第5讲 概率与概率分布

合集下载

概率及正态分布

概率及正态分布
npq
(5.8) (5.9)
5.二项分布的应用
二项分布函数除了用来 求成功事件恰好出现X次的概 率之外,在教育中主要用来 判断试验结果的机遇性与真 实性的界限。
例如,一个学生凭猜测做10个是非题, 平均可以猜对5题。什么情况下可以说他是真 会而不是猜测呢?
这种问题需要用累积概率来算。当做对8 题或8题以上时,累积概率为0.989,也就是 说,猜对9题或10题的概率不足0.05。
练习与思考
什么是概率?什么是概率分布? 什么是概率的加法定理和乘法定理? 二项分布有哪些应用? 第193-195页的有关习题。
下次学习内容:
正态分布和抽样分布
看书:161—175,182—191页
再见!
2011年3月
2 4
3
0.1550
P(5)
C85
p5
q3
8!
1
5
5!3! 3
2 3
3
0.0617
P(0) 0.0406 P(0) P(1) 0.2022
P(0) P(1) P(2) 0.4838
P(0) P(1) P(2) P(3) P(4) 0.9188 P(0) P(1) P(2) P(3) P(4) P(5) 0.9805
表5-1 一个学生做10个正误题做对不同题数的概率分布
做对题目数
0 1 2 3 4 5 6 7 8 9 10
总和
出现方式数
1 10 45 120 210 252 210 120 45 10 1
1024
概率P(X)
0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001

概率论与数理统计 第5章

概率论与数理统计 第5章
i 1 4 i 2 2 i i 1
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2

i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求


(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s

数的概率分布

数的概率分布

数的概率分布概率分布是概率论中重要的概念之一,用于描述一个随机变量取值的可能性。

在数学和统计学领域里,数的概率分布研究了在特定情况下数值出现的概率。

本文将介绍数的概率分布的基本含义、常见的概率分布类型以及其在实际应用中的重要性。

一、概率分布的基本定义概率分布是随机变量的可能取值及其对应概率的描述。

随机变量可以是离散型变量或连续型变量。

离散型变量的取值有限且可数,如掷骰子的点数;连续型变量的取值为无限个且不可数,如人的身高。

概率分布描述了随机变量每个取值的概率。

二、常见的概率分布类型1. 离散型概率分布离散型概率分布用于描述随机变量为离散型的情况。

以下是几种常见的离散型概率分布:(1)伯努利分布伯努利分布是一种简单的离散型分布,常用于描述试验只有两个可能结果的情况,如硬币的正反面。

(2)二项分布二项分布是描述n次成功失败试验的离散型分布,例如n次掷硬币中正面朝上的次数。

(3)泊松分布泊松分布用于描述单位时间内随机事件发生的次数,如单位时间内电话呼叫次数、交通事故发生次数等。

2. 连续型概率分布连续型概率分布用于描述随机变量为连续型的情况。

以下是几种常见的连续型概率分布:(1)均匀分布均匀分布描述了在一个区间内随机取值时,每个取值的概率相等,如抛硬币的落点在一个平面上的坐标。

(2)正态分布正态分布是最常见的连续型概率分布之一,也称为高斯分布。

它以钟形曲线为特征,广泛应用于自然和社会科学领域,如身高、体重等。

(3)指数分布指数分布用于描述事件发生的时间间隔或等待时间,如设备故障发生的时间间隔、用户等待的响应时间等。

三、概率分布在实际应用中的重要性概率分布在实际应用中具有重要的作用,主要体现在以下几个方面:1. 预测和决策通过分析和建模某个事件或现象的概率分布,可以对未来可能的结果进行预测。

例如,在金融领域中,通过对股票收益率的概率分析,可以帮助投资者做出决策。

2. 风险评估概率分布可以用于评估风险。

在保险行业中,通过对保险索赔次数或大小的概率分析,可以估算保险公司的风险,并确定合理的保费。

_新教材高中数学第五章统计与概率

_新教材高中数学第五章统计与概率

D.10张票中有1 张奖票,10人去摸,无论谁先摸,摸到奖票的概率
都是0.1
【答案】
D
(2)我们知道,每次抛掷硬币的结果出现正、反的概率都为0.5,则连
续抛掷质地均匀的硬币两次,是否一定出现“一次正面向上,一次反
面向上”呢?
【解析】 不一定.这是因为统计规律不同于确定的数学规律,对于具体的一
次试验而言,它带有很大的随机性(即偶然性),通过具体试验可以知道除上述结
状元随笔 (1)正确理解频率与概率之间的关系
随机事件的频率,是指事件发生的次数与试验总次数的比值,它具有一
定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种
摆动的幅度越来越小.我们给这个常数取一个名字,叫做这个随机事件的
概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件
发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个
事件的概率.
(2)概率与频率的区别与联系:
频率
概率
频率反映了一个随机事件发 概率是一个确定的值,它反映
区别
生的频繁程度,是随机的 随机事件发生的可能性的大小
频率是概率的估计值,随着试验次数的增加,频率会越来越
联系
接近概率
基 础 自 测
(2)将“60分~69分”记为事件B,则P(B)≈0.140;
(3)将“60分以上”记为事件C,则P(C)≈0.067+0.282+0.403+0.140=0.892.
题型3 频率分布直方图的应用[经典例题]
例3 (1)在某次赛车中,50名参赛选手的成
绩(单位:min)全部介于13到18之间(包括13和
1
,是指试验次数相当
1 000

分布 概率论

分布 概率论

分布概率论
在概率论中,分布是一个用于描述随机变量取值的概率分布情况的概念。

它提供了关于随机变量在不同取值下的概率信息。

随机变量可以是离散的,也可以是连续的。

对于离散随机变量,分布可以用概率质量函数(Probability Mass Function,PMF)来表示,它给出了随机变量取每个可能值的概率。

例如,掷一枚骰子的随机变量可以用 PMF 表示,每个点数出现的概率为 1/6。

对于连续随机变量,分布通常使用概率密度函数(Probability Density Function,PDF)来描述。

PDF 定义了随机变量在某个区间内的概率密度,即在该区间内取值的概率。

例如,正态分布是一种常见的连续分布,用于描述许多自然现象和统计数据。

除了 PMF 和 PDF,还有其他类型的分布,如累积分布函数(Cumulative Distribution Function,CDF),它表示随机变量小于或等于某个值的概率。

