(05)第5章概率与概率分布
(概率论与数理统计 茆诗松) 第5章 统计量及其分布

次序统计量的函数在实际中经常用到。 如 样本极差 Rn = x(n) x(1)
例5.3.9 设总体分布为U(0,1), x1, x2,…, xn 为 样本,则(x(n), x(1))的联合密度函数为
p1,n(y,z)=n(n1)(zy)n-2, 0 y z 1
令 R = x(n) x(1) ,由 R 0, 可以推出 0 x(1) = x(n)R 1 R ,
bk = (xi称 为x)k样/n 本k阶中心矩。 特别,样本二阶中心矩就是样本方差。
当总体关于分布中心对称时,我们用 x 和 s
刻画样本特征很有代表性,而当其不对称时,
只用 x 和 s 就显得很不够。为此,需要一些刻画
分布形状的统计量,如样本偏度和样本峰度,它 们都是样本中心矩的函数。
定义: 1 = b3/b23/2 称为样本偏度, 2 = b4/b22 称为样本峰度。
次序统计量的应用之一是五数概括与箱线图。在 得到有序样本后,容易计算如下五个值: 最小观测值 xmin= x(1) , 最大观测值 xmax=x(n) , 中位数 m0.5 , 第一4分位数 Q1 = m0.25, 第三4分位数 Q3 = m0.75. 所谓五数概括就是指用这五个数:
xmin , Q1 , m0.5 , Q3 , xmax 来大致描述一批数据的轮廓。
当n 时样本 p 分位数 mp 的渐近分布为
p(1 p)
mp ~ Nxp,
n p2xp
特别,对样本中位数,当n时近似地有
m0.5
~Nx0.5,
4n
1 p2x0.5
例5.3.10 设总体为柯西分布,密度函数为
p(x,)= 1/[(1+(x)2)] , x + 不难看出是该总体的中位数,即x0.5= 。
第05章 二维随机变量

第五章 二维随机变量第一节 二维随机变量及其分布一、二维随机变量1、定义:设),,(P S F 为一概率空间,X 、Y 均为S 上的一维随机变量,称二维向量X ),(Y X =为S 上的二维随机变量.2、X 的分布:}{B P ∈X , 2B ∈B . 其中可证:=∈}{B X F ∈∈∈},))(),((|{S e B e Y e X e .若取},|),{(2121y y y x x x y x B ≤<≤<=,那么},{}{2121y Y y x X x P B P ≤<≤<=∈X},{22y Y x X P ≤≤=},{21y Y x X P ≤≤- },{},{1112y Y x X P y Y x X P ≤≤+≤≤-.3、分布函数(1)定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,R ∈∀y x ,,规定:},{),(y Y x X P y x F ≤≤=. 称),(y x F 为),(Y X 的分布函数.显然: },{2121y Y y x X x P ≤<≤<),(),(),(),(11122122y x F y x F y x F y x F +--=.(2)性质① R ∈∀y x ,,1),(0≤≤y x F .② ),(y x F 关于y x ,均为单调不减函数.③ 0),(=-∞y F ,0),(=-∞x F ,0),(=-∞-∞F ,1),(=+∞+∞F . ④ ),(y x F 关于y x ,均为为右连续函数.⑤ R ∈<<∀2121,y y x x ,0),(),(),(),(11122122≥+--y x F y x F y x F y x F .注:①~⑤为分布函数的特征性质.反之亦然.例1掷硬币三次,X 表示出现正面的次数,|)3(|X X Y --=,求),(Y X 的分布函数),(y x F .解:(1) X 的所有可能取值为3,2,1,0,依次记为4321,,,x x x x ,Y 的所有可能取值为3,1,依次记为21,y y .列表如下X样 本 点Y0 (反反反)3 1 (正反反) (反正反) (反反正) 1 2(正正反) (正反正) (反正正)13 (正正正)3(2) 概率情况列表 81},{21===y Y x X P ,83},{12===y Y x X P , 83},{13===y Y x X P ,81},{24===y Y x X P ,其他0},{===j i y Y x X P .(3)求分布. 