(05)第5章 概率与概率分布
(概率论与数理统计 茆诗松) 第5章 统计量及其分布

次序统计量的函数在实际中经常用到。 如 样本极差 Rn = x(n) x(1)
例5.3.9 设总体分布为U(0,1), x1, x2,…, xn 为 样本,则(x(n), x(1))的联合密度函数为
p1,n(y,z)=n(n1)(zy)n-2, 0 y z 1
令 R = x(n) x(1) ,由 R 0, 可以推出 0 x(1) = x(n)R 1 R ,
bk = (xi称 为x)k样/n 本k阶中心矩。 特别,样本二阶中心矩就是样本方差。
当总体关于分布中心对称时,我们用 x 和 s
刻画样本特征很有代表性,而当其不对称时,
只用 x 和 s 就显得很不够。为此,需要一些刻画
分布形状的统计量,如样本偏度和样本峰度,它 们都是样本中心矩的函数。
定义: 1 = b3/b23/2 称为样本偏度, 2 = b4/b22 称为样本峰度。
次序统计量的应用之一是五数概括与箱线图。在 得到有序样本后,容易计算如下五个值: 最小观测值 xmin= x(1) , 最大观测值 xmax=x(n) , 中位数 m0.5 , 第一4分位数 Q1 = m0.25, 第三4分位数 Q3 = m0.75. 所谓五数概括就是指用这五个数:
xmin , Q1 , m0.5 , Q3 , xmax 来大致描述一批数据的轮廓。
当n 时样本 p 分位数 mp 的渐近分布为
p(1 p)
mp ~ Nxp,
n p2xp
特别,对样本中位数,当n时近似地有
m0.5
~Nx0.5,
4n
1 p2x0.5
例5.3.10 设总体为柯西分布,密度函数为
p(x,)= 1/[(1+(x)2)] , x + 不难看出是该总体的中位数,即x0.5= 。
统计学 第五章习题 正确答案