这些分布函数共同提供了关于随机变量的完整概率描述。

在概率论中,了解分布是非常重要的,因为它允许我们进行概率计算、推断和建模。

通过分析分布,我们可以回答关于随机变量的各种问题,例如计算特定取值的概率、确定均值和方差等统计量,以及进行假设检验和预测。

常见的分布包括均匀分布、正态分布、指数分布、二项分布、泊松分布等。

每种分布都有其特定的形状和特征,适用于不同类型的随机现象。

总而言之,分布在概率论中起着关键作用,它提供了对随机变量概率特征的描述,使我们能够对不确定性进行建模和分析。

05-概率分布-正态分布

05-概率分布-正态分布

而后根据指标的实际用途确定单侧或双侧界值,根
据研究目的和使用要求选定适当的百分界值,常用 95%。 .
双侧临界值:标准正态分布双侧尾部面积之和等于α 时所 对应的正侧变量值,记作Zα /2。
单侧临界值:标准正态分布单侧尾部面积等于α 时所对应 的正侧变量值,记作Zα 。
以不同的方法计算参考值范围:
3. 求上、下界值
下界: x 1.96s 117.4 1.9610.2 97.41( g / l ) 上界: x 1.96s 117.4 1.9610.2 137.39( g / l )
所以,该地健康女性血红蛋白的95%参考值范围是 (97.41,137.39)g/l。
体重频率密度
图5-1 体重频率密度图
图5-2 概率密度曲线示意图
故对连续性随机变量而言:
变量某区间取值的概率 = 正态曲线该变量区间的面 积
推 断:
测得一个孕妇体重在54-68kg的概率有多大? 孕妇体重在哪个范围内算是正常的呢?
一、正态分布的概念和 密度函数
正态分布( normal distribution):是描述连续型
X 1.64S X 1.96S
X 2.58S
X-1.28S
X 1.28S X 1.64S
X 2.33S
X-1.64S X-2.33S
举例1:调查某地120名健康女性血红蛋白,直方图显 示其分布近似正态,试估计该地健康女性血红蛋白 的95%参考值范围。 解析: 1. 分布近似正态 2. 过高过低均为异常 正态分布法求参考值范围 设定双侧界值
3. 标准正态分布区间(-2.58,2.58)的面积占总面积的99%
2.左半侧Z 值对应面积的查法:标准正态分布是以 0 为中 心左右对称,所以该表只计算曲线下一半的面积即可 。

高考专题复习 二项分布(解析版)

高考专题复习   二项分布(解析版)

(3)由题意,得 ~
,从而

; 所以 的分布列为
X
0
1
P
: .
2
3


.
考向三 超几何分布与二项分布区分
【例 3】某地区为调查新生婴儿健康状况,随机抽取 6 名 8 个月龄婴儿称量体重(单位:千克),称量结果 分别为 6,8,9,9,9.5,10.已知 8 个月龄婴儿体重超过 7.2 千克,不超过 9.8 千克为“标准体重”,否 则为“不标准体重”.
(1)根据样本估计总体思想,将频率视为概率,若从该地区全部 8 个月龄婴儿中任取 3 名进行称重,则至少 有 2 名婴儿为“标准体重”的概率是多少?
(2)从抽取的 6 名婴儿中,随机选取 4 名,设 X 表示抽到的“标准体重”人数,求 X 的分布列和数学期望.
【答案】(1) P( A) 20 (2)见解析 27
(Ⅰ)用该实验来估测小球落入 4 号容器的概率,若估测结果的误差小于 ,则称该实验是成功的.试问:
该兴趣小组进行的实验是否成功?(误差

(Ⅱ)再取 3 个小球进行试验,设其中落入 4 号容器的小球个数为 ,求 的分布列与数学期望.(计算时采 用概率的理论值)
【答案】(Ⅰ)是成功的;(Ⅱ)详见解析.
(1)在被调查的驾驶员中,从平均车速不超过 100 km/h 的人中随机抽取 2 人,求这 2 人恰好有 1 名男性驾 驶员和 1 名女性驾驶员的概率;
(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取 3 辆,记这 3 辆车平均车速超过 100
km/h 且为男性驾驶员的车辆为 X,求 X 的概率分布.
a
考向二 二项分布
【例 2】为研究家用轿车在高速公路上的车速情况,交通部门随机选取 100 名家用轿车驾驶员进行调查,得 到其在高速公路上行驶时的平均车速情况为:在 55 名男性驾驶员中,平均车速超过 100 km/h 的有 40 人, 不超过 100 km/h 的有 15 人;在 45 名女性驾驶员中,平均车速超过 100 km/h 的有 20 人,不超过 100 km/h 的有 25 人.

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

高考理科数学二轮复习:专题透析(5)概率与统计名师讲义(含答案)

