明△BCE≌△DCG(SAS)可得结论.②如图1中,设CD 交FG 于点O ,过点G 作GT ⊥DG 交CD 于T.证明△DGT 是等腰直角三角形,再证明△DGF≌△TGC 即可解决问题.(2)分两种情形:当点F 在线段AD 上时,如图1中,当点F 在AD 的延长线上时,分别求解即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四边形的面积等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.25.【答案】解:(1)∵直线y =x −4与x 轴交于点B ,与y 轴交于点A ,∴B(4,0),A(0,−4),把B(4,0),C(0,4)代入y =−12x 2+bx +c 得到{c =4−8+4b +c =0, 解得{b =1c =4, ∴抛物线的解析式为y =−12x 2+x +4.(2)如图1中,当点M 在线段DF 的上方时,由题意,D(t,t −4),则M(t,−12t 2+t +4),∴DM =−12t 2+8,在Rt △MEF 中,tan∠EMF =EF FM =4FM =43,∴MF =3,∵DF =EF =4, ∴DM =7,∴−12t 2+8=7,∴t =√2或−√2(舍弃)当点M 在线段DF 上时,DM =1,∴−12t 2+8=1,解得t =√14或−√14(舍弃),综上所述,满足条件的t 的值为√2或√14.(3)如图2中,过点N 作NT//y 轴于T.由题意D(t,t −4),则M(t,−12t 2+t +4),N(12t,−18t 2+12t +4),T(12t,−14t 2+12t +2),F(t,t)∵NT//FM ,∴∠PNT =∠PFM ,∵∠NPT =∠MPF ,PN =PF ,∴△NPT≌△FPM(ASA),∴NT =MF ,∴−18t 2+12t +4−(−14t 2+12t +2)=−12t 2+t +4−t ,解得t =4√55或−4√55(舍弃),【解析】(1)求出等B 的坐标,利用待定系数法解决问题即可.(2)分两种情形:如图1中,当点M 在线段DF 的上方时,求出DM =7,构建方程求解即可,当点M在线段DF上时,DM=1,构建方程求解即可.(3)如图2中,过点N作NT//y轴于T.由题意D(t,t−4),则M(t,−12t2+t+4),N(12t,−18t2+12t+4),T(12t,−14t2+12t+2),F(t,t),利用全等三角形的性质证明NT=MF,由此构建方程解决问题即可.本题属于二次函数综合题,考查了二次函数的性质,待定系数法,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。

相关文档
最新文档