第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
概率论与数理统计(英文) 第五章

5. Random vectors and Joint Probability Distribution s随机向量与联合概率分布5.1 Concept of Joint Probability Distributions(1) Discrete Variables Case 离散型Often, trials are conducted where two random variables are observed simultaneously in order to determine not only their individual behavior but also the degree of relationship between them.( X, Y)For two discrete random variables X and Y, we write the probability that X will take the value x and Y will take the value y as P(X=x, Y=y). Consequently, P(X=x, Y=y) is the probability of the intersection of the events X=x and Y=y.(X=x, Y=y) ------ (X=x)∩(Y=y)The distribution of probability is specified by listing the probabilities associated with all possible pairs of values x and y, either by formula or in a table. We refer to the function p(x, y)=P(X=x, Y=y) and the corresponding possible values (X, Y) as the j oint probability distribution (联合分布)of X and Y.They satisfy(,)0, (,)1xyp x y p x y ≥=∑∑,where the sum is over all possible values of the variable.Example 5.1.1 Calculating probabilities from a discrete joint probability distributionLet X and Y have the joint probability distribution.(a) Find (1)P X Y +>;(b) Find the probability distribution ()()X p x P X x == of the individualrandom variable X . Solution(a) The event 1X Y +>is composed of the pairs of values (l,1), (2,0), and (2,l). Adding their corresponding probabilities(1)(1,1)(2,0)(2,1)0.20.100.3.P X Y p p p +>=++=++=(b) Since the event X =0 is composed of the two pairs of values (0,0) and (0,1), we add their corresponding probabilities to obtain(0)(0,0)(0,1)0.10.20.3P X p p ==+=+=.Continuing, we obtain (1)(1,0)(1,1)0.40.20.6P X p p ==+=+= and(2)(2,0)(2,1)0.100.1P X p p ==+=+=.In summary, (0)0.3X p =, (1)0.6X p = and (2)0.1X p =is the probabilitydistribution of X . Note that the probability distribution ()X p x of appears in the lower margin of this enlarged table. The probability distribution ()Y p y of Y appears in the right-hand margin of the table. Consequently, the individual distributions are called marginal probability distributions .(边缘分布)From the example, we see that for each fixed value of x , the marginalprobability distribution is obtained as()()(,)X yP X x p x p x y ===∑,where the sum is over all possible values of the second variable. Continuing, we obtain()()(,)Y xP Y y p y p x y ===∑.Example 3.5.3Suppose the number X of patent applications (专利申请)submitted by a company during a 1-year period is a random variable having thePoisson distribution with mean λ, (()!n e P X n n λλ-==)and the variousapplications independently have probability (0,1)p ∈ of eventually being approved.Determine the distribution of the number of patent applications during the 1-year period that are eventually approved.先求联合分布密度,再求边缘分布Solution Let Y be the number of patent application being eventually approved during 1-year period. Then the event {}Y k = is the union of mutually exclusive events {,}X n Y k == ()n k ≥.If X n =, then the random variable S has the binomial distribution with parameter n and p :(|)(1)k k n k n P Y k X n C p p -===-. (0)n k ≥≥ Thus(,)()(|)P X n Y k P X n P Y k X n ====== (1)!nk kn k n e C p p n λλ--=⋅⋅-when k>n, P(X=n, Y=k)=0,Hence the distribution of Y is()(,)(,)n n kP Y k P X n Y k P X n Y k ∞∞=========∑∑(1)!nk kn k n n ke C p p n λλ∞--==⋅⋅-∑!(1)!!()!nk n k n k n e p p n k n k λλ∞--==⋅⋅--∑(1)!()!kn kkn k n ke p p k n k λλλ-∞--==⋅⋅--∑()(1)(1)()()!!!mk k p m p p p e e ek m k λλλλλλ∞---=-==∑ ()!k pp e k λλ-= Thus, Y has the Poisson distribution of mean p λ. exercise从1,2,3,4,5五个数中不放回随机的接连地取3个,然后按大小排成123X X X <<,试求13(,)X X 的联合分布,x1,x3 独立吗?Homework Chap 5 1,(2) Continuous Variables Case 连续型随机向量There are many situations in which we describe an outcome by giving the values of several continuous random variables. For instance, we may measure the weight and the hardness of a rock, the pressure and the temperature of a gas. Suppose that X and Y are two continuous random variables. A function (,)f x y is called the joint probability density of these random variables, if the probability that , a X b c Y d ≤≤≤≤ is given by the multiple integral(, )(,)b da cP a X b c Y d f x y dxdy ≤≤≤≤=⎰⎰Thus, a function (,)f x y can serve as a joint probability density if all of the following hold:for all values of x and y , f is integrable on R 2 andTo extend the concept of a cumulative distribution function to the two variables case, we can define F (x , y )(, )(, )F x y P X x Y y =≤≤,and we refer to the corresponding function F as the joint cumulative distribution function of the two random variables.Example 5.1.2If the joint probability density of two random variables is given by236 for 0,0(,)0 elsewherex y e x y f x y --⎧>>=⎨⎩ Find the joint distribution function, and use it to find the probability(2,4)P X Y ≤≤.Solution By definition,23006 for 0, 0(,)(,)0 elsewhere y x yu vxe du e dv x y F x yf u v dudv ---∞-∞⎧>>⎪==⎨⎪⎩⎰⎰⎰⎰Thus,23(1)(1) for >0, >0(,)0 elsewhere x y e e x y F x y --⎧--=⎨⎩.Hence,412(2, 4)(2, 4)(1)(1)0.9817P X Y F e e --≤≤==--=.ExampleIf the joint probability density of two random variables is given by2,1,01(,)0,kxy x y x f x y ⎧≤≤≤≤=⎨⎩其他(a)find the k; (b)find the probability2((,)),{(,)|,01}P X Y D D x y x y x x ∈=≤≤≤≤solutionsince(,)1f x y dxdy ∞∞-∞-∞=⎰⎰24111001(,)()226x x kf x y dxdy dx kxydy k x dx ∞∞-∞-∞==-=⎰⎰⎰⎰⎰ hence k=6.21124001((,))663()4xx DP X Y D xydxdy dx xydy x x x dx ∈===-=⎰⎰⎰⎰⎰joint marginal densities 边缘密度Given the joint probability density of two random variables, the probability density of the X or Y can be obtained by integrating out another variable,The functions f X and f Y respectively are called the marginal density (边缘密度)of X and Y .,ExampleThe joint probability density of two random variables is given by26,1,01(,)0,xy x y x f x y ⎧≤≤≤≤=⎨⎩其他find the marginal density from the joint density when [0,1]x ∈,215()(,)633X xf x f x v dv xydy x x +∞-∞====-⎰⎰[0,1]x ∉,()0X f x =,hence 533,01()0,X x x x f x elsewhere ⎧-≤≤=⎨⎩23,01()0,Y y y f x elsewhere ⎧≤≤=⎨⎩exercises求服从B 上均匀分布的随机向量(X,Y )的分布密度及分布函数。
概率论与数理统计 第5章

n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2
解
i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求
(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s
第五章概率与概率分布