5概率与一、数原理1.分加法数原理和分步乘法数原理的区是什么?分加法数原理“分” ,此中各样方法互相独立 ,用此中任何一种方法都能够做完件事 ;分步乘法数原理“分步” ,各个步互相依存 ,只有各个步都达成了才算达成件事 .2.摆列数、合数的公式及性是什么?(1)=n(n-1)(n-2) ⋯(n-m+1)=公(2)= =式=(n,m∈N+ ,且 m≤n)特地 , =1性(1)0!= 1; =n!(2) =;=+3.二式系数的性是什么?性性描绘称与首末两头“等距离”的两个二式系数相等 ,即 =性增减二式系当 k<(n∈N+ ) ,二式系数是增的性数(n∈N+ ) ,二式系数是减的当 k>二式当 n 偶数 ,中的一获得最大系数的最大当 n 奇数 ,中的两与获得最大而且相等4.各二式系数的和是什么?(1)(a+b )n睁开式的各二式系数的和+ + + ⋯+= 2n.(2)偶数的二式系数的和等于奇数的二式系数的和,即+ + + ⋯= + ++ ⋯= 2n- 1.二、概率1.互斥事件与立事件有什么区与系?互斥与立都是两个事件的关系,互斥事件是不行能同生的两个事件,而立事件除要求两个事件不一样生外 ,要求两者之一必有一个生 .所以 ,立事件是互斥事件的特别状况 ,而互斥事件不必定是立事件 .2.基本领件的三个特色是什么?(1)每一个基本领件生的可能性都是相等的;(2)任何两个基本领件都是互斥的;(3)任何事件 (除不行能事件 )都能够表示成基本领件的和.3.古典概型、几何概型的概率公式分是什么?古典概型的概率公式 :P(A)=.几何概型的概率公式 :P(A)=.三、统计初步与统计事例1.分层抽样的合用范围是什么?当整体是由差别明显的几个部分构成时,常常采纳分层抽样的方法.2.怎样作频次分布直方图?(1)求极差 (即一组数据中最大值与最小值的差).(2)决定组距与组数 .(3)将数据分组 .(4)列频次分布表 .(5)画频次分布直方图 .3.频次分布直方图的特色是什么?(1)频次分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)在频次分布直方图中 ,各小长方形的面积总和等于 1.由于在频次分布直方图中组距是一个固定值 ,所以各小长方形高的比也就是频次比 .(3)频次分布表和频次分布直方图是一组数据频次分布的两种形式,前者正确 ,后者直观 .4.怎样进行回归剖析 ?(1)定义 :对拥有有关关系的两个变量进行统计剖析的一种常用方法.(2)本点的中心于一拥有性有关关系的数据 (x1,y1),(x2,y2), ⋯ ,(x n,y n),此中 ( , )称本点的中心 .(3)有关系数当r> 0 ,表示两个量正有关; 当r< 0 ,表示两个量有关 .r 的越靠近于 1,表示两个量的性有关性越 .r 的越靠近于 0,表示两个量之的性有关性越弱 .往常当 |r|大于 0.75 ,两个量有很的性有关性.5.独立性的一般步是什么?解决独立性的用,必定要依照独立性的步得出.独立性的一般步 :(1)依据本数据制成2×2 列表 ;(2)依据公式 K2=算K2的k;(3)比 k 与界的大小关系 ,做出推测 .四、随机量及其用1.失散型随机量的分布列及性是什么?(1)失散型随机量的分布列:若失散型随机量X 全部可能的取x1,x2, ⋯,x i⋯,x n,X 取每一个 x i(i= 1,2, ⋯,n)的概率 p1,p2, ⋯,p n,表X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n称失散型随机量X 的概率分布列或称失散型随机量X 的分布列.(2)失散型随机量的分布列的性:①0≤p≤1(i= 1,2,3,⋯,i n);②p1+p2+ ⋯+p n= 1;③P(x i≤X≤x j)=p i+p i+ 1+ ⋯+p j .2.事件的互相独立性的观点及公式是什么?(1)互相独立的定 :事件 A 能否生事件 B 能否生的概率没有影响,即 P(B|A)=P (B). ,称事件 A 与事件 B 互相独立 ,并把两个事件叫作互相独立事件 .(2)概率公式条件事件 A,B 互相独立事件 A⋯,1,A2, A n互相独立公式P(A∩B)=P (A) ·P(B) P(A1∩A2∩⋯∩A n) =P (A1) ·P(A2) ·⋯·P(A n)3.独立重复与二分布的观点和公式是什么?(1)独立重复①定 :在同样条件下 ,重复地做n 次 ,各次互相独立 ,那么一般就称它 n 次独立重复 .②概率公式 :在一次中事件 A 生的概率p, n 次独立重复中,事件 A 恰巧生 k 次的概率 P k n-k⋯,n(k)=p (1-p)(k=0,1,2,n).(2)二分布 :在 n 次独立重复中 ,事件 A 生的次数 X,事件 A 不生的概率 q= 1-p, n 次独立重复中事件 A 恰巧生 k 次的概率是P(X=k)= p k q n-k,此中 k=0,1,2,⋯,n于是 X 的分布列 :X 0 1 ⋯k ⋯np0pq p k q n p n qP⋯⋯q n n-1-k0此称失散型随机量X 听从参数 n,p 的二分布 ,作 X~B(n,p).4.正分布的观点及性是什么?(1)正曲 :正量的概率密度函数的象叫作正曲,其函数表达式 f(x)=·,x∈R,此中μ,σ 参数 ,且σ>0,-∞<μ<+∞.(2)正曲的性①曲位于 x 上方 ,与 x 不订交 ,与 x 之的面1;②曲是峰的 ,它对于直 x=μ 称 ;③曲在 x=μ 达到峰;④当μ必定 ,曲的形状由σ确立 ,σ越小 ,曲越“瘦高”,表示体的分布越集中 ;σ越大 ,曲越“矮胖”,表示体的分布越分别 .(3)正体在三个特别区内取的概率①P(μ-σ<X≤μ+σ)= 0.6826;②P(μ-2σ<X≤μ+2σ)= 0.9544;③P(μ-3σ<X≤μ+3σ)= 0.9974.5.失散型随机量的数学希望(或均 )与方差的观点是什么 ?一个失散型随机量X 全部可能取的是x1,x2, ⋯,x n些的概率分是 p1,p2, ⋯,p n.(1)数学希望 :称 E(X)=x 1p1+x2p2+ ⋯+x n p n失散型随机量 X 的均或数学希望 (称希望 ),它刻画了个失散型随机量取的均匀水平 .(2)方差 :称 D(X)= (x1-E(X))2p1+ (x2-E(X))2p2+ ⋯+ (x n-E(X))2p n失散型随机量 X 的方差 ,它反应了失散型随机量取相于希望的均匀波大小(或失散程度 ),D(X)的算平方根叫作失散型随机量X 的准差 .6.均与方差的性有哪些?(1)E(aX+b)=aE (X)+b(a,b 常数 ).(2)D(aX+b )=a2D(X)(a,b 常数 ).(3)两点分布与二分布的均、方差的公式①若 X 听从两点分布 ,E(X)=p ,D(X)=p (1-p).②若 X~B(n,p), E(X)=np,D(X)=np(1-p).几何概型、古典概型、互相独立事件与互斥事件的概率、条件概率是高考的点 ,几何概型主要以客形式考,求解的关在于找准度(度或面 );互相独立事件、互斥事件常作解答的一部分考,也是一步求分布列、希望与方差的基础,求解该类问题要正确理解题意,正确判断概率模型,恰当选择概率公式 .近几年的高考数学试题对统计事例的考察一般不独自命题 ,而是与概率、随机变量的数学希望交汇命题 ,高考对此类题目的要求是能依据给出的或经过统计图表给出的有关数据求线性回归方程,认识独立性查验的思想方法 ,会判断两个分类变量能否有关.从近几年高考情况来看,该类专题在高考取占的比率大概为15%,以简单题、中档题为主,考察题型分选择题、填空题和解答题 .