记}2,1 ,3,2,1|),{(===j i y x A j i ,YX1 3 0 0 8/1 1 8/3 02 8/3 0 38/1A B BA B +=, 显然φ=∈}),{(A B Y X ,那么}),{(}),{(}),{(A B Y X P BA Y X P B Y X P ∈+∈=∈∑∈===∈=By x j i j i y Y x XP BA Y X P )(,},{}),{((4)求分布函数. ∑≤≤===≤≤=yy x x j i j i y Y x XP y Y x X P y x F ,},{},{),(.⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≥≥<≤<≤≥≥<≤<≤<≤≥<≤<<<<=.3 ,3 1, ,3 ,32 ,8/7 ;31 ,3 ,8/6 ;3 ,21 ,8/4 ;31 ,21 ,8/3 ;3 ,10 ,8/1;3 ,1 1 0 0,),(y x y x y x y x y x y x y x y x y x F 或或二、边缘分布1、),(Y X 关于X 的边缘分布: ),(lim }{)(y x F x X P x F y X +∞→=≤=.证明:取}{},{},{x X Y x X n Y x X A n ≤=+∞<≤→≤≤=不减,由①②知),(lim y x F y +∞→存在,故)(}{)lim ()(lim ),(lim ),(lim x F x X P A P A P n x F y x F X n n n n n y =≤====∞→∞→∞→+∞→.2、),(Y X 关于Y 的边缘分布: ),(lim }{)(y x F y Y P y F x Y +∞→=≤=. (略)三、随机变量相互独立、定义:设),(y x F 为),(Y X 的分布函数,X 、Y 的分布函数分别为 )(x F X 、)(y F Y ,若R ∈∀y x ,,恒有=),(y x F )(x F X )(y F Y , 则称X 与Y 相互独立.2、X 与Y 相互独立⇔R ∈<<∀2121,y y x x ,恒有}{}{},{21212121y Y y P x X x P y Y y x X x P ≤<≤<=≤<≤<.证明:“⇐” R ∈∀y x ,,由于},{},{y Y x X y Y n x X n ≤≤→≤<-≤<-, }{}{x X x X n ≤→≤<-, }{}{y Y y Y n ≤→≤<-均不减,则},{),(y Y x X P y x F ≤≤=},{lim y Y n x X n P n ≤<-≤<-=∞→}]{}{[lim y Y n P x X n P n ≤<-≤<-=∞→}]{lim }{lim y Y n P x X n P n n ≤<-≤<-=∞→∞→)()(}{}{y F x F y Y P x X P Y X =≤≤=.“⇒”R ∈<<∀2121,y y x x ,有 },{2121y y x x P ≤<≤<ηξ ),(),(),(),(11122122y x F y x F y x F y x F +--=)()()()()()()()(11122122y F x F y F x F y F x F y F x F Y X Y X Y X Y X +--= )]()()][()([1212y F y F x F x F Y Y X X --= }{}{2121y y P x x P ≤<≤<=ξξ.3、X 与Y 相互独立⇔R ⊂∀21,B B ,恒有}{}{},{2121B Y P B X P B Y B X P ∈∈=∈∈.第二节 二维离散型随机变量一、二维离散型随机变量 1、定义:设),,(P S F 为一概率空间,),(Y X 为S 上的二维随机变量,若),(Y X 的取值为有限个或可数个(至多可数),称),(Y X 为S 上的二维离散型随机变量. 显然:),(Y X 为S 上的二维离散型随机变量⇔X 与Y 均为S 上的一维离散型随机变量.2、概率分布:设),(Y X 所有可能取的值为),(j i y x ,令 },{j i ij y Y x X P p ===,称其为二维随机变量),(Y X 的概率分布(分布率)。
统计学 第五章习题 正确答案

第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
概率论与数理统计 第5章

n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2
解
i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求
(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s