一、选择题、填空题的命题特色(一)考察摆列、组合的应用 ,以考察两个计数原理和摆列、组合的应用为主,难度中等 ,常常以选择题、填空题的形式出现.1.(2018 ·全国Ⅰ卷·理 T15 改编 )从 2 名女生 ,4 名男生中选 3 人参加科技竞赛 ,恰有 1 名女生当选 ,则不一样的选法共有种.(用数字填写答案)分析 ?由题意可得有1名女生,2名男生,则有 C = 12 种不一样的选法 .答案?122.(2018 ·浙江卷·T16 改编 )从 1,3,5,7,9 中任取 2 个数字 ,从 2,4,6 中任取 2 个数字,一共能够构成个没有重复数字的四位数.(用数字作答 )分析 ?一共能够构成 A = 720 个没有重复数字的四位数.答案 ?7203.(2017 ·全国Ⅱ卷·理 T6 改编 )安排 5 名志愿者达成 4 项工作 ,每项工作只需由1 人达成 ,则不一样的安排方式共有 ().A.120 种B.180 种C.240 种D.360 种分析 ?由题意可得 ,5 人中选出 4 人达成工作 ,剩下 1 人没有工作 ,故不同的安排方式有 A = 120(种).答案 ?A(二)考察二项式定理的应用,以考察运用二项式定理求特定项、求项数和二项式定理性质的应用为主,难度中等 ,常常以选择题、填空题的形式出现.4.(2018 ·全国Ⅲ卷·理 T5 改编 )的睁开式中x的系数为().A.10B.20C.40D.80分析 ?由题可得 Tr+ 1C25-rC·r ·10-3r, (x ) 2 x令 10-3r= 1,得 r= 3.所以·2r=·32 =80.答案 ?D5.(2017 ·全国Ⅰ卷·理 T6 改编 )(1+x )6的睁开式中 x4的系数为 ().A.15B.16C.30D.35分析 ?由于 (1+x)6睁开式的通项为 T r 所以(1+x)6的展r+ 1C x ,开式中含 x4的项为 1C x4和C x6.由于+= 16,所以(1+x)6的睁开式中x4的系数为16.答案 ?B(三)考察随机事件的概率 ,以考察随机事件、互斥事件与对峙事件的概率为主 ,难度中等 ,常与事件的频次交汇考察.本节内容在高考取三种题型都有可能出现 ,随机事件的频次与概率题目常常以解答题的形式出现,互斥事件、对峙事件的观点及概率题目常常以选择、填空题的形式出现.6.(2018 ·全国Ⅲ卷·文 T5 改编 )若某集体中的成员只用现金支付的概率为0.25,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为().分析 ? 设事件 A 为“不用现金支付”,事件 B 为“既用现金支付也用非现金支付”,事件 C 为“只用现金支付”,则 P(A)= 1-P(B)-P(C)= 1-0.15-0.25= 0.6,故选 C.答案?C(四)考察古典概型 ,全国卷对古典概型每年都会考察 ,难度中等 ,主要考察实质背景的可能事件 ,往常与互斥事件、对峙事件一同考察 .在高考取独自命题时 ,往常以选择题、填空题形式出现 ,属于中低档题 .7.(2018 ·全国Ⅱ卷·理 T8 改编 )我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就 .哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30= 7+ 23.在不超出 30 的素数中 ,随机选用 2 个不一样的数 ,其和等于26 的概率是 ().A. B. C. D.分析 ?不超出30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选用 2 个不一样的数 ,共有 C= 45 种取法 .由于 3+ 23= 7+ 19= 26,所以随机选用2 个不一样的数 ,其和等于 26 的有 2 种取法 ,故所求概率为.答案?D8.(2018 ·江苏卷·T6 改编 )某兴趣小组有 2 名男生和 3 名女生 ,现从中任选 2 名学生去参加活动 ,则恰巧选中 1 名男生和 1 名女生的概率为.分析 ?从5名学生中任选2 名学生 ,共有 C = 10 种选法 ,此中恰巧选中1 名男生和 1 名女生的选法有 C C= 6 种,所以所求概率为= .答案 ?(五)考察几何概型 ,难度较大 ,以理解几何概型的观点、概率公式为主,会求一些简单的几何概型的概率 ,常与平面几何、线性规划、不等式的解集等知识交汇考察 ,在高考取多以选择题、填空题的形式考察 ,难度中等 .9.(2018 ·全国Ⅰ卷·理 T10 改编 )折纸艺术是我国古代留下来可贵的民间艺术,拥有很高的审美价值和应用价值.以下图的是一个折纸图案,由一个正方形内切一个圆形 ,而后在四个极点处罚别嵌入半径为正方形边长一半的扇形 .向图中随机投入一个质点 ,则质点落在暗影部分的概率 P1与质点落在正方形内圆形地区外面的概率P2的大小关系是 ().A.P1>P 2B.P1<P 2C.P1=P 2D.不可以确立分析 ?将正方形内圆形地区外面的四个角进行沿直角边重合组合,恰好获得的图形就是暗影部分图形,所以暗影部分地区的面积等于正方形内圆形地区外面的面积 ,故 P1=P 2.答案?C10.(2016 ·全国Ⅱ卷·文 T8 改编 )某路口人行横道的信号灯为红灯和绿灯交替出现 ,红灯连续时间为40 秒.若一名行人到达该路口碰到红灯,则起码需要等待 10 秒才出现绿灯的概率为().A. B. C. D.分析 ?起码需要等候10秒才出现绿灯的概率为= ,应选 A .答案?A(六)考察随机抽样 ,在抽样方法的考察中,系统抽样、分层抽样是考察的要点 ,题型主要以选择题和填空题为主,属于中低档题 .11.(2017 ·江苏卷·T3 改编 )某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为 200、400、300、100 件,为查验产品的质量 ,现用分层抽样的方法从以上全部的产品中抽取60 件进行查验 ,则应从甲种型号的产品中抽取件.分析 ?∵==,∴应从甲种型号的产品中抽取×200= 12(件 ).答案?12(七)用样本预计整体 ,主要考察均匀数、方差等的计算以及茎叶图、频次分布直方图的简单应用 .题型以选择题和填空题为主 ,出现解答题时常常与概率相联合 ,属于中档题 .12.(2018 ·全国Ⅰ卷·理 T3 改编 )某地域经过一年的新乡村建设,乡村的经济收入增添了一倍 ,实现翻番 .为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入构成比率,获得以下饼图 :则以下选项中不正确的选项是().A.新乡村建设后 ,栽种收入增添B.新乡村建设后 ,其余收入增添了一倍以上C.新乡村建设后 ,养殖收入没有增添D.新乡村建设后 ,养殖收入与第三家产收入的总和超出了经济收入的一半分析 ? 由题干可知 ,乡村的经济收入增添了一倍 ,实现翻番 .为方即可设建设前后的经济收入分别为 100,200(单位省去 ).A 中,栽种收入前后分别为60,74,收入增添了 ,A 正确 ;B 中,其余收入前后分别为 4,10,增添了一倍以上 ,B 正确 ;C 中,养殖收入前后分别为 30,60,收入增添了一倍 ,C 错误 ;D 中,建设后 ,养殖收入与第三家产收入的总和为(30+ 28)×2= 116> 100,D 正确 .应选 C.答案?C13.(2017 ·全国Ⅲ卷·理 T3)某城市为认识旅客人数的变化规律 ,提升旅行服务质量 ,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量 (单位 :万人)的数据 ,绘制了下边的折线图 .依据该折线图 ,以下结论错误的选项是 ().A.月招待旅客量逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小 ,变化比较安稳分析 ? 对于选项 A, 由图易知 ,月招待旅客量每年 7,8 月份明显高于 12 月份 ,故 A 错误 ;对于选项 B,察看折线图的变化趋向可知 ,年招待旅客量逐年增添 ,故 B 正确 ;对于选项 C,D,由图可知明显正确 .答案?A(八)考察失散型随机变量分布列、超几何分布、条件概率、正态分布、数学希望与方差 ,求失散型随机变量的数学希望是全国卷高考要点考察的内容,在选择题、填空题中有时会出现.主要考察失散型随机变量的分布列、数学希望、正态分布等 .14.(2018 ·全国Ⅲ卷·理 T8 改编 )某集体中的每位成员使用挪动支付的概率都为 p,各成员的支付方式互相独立,设 X 为该集体的 10 位成员中使用挪动支付的人数 ,D(X)= 2.1,P(X= 4)<P (X= 6),则 p= ().分析 ? 由于 X~B(n,p),所以 D(X)=np(1-p)= 2.1,所以 p= 0.3 或 p=0.7.由于 P(X= 4)=p4(1-p)6<P (X= 6)=p6(1-p)4,所以 (1-p)2 2可得p> 0.5.故p=0.7.<p ,答案?A15.(2017 ·全国Ⅱ卷·理 T13 改编 )一批产品的二等品率为 0.08,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到的二等品件数,则D(X)=.分析 ?有放回地抽取,是一个二项分布模型, 此中p=0.08,n=100,则D(X)=np(1-p)= 100×0.08×0.92= 7.36.答案 ?7.36二、解答题的命题特色概率与统计综合试题的题干阅读量大,简单造成考生在数学模型转变过程中失误,得分率不高 .这些试题主要考察古典概型,用样本预计整体,利用回归方程进行展望 ,独立性查验的应用 ,失散型随机变量的分布列和数学希望 ,正分布等 .概率、随机量的数学希望交命,高考此目的要求是能依据出的或通表出的有关数据求性回方程.1.(2018 ·全国Ⅱ卷·理 T18)下是某地域 2000 年至 2016 年境基施投y(位 :元)的折.了地域 2018 年的境基施投 ,成立了 y 与量 t 的两个性回模型 .依据2000 年至 2016 年的数据 (量 t 的挨次1,2, ⋯ ,17)成立模型①: =- 30.4+ 13.5t;依据 2010年至 2016 年的数据 (量t 的挨次 1,2, ⋯,7)成立模型②: = 99+ 17.5t.(1)分利用两个模型 ,求地域 2018 年的境基施投的.(2)你用哪个模型获得的更靠谱?并明原因 .分析 ? (1)利用模型①,从 2000 年开始算起 ,2018 年即 t= 19,所以地域2018 年的境基施投的=- 30.4+ 13.5×19= 226.1(元).利用模型②,从 2010 年开始算起 ,2018 年即 t= 9,所以地域 2018 年的境基施投的= 99+ 17.5×9= 256.5(元).(2)利用模型②获得的更靠谱 .原因以下 :(i) 从折能够看出 ,2000年至 2016 年的数据的点没有随机分布在直线 y=- 30.4+ 13.5t 上下 ,这说明利用 2000 年至 2016 年的数据成立的线性模型①不可以很好地描绘环境基础设备投资额的变化趋向.2010 年相对 2009 年的环境基础设备投资额有明显增添,2010 年至 2016 年的数据对应的点位于一条直线的邻近 ,这说明从 2010 年开始环境基础设备投资额的变化规律呈线性增添趋向,利用2010年至2016年的数据成立的线性模型= 99+ 17.5t能够,所以利用模型②较好地描绘2010年此后的环境基础设备投资额的变化趋向获得的展望值更靠谱.(ii)从计算结果看 ,相对于 2016 年的环境基础设备投资额 220 亿元 ,由模型①获得的展望值 226.1 亿元的增幅明显偏低 ,而利用模型②获得的展望值的增幅比较合理 ,说明利用模型②获得的展望值更靠谱 .2.(2018 ·全国Ⅰ卷,理 T20)某工厂的某种产品成箱包装 ,每箱 200 件,每一箱产品在交托用户以前要对产品作查验,如查验出不合格品,则改换为合格品 .查验时 ,先从这箱产品中任取 20 件作查验 ,再依据查验结果断定能否对余下的全部产品作查验 .设每件产品为不合格品的概率都为p(0<p< 1),且各件产品能否为不合格品互相独立.(1)记 20 件产品中恰有 2 件不合格品的概率为f(p),求 f(p)的最大值点 p0.(2)现对一箱产品查验了20 件,结果恰有 2 件不合格品 ,以(1)中确立的 p0作为p 的值 .已知每件产品的查验花费为 2 元,如有不合格品进入用户手中,则工厂要对每件不合格品支付25 元的补偿花费 .(i)若不对该箱余下的产品作查验 ,这一箱产品的查验花费与补偿花费的和记为 X,求 E(X).(ii)以查验花费与补偿花费和的希望值为决议依照 ,能否该对这箱余下的全部产品作查验 ?分析 ? (1)由题意可知 ,独立重复试验切合二项分布 ,20 件产品中恰有 2 件不合格品的概率为f(p)C p2(1-p)18= 190p2(1-p)18,对上式求导得 f'(p)= [190p2(1-p)18]'=190[2p(1-p)18-18p2(1-p)17]=190p(1-p)17[2(1-p)-18p]=380p(1-p)17(1-10p).当 f'(p)= 0 时,有 p(1-p)17由适当∈时(1-10p)= 0,0<p< 1,p,f'(p)> 0,f(p)单一递加 ;当 p∈时,f'(p)< 0,f(p)单一递减.故 f(p)max=f (p0)=f,即 p0= .(2)(i) 由题意 ,节余未作查验的产品有180件,此中 Y表示不合格品的件数 ,其听从二项分布Y~B.故 E(Y)= 180× = 18.又 X= 40+ 25Y,故 E(X)=E (40+ 25Y)= 40+ 25×18= 490(元).(ii)若对这箱余下的全部产品作查验 ,则需要的查验费为 200×2= 400(元).由于 E(X)= 490> 400,所以需要对这箱余下的全部产品作查验.3.(2018 ·全国Ⅲ卷·理 T18)某工厂为提升生产效率 ,睁开技术创新活动 ,提出了达成某项生产任务的两种新的生产方式 .为比较两种生产方式的效率,选用40 名工人 ,将他们随机分红两组 ,每组 20 人,第一组工人用第一种生产方式 , 第二组工人用第二种生产方式 .依据工人达成生产任务的工作时间 (单位 :min) 绘制了以下茎叶图 :(1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因 .(2)求 40 名工人达成生产任务所需时间的中位数 m,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表 :不超出超出 mm第一种生产方式第二种生产方式(3)依据 (2)中的列联表 ,可否有 99%的掌握以为两种生产方式的效率有差别?附:K2=,P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828分析 ? (1)第二种生产方式的效率更高.原因以下 :(i)由茎叶图可知 ,用第一种生产方式的工人中 ,有 75%的工人达成生产任务所需时间起码 80 分钟 ,用第二种生产方式的工人中 ,有 75%的工人达成生产任务所需时间至多 79 分钟 ,所以第二种生产方式的效率更高 .