第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n
m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社
吴
大量统计的结果,用于破解密码
美国正常人血型分布
统计学第五版课后答案(贾俊平)之欧阳理创编

第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:StatisticsMissing0Mean9.60Median10.00Mode10Std. Deviation 4.169Percentiles25 6.255010.007512.504.2下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652 (4)计算偏态系数和峰态系数: Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线: 分组:1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 最小值)÷ 组数=(4115)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)4.3 某银行为缩短顾客到银行办理业务等待的时间。
概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
统计(05)第5章__概率与概率分布

统计学
概率的加法法则
(例题分析)
【例】根据钢铁公司职工的例子,随机抽取一 名职工,计算该职工为炼钢厂或轧钢厂职工的 概率
某钢铁公司所属企业职工人数 工厂 男职工 女职工 合计
炼铁厂 炼钢厂 轧钢厂 合计
4400 3200 900 8500
P ( C ) =P ( A∪B ) = P ( A ) + P ( B ) - P ( A∩B ) =0.2 + 0.16 - 0.08 = 0.28
统计学
5.2.3 条件概率、乘法公式与独立事件
统计学 条件概率 (conditional probability)
• 在事件B已经发生的条件下,求事件A发生的概 率,称这种概率为事件B发生条件下事件A发生 的条件概率,记为
统计学
事件的独立性
(例题分析)
【例】某工人同时看管三台机床,每单位时间(如30分钟)内 机床不需要看管的概率:甲机床为0.9,乙机床为0.8,丙机 床为0.85。若机床是自动且独立地工作,求
(1)在30分钟内三台机床都不需要看管的概率
二. 条件概率、乘法公式与独立事件 三. 全概率公式和贝叶斯公式
统计学
5.2.1 概率的性质
统计学
1. 非负性
–) 1
2. 规范性
– 必然事件的概率为1;丌可能事件的概率为0。 即P ( ) = 1; P ( ) = 0
若A不B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P ( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学
(第四版)
概率的古典定义
如果某一随机试验的结果有限,而且各个结
果在每次试验中出现的可能性相同,则事件 A发生的概率为该事件所包含的基本事件个 数 m 与样本空间中所包含的基本事件个数 n 的比值,记为
P(
A)
事件A所包含的基本事件个数 样本空间所包含的基本事件个数
=m n
5 - 12
统计学
1. 基本事件(elementary event)
一个不可能再分的随机事件, 也称为简单事件 例如:掷一枚骰子出现的点数1
2. 样本空间(sample space)
一个试验中所有基本事件的集合,用表示 例如:在掷枚骰子的试验中,{1,2,3,4,5,6} 在投掷硬币的试验中,{正面,反面} 5 - 9
例如:掷一枚骰子可能出现的点数
3. 必然事件(certain event):每次试验一定出现的事件, 用表示
例如:掷一枚骰子出现的点数小于7
4. 不可能事件(impossible event):每次试验一定不出现 的事件,用表示
例如:掷一枚骰子出现的点数大于6
5 -8
统计学
(第四版)
事件与样本空间
统计学
(第四版)
事件的概率
5 - 10
统计学
(第四版)
事件的概率
(probability)
1. 事件A的概率是对事件A在试验中出现的 可能性大小的一种度量
2. 表示事件A出现可能性大小的数值
3. 事件A的概率表示为P(A)
4. 概率的定义有:古典定义、统计定义和主 观概率定义(教材P116)
5 - 11