(ii)由茎叶图可知,用第一种生产方式的工人达成生产任务所需时间的中位数为 85.5 分钟 ,用第二种生产方式的工人达成生产任务所需时间的中位数为 73.5 分钟 ,所以第二种生产方式的效率更高 .(iii)由茎叶图可知,用第一种生产方式的工人达成生产任务均匀所需时间高于 80 分钟 ,用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟 ,所以第二种生产方式的效率更高.(iv)由茎叶图可知 ,用第一种生产方式的工人达成生产任务所需时间分布在茎 8 上的最多 ,对于茎 8 大概呈对称分布 ;用第二种生产方式的工人达成生产任务所需时间分布在茎 7 上的最多 ,对于茎 7 大概呈对称分布 .又用两种生产方式的工人达成生产任务所需时间分布的区间同样 ,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少 ,所以第二种生产方式的效率更高 .(2)由茎叶图知 m== 80.列联表以下 :超出 m不超出第一种生产方m 155式第二种生产方515式(3)因 K2的 k== 10> 6.635,所以有 99%的掌握两种生方式的效率有差别.4.(2017 ·全国Ⅰ卷·理 T19)了控某种部件的一条生的生程,每日从生上随机抽取16 个部件 ,并量其尺寸 (位 :cm).依据期生 ,能够条生正常状下生的部件的尺寸听从正分布2N(μ,σ).(1) 假生状正常,X 表示一天内抽取的16 个部件中其尺寸在(μ-3σ,μ+3σ)以外的部件数,求P(X≥1)及X 的数学希望.(2)一天内抽部件中 ,假如出了尺寸在 (μ-3σ,μ+3σ)以外的部件 ,就条生在一天的生程可能出了异样状况 ,需当日的生程行 .(i)明上述控生程方法的合理性 .(ii)下边是在一天内抽取的 16 个部件的尺寸 :9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95算得 =xi= 9.97,s==≈0 .212,此中 x i抽取的第 i 个部件的尺寸 ,i= 1,2,⋯,16.用本均匀数作μ的估 ,用本准差 s 作σ的估 ,利用估判断能否需当日的生程行?剔除 ( -3, + 3 )以外的数据 ,用剩下的数据估μ和σ(精准到 0.01).2附:若随机量Z服从正分布N(μ,σ),P(μ-3σ<Z<μ+3σ)= 0.9974,0.997416≈0.9592,≈0.09.分析 ? (1)由题可知抽取的一个部件的尺寸落在(μ-3σ,μ+3σ)以内的概率为 0.9974,进而部件的尺寸落在 (μ-3σ,μ+3σ)以外的概率为0.0026,故 X~B(16,0.0026).所以 P(X≥1)= 1-P(X= 0)= 1-0.997416≈1-0.9592=0.0408, X 的数学希望 E(X)= 16×0.0026= 0.0416.(2)(i) 假如生产状态正常 ,一个部件尺寸在 (μ-3σ,μ+3σ)以外的概率只有0.0026,一天内抽取的16 个部件中,出现尺寸在(μ-3σ,μ+3σ)以外的部件的概率只有0.0408,发生的概率很小,所以一旦发生这种状况,就有原因以为这条生产线在这天的生产过程可能出现了异样状况,需对当日的生产过程进行检查,可见上述监控生产过程的方法是合理的 .(ii) 由 = 9.97,s≈0.212,得μ的预计值为 = 9.97,σ的预计值为 = 0.212,由样本数据能够看出有一个部件的尺寸在 ( -3 , + 3 )以外 ,所以需对当日的生产过程进行检查 .剔除( -3 , +3 )以外的数据9.22,剩下数据的均匀数为×(16×9.97-9.22)= 10.02,所以μ的预计值为 10.02.= 16×0.2122+ 16×9.972≈ 1591.134,剔除( -3 , +3 )以外的数据9.22,剩下数据的样本方差为×2-15×10.022) ≈0.008,所以σ的预计值为≈0.09.1.样本数据(1)众数、中位数及均匀数都是描绘一组数据集中趋向的量 ,均匀数是最重要的量 ,与每个样本数占有关 ,这是中位数、众数所不拥有的性质 .(2)标准差、方差描绘了一组数据环绕均匀数颠簸的大小.标准差、方差越大 ,数据的失散程度就越大.(3)茎叶图、频次分布表和频次分布直方图都是用图表直观描绘样本数据的分布规律的 .2.频次分布直方图(1)用样本预计整体是统计的基本思想,而利用频次分布表和频次分布直方图来预计整体则是用样本的频次分布去预计整体分布的两种主要方法 .频次分布表在数目表示上比较正确 ,频次分布直方图比较直观 .(2)频次分布表中的频数之和等于样本容量,各组中的频次之和等于1;在频次分布直方图中,各小长方形的面积表示相应各组的频次,所以全部小长方形的面积的和等于 1;均匀数是频次分布直方图各个小矩形的面积×底边中点的横坐标之和 .3.摆列与组合(1)①解决“在”与“不在”的有限制条件的摆列问题 ,既能够从元素下手 ,也能够从地点下手 ,原则是谁“特别”谁优先 .不论是从元素考虑仍是从地点考虑 , 都要贯彻究竟 ,不可以既考虑元素又考虑地点 .②解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其余元素一同摆列,同时要注意捆绑元素的内部摆列 .③解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中间.④对于定序问题,可先不考虑次序限制,摆列后 ,再除以定序元素的全摆列.⑤若某些问题从正面考虑比较复杂 ,可从其反面下手 ,即采纳“间接法”.(2)组合问题的限制条件主要表此刻拿出元素中“含”或“不含”某些元素,或许“起码”或“最多”含有几个元素 :①“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素拿出 ,再由此外元素补足 ; “不含”,则先将这些元素剔除,再从剩下的元素中去选用 .②“起码”或“最多”含有几个元素的题型 .考虑逆向思想 ,用间接法办理 .(3)分组分派问题是摆列、组合问题的综合运用,解决这种问题的一个基本指导思想就是先分组后分派 .对于分组问题,有整体均分、部分均分和不平分三种 ,不论分红几组 ,都应注意只需有一些组中元素的个数相等 ,就存在均分现象 .4.随机变量的均值与方差一般计算步骤 :(1)理解 X 的意义 ,写出 X 的全部可能取的值 .(2)求 X 取各个值的概率 ,写出分布列 .(3)依据分布列,由均值的定义求出均值 E(X),进一步由公式D(X)=(x i -E(X))2p i=E(X2)-(E(X))2求出 D(X).(4)以特别分布 (两点分布、二项分布、超几何分布 )为背景的均值与方差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立事件与乘法公式
1. 若P(A|B)=P(A)或P(B|A)=P(B) ,则称事件A 与B事件独立,或称独立事件
2. 若两个事件相互独立,则这两个事件同时 发 生 的 概 率 等 于 它 们 各 自 发 生 的 概 率 之 积 , 即 P(AB)= P(A)·P(B)
若事件A1,A2,,An相互独立,则
1. 简单事件:不能被分解成其他事件组合的基本事件
抛一枚均匀硬币,“出现正面”和“出现反面”
2. 必然事件:每次试验一定出现的事件,用表示
掷一颗骰子出现的点数小于7
3. 不可能事件:每次试验一定不出现的事件,用表

掷一颗骰子出现的点数大于6
样本空间与样本点
1. 样本空间
一个试验中所有结果的集合,用表示
解:用H表示正面,T表示反面,下标1和2表示硬币1 和硬币2。该项试验会有4个互斥事件之一发生 (1) 两枚硬币都正面朝上,记为H1H2 (2) 1号硬币正面朝上而2号硬币反面朝上,记为H1T2 (3) 1号硬币反面朝上而2号硬币正面朝上,记为T1H2 (4) 两枚硬币都是反面朝上,记为 T1T2
(例题分析)
第 5 讲 概率与概率分布
5.1 事件及其概率(自学) 5.2 离散型概率分布 5.3 连续型概率分布
学习目的: 1.掌握概率的基础知识 2.掌握随机变量概率分布特征,熟悉几种常见的离
散型概率分布和连续型概率分布
5.1 事件及其概率
5.1.1 5.1.2 5.1.3 5.1.4 5.1.5
试验、事件和样本空间 事件的概率 概率的性质和运算法则 条件概率与事件的独立性 全概公式与逆概公式
5.1.5 全概公式与逆概公式
全概公式
n
n
P (A ) P (Ai)B P (B i)P (AB i)
i 1
i 1

B2 B3 B1 B5 B4
完备事件组
(例题分析)
【例】假设在n张彩票中只有一张中奖奖券,那么第 二个人摸到奖券的概率是多少? 解:设 A = 第二个人摸到奖券,B = 第一个人摸到奖券
(2)已知某顾客购买其他的条件下,也购买食品的概率
解:设 A =顾客购买食品, B =顾客购买其他商品
依题意有:P(A)=0.80;P(B)=0.60;P(AB)=0.35
P(AB)P(AB )0.350.5833 P(B) 0.60
P(BA)P(AB )0.350.4375 P(A) 0.80
2. 当试验的次数很多时,概率P(A)可以由所观察到的 事件A发生次数(频数)的比例来逼近 在相同条件下,重复进行n次试验,事件A发生 了m次,则事件A发生的概率可以写为
P(A)事 重件 A发 复生 试的 验次 次 m n数 数p
例如,投掷一枚硬币,出现正面和反面的频率, 随着投掷次数 n 的增大,出现正面和反面的频率 稳定在1/2左右
互斥事件的加法规则
(addition law)
加法规则 1. 若两个事件A与B互斥,则事件A发生或事件
B发生的概率等于这两个事件各自的概率之 和,即
P(A∪B) =P(A)+P(B) 2. 事件A1,A2,…,An两两互斥,则有
P(A1∪A2 ∪…∪An) =P(A1)+P(A2) +…+P(An)
P( A1∪A2 ∪… ∪An) = P(A1)+P(A2)+…+P(An)
事件的补及其概率
事件的补
事件A不发生的事件,称为补事件A的补事件(或称
逆事件),记为A 。它是样本空间中所有不属于事 件A的样本点的集合