5 - 18
统计学
(第四版)
5.2 概率的性质与运算法则
5.2.1 概率的性质 5.2.2 概率的加法法则 5.2.3 条件概率与独立事件
5 - 19
统计学
(第四版)
5 -4
统计学
(第四版)
5.1 随机事件及其概率
5.1.1 随机事件的几个基本概念 5.1.2 事件的概率 5.1.3 概率计算的几个例子
5 -5
统计学
(第四版)
随机事件的几个基本概念
5 -6
统计学
(第四版)
试验
(experiment)
试验 — 在相同条件下,对事物或现象所进行的 观察
例如:掷一枚骰子,观察其出现的点数
试验,试验A表示用电超过指标出现了12次。根据概
率的统计定义有 P( A)
超过用电指标天数 试验的天数
12 30
0.4
5 - 16
统计学
(第四版)
概率的统计定义
(例题分析)
例如,投掷一枚硬币,出现正面和反面的频率, 随着投掷次数 面 /试验次数
1.00
0.75
0.50
0.25
0.00 0
25
50
75
100 125
试验的次数
5 - 17
统计学
(第四版)
主观概率定义
1. 对一些无法重复的试验,确定其结果的概率 只能根据以往的经验人为确定
2. 概率是一个决策者对某事件是否发生,根据 个人掌握的信息对该事件发生可能性的判断
3. 例如,我认为投资这个项目成功的概率为 70%
试验的特点
可以在相同的条件下重复进行
每次试验的可能结果可能不止一个,但试验的所 有可能结果在试验之前是确切知道的
在试验结束之前,不能确定该次试验的确切结果
5 -7
统计学
(第四版)
事件的概念
1. 事件(event):随机试验的每一个可能结果(任何样本点 集合)
例如:掷一枚骰子出现的点数为3
2. 随机事件(random event):每次试验可能出现也可能不 出现的事件,也称偶然事件。用大写字母A, B, C等表示
全体职P工(B的) 集全炼合公钢;司厂基职职本工工空总人间人数为数全体162职2500工00 的 0集.4合96。则
5 - 14
统计学
(第四版)
概率的统计定义
在相同条件下进行n次随机试验,事件A出现 m 次,则比值 m/n 称为事件A发生的频率。 随着n的增大,该频率围绕某一常数P上下摆 动,且波动的幅度逐渐减小,取向于稳定, 这个频率的稳定值即为事件A的概率,记为
P( A) m p n
5 - 15
统计学
(第四版)
概率的统计定义
(例题分析)
【例5.2】:某工厂为节约用电,规定每天的用电量指 标
为1000度。按照上个月的用电记录,30天中有12天的
用电量超过规定指标,若第二个月仍没有具体的节电
措施,试问该厂第一天用电量超过指标的概率。
解:上个月30天的记录可以看作是重复进行了30次
5 -2
统计学
(第四版)
第 5 章 概率与概率分布
5.1 随机事件及其概率 5.2 概率的性质与运算法则 5.3 离散型随机变量及其分布 5.4 连续型随机变量的概率分布
5 -3
统计学
(第四版)
学习目标
1. 定义试验、结果、事件、样本空间、概率 2. 描述和使用概率的运算法则 3. 定义和解释随机变量及其分布 4. 计算随机变量的数学期望和方差 5. 计算离散型随机变量的概率和概率分布 6. 计算连续型随机变量的概率 7. 用正态分布近似二项分布 8. 用Excel计算分布的概率
4000
合计 6200 4800 1500
12500
5 - 13
统计学
(第四版)
概率的古典定义
(例题分析)
解:(1)用A 表示“抽中的职工为男性”这一事件;A为 全公司男职工的集合;基本空间为全公司职工的集 合。则
P( A)
全公司男性职工人数 全公司职工总人数
8500 12500
0.68
(2) 用B 表示“抽中的职工为炼钢厂职工”;B为炼钢 厂
统计学
(第四版)
第 5 章 概率与概率分布
作者:中国人民大学统计学院
贾俊平
5 -1
统计学
(第四版)
概述
前面章节所介绍的数据搜集、整理和描述
方法可以使我们对数据有一个概要的了解, 是比较简单的数据描述方法。要更加有效和 充分地利用数据,需要运用统计推断的方法 。统计推断的特点是:根据样本数据及问题 给出的条件和假定,对未知事物作出以概率 形式表述的判断。统计推断是基于是概率与 概率分布的知识。
(第四版)
概率的古典定义
(例题分析)
【例5.1】某钢铁公司所属三个工厂的职工人数如下表。从 该公司中随机抽取1人,问:
(1)该职工为男性的概率 (2)该职工为炼钢厂职工的概率
某钢铁公司所属企业职工人数
工厂
男职工
女职工
炼钢厂 炼铁厂 轧钢厂
4400 3200 900
1800 1600 600
合计
8500