A
A
P(A)=1- P(A)
广义加法公式
广义加法公式 对任意两个随机事件A和B,它们和的
(例题分析)
解:(1) 事件A与B是互斥事件。因为你观察 到恰好有265个家庭拥有电脑,就 不可能恰好有100个家庭拥有电脑
(2) 事件A与C不是互斥事件。因为张三 也许正是这265个家庭之一,因而事 件与有可能同时发生
(3) 事件B与C不是互斥事件。理由同(2)
(例题分析)
【例】同时抛掷两枚硬币,并考察其结果。恰好有一枚 正面朝上的概率是多少?
(事件的交或积)
事件A与事件B同时发生的事件,称为事件A与 事件B的交,它是由属于事件A也属于事件B的所 有公共样本点所组成的集合,记为B∩A 或AB

AB
A∩B
广义加法公式
(例题分析)
【例】一家计算机软件开发公司的人事部门最近做了一 项调查,发现在最近两年内离职的公司员工中有40%是 因 为 对 工 资 不 满 意 , 有 30% 是 因 为 对 工 作 不 满 意 , 有 15%是因为他们对工资和工作都不满意。求两年内离职 的员工中,离职原因是因为对工资不满意、或者对工作 不满意、或者二者皆有的概率
依题意有:P(B)=1/n;P(B)=(n-1)/n
P(A|B)=0 P(A|B)=1/n-1
P(A)P(B)P(AB)P(B)P(AB)
10n1 1 1
n
n n1 n
逆概公式
逆概公式(贝叶斯公式 )
P(Bj A)
P(Bj)P(ABj)
有其他信息的情况下,我们可以假定事件A 和事件B是相互立的,所以有
P(AB)=P(A)·P(B)=0.80×0.80=0.64
(例题分析)
【例】假定我们是从两个同样装有3个红球2个白 球的盒子摸球。每个盒子里摸1个。求连续两次 摸中红球的概率
解:设 A = 从第一个盒子里摸到红球 B = 从第二个盒子里摸到红球 依题意有:P(A)=3/5;P(B|A)=3/5 P(AB)=P(A)·P(B|A)=3/5×3/5=0.36
例如:在掷一颗骰子的试验中,样本空间表
示为:{1,2,3,4,5,6} 在投掷硬币的试验中,{正面,反面}
2. 样本点
样本空间中每一个特定的试验结果
用符号表示
5.1.2 事件的概率
1. 事件A的概率是一个介于0和1之间的一个值,用以 度量试验完成时事件A发生的可能性大小, 记为 P(A)
B = 某个订阅了日报的住户订阅了晚报
依题意有:P(A)=0.75;P(B|A)=0.50
P(AB)=P(A)·P(B|A)=0.75×0.5=0.375
(例题分析)
【例】从一个装有3个红球2个白球的盒子里摸球 (摸出后球不放回),求连续两次摸中红球的概率 解:设 A = 第2次摸到红球
B = 第1次摸到红球 依题意有: P(B)=3/5;P(A|B)=2/4 P(AB)=P(A)·P(B|A)=3/5×2/4=0.3
(例题分析)
【例】一家电脑公司从两个供应商处购买了同一种计算机配件,质量状况 如下表所示
甲乙两个供应商提供的配件
正品数
次品数
合计
供应商甲
84
6
90
供应商乙
102
8
110
从这20合0个计配件中任取一18个6进行检查,求14 (1) 取出的一个为正品的概率
200
(2) 取出的一个为供应商甲的配件的概率
(4)
P(AB)P(AB )0.420.933
P(B) 0.45
乘法公式
1. 用来计算两事件交的概率 2. 以条件概率的定义为基础
3. 设A,B为两个事件,若P(B)>0,
P(AB)=P(B)P(A|B) 或
P(AB)=P(A)P(B|A)
(例题分析)
【例】一家报纸的发行部已知在某社区有75%的 住户订阅了该报纸的日报,而且还知道某个订阅 日报的住户订阅其晚报的概率为50%。求某住户 既订阅日报又订阅晚报的概率 解:设 A = 某住户订阅了日报
(3) 取出一个为供应商乙的正品的概率
(4) 已知取出一个为供应商甲的配件,它是正品的概率
(例题分析)
解:设 A = 取出的一个为正品 B = 取出的一个为供应商甲供应的配件
(1) P(A)1860.93 200
(2) P(B) 900.45 200
(3) P(AB) 840.42 200
666666
概率的性质
1. 非负性
对任意事件A,有 P 1
2. 规范性
一个事件的概率是一个介于0与1之间的值,即对于任
意事件 A,有0 P 1 3. 必然事件的概率为1;不可能事件的概率为0。即P
( )=1; P( )=0
4. 可加性
若A与B互斥,则P(A∪B) =P(A)+P(B) 推广到多个两两互斥事件A1,A2,…,An,有
(例题分析)
【例】抛掷一颗骰子,并考察其结果。求出其点 数为1点或2点或3点或4点或5点或6点的概率
解:掷一颗骰子出现的点数(1,2,3,4,5,6)共有 6个互斥事件,而且每个事件出现的概率都为1/6 根据互斥事件的加法规则,得
P(1或2或3或4或5或6) P(1)P(2)P(3)P(4)P(5)P(6) 1111111
可能结果在试验之前是确切知道的 在试验结束之前,不能确定该次试验的确切结果
事件
(event)
1. 事件:试验的每一个可能结果(任何样本点集 合)
掷一颗骰子出现的点数为3 用大写字母A,B,C,…表示
2. 随机事件(random event):每次试验可 能出现也可能不出现的事件
掷一颗骰子可能出现的点数
5.1.1 试验、事件和样本空间
试 验(experiment)
1. 对试验对象进行一次观察或测量的过程
掷一颗骰子,观察其出现的点数 从一副52张扑克牌中抽取一张,并观察其结果(纸牌
的数字或花色)
2. 试验的特点
可以在相同的条件下重复进行 每次试验的可能结果可能不止一个,但试验的所有
相关文档
最新文档