P( A)
事件A发生的次数m 重复试验次数n
m n
英语字母出现频率
space 0.2 ; I 0.055 ; C 0.023 ; G 0.011 ; Q 0.001 ; E R U B Z 0.105 ; T 0.072 ; 0.054 ; S 0.052 ; 0.0225 ; M 0.021 ; 0.0105 ; V 0.008 ; 0.001 O H P K 0.0654 ; 0.047 ; 0.0175 ; 0.003 ; A D Y X 0.063 ; 0.035 ; 0.012 ; 0.002 ; N 0.059 L 0.029 W 0.012 J 0.001
一、概率(Probability)的定义
概率:0-1之间的数,衡量事件A发生可能 性(机会)的数值度量。记P(A) •Probability: A value between 0 and 1, inclusive, describing the relative possibility (chance or likelihood) an event will occur.
P ( A) A包 含 的 可 能 结 果 (偶 数 ) 全部可能结果 3 6
实际与理论分析不符时,实际中可能作弊。
如:河北银行人员为买奖券,盗2000万并没中大奖。
西安彩票中心人员中奖率极高,结果是作弊。
例:已知有148名学生统计表
专业
性别
男 女
金融学院 工商学院 经济学院 会计学院 15 15 22 14 30 12 25 15
摘自:概率论与数理统计简明教程1988》李贤平 卞国瑞 立鹏,高等教育出版社
吴
大量统计的结果,用于破解密码
美国正常人血型分布
统计(05)第5章__概率与概率分布

统计学
概率的加法法则
(例题分析)
【例】根据钢铁公司职工的例子,随机抽取一 名职工,计算该职工为炼钢厂或轧钢厂职工的 概率
某钢铁公司所属企业职工人数 工厂 男职工 女职工 合计
炼铁厂 炼钢厂 轧钢厂 合计
4400 3200 900 8500
P ( C ) =P ( A∪B ) = P ( A ) + P ( B ) - P ( A∩B ) =0.2 + 0.16 - 0.08 = 0.28
统计学
5.2.3 条件概率、乘法公式与独立事件
统计学 条件概率 (conditional probability)
• 在事件B已经发生的条件下,求事件A发生的概 率,称这种概率为事件B发生条件下事件A发生 的条件概率,记为
统计学
事件的独立性
(例题分析)
【例】某工人同时看管三台机床,每单位时间(如30分钟)内 机床不需要看管的概率:甲机床为0.9,乙机床为0.8,丙机 床为0.85。若机床是自动且独立地工作,求
(1)在30分钟内三台机床都不需要看管的概率
二. 条件概率、乘法公式与独立事件 三. 全概率公式和贝叶斯公式
统计学
5.2.1 概率的性质
统计学
1. 非负性
–) 1
2. 规范性
– 必然事件的概率为1;丌可能事件的概率为0。 即P ( ) = 1; P ( ) = 0
若A不B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P ( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
练习题答案05
第五章 概率、概率分布与临床决策练 习 题一、最佳选择题1.若事件A 和事件B 互不相容,则一定有( )。
A. P (A +B )=P (A )+P (B )B. P (A +B )=P (AB )C. P (AB )= P (A ) P (B )D. P (A │B )= P (A )E. P (B │A )= P (B )2.若人群中某疾病发生的阳性数X 服从二项分布,则从该人群随机抽取n 个人,阳性数X 不小于k 人的概率为( )。
A. P (k )+ P (k +1)+…+ P (n )B. P (k +1)+ P (k +2)+…+ P (n )C. P (0)+ P (1)+…+ P (k )D. P (0)+ P (1)+…+ P (k -1)E. P (1)+ P (2)+…+ P (k -1)3.Poisson 分布的标准差σ和平均数λ的关系是( )。
A.λ=σ B. λ<σ C. λ=σ2 D. λ= E. λ>σ4.当n 很大,二项分布在下列条件下可用Poisson 分布近似( )。
A. λπ≈nB. λ≈n X /C. λππ≈-)1(nD. λππ≈-)1(E. λππ≈-n /)1(5.对于任何两个随机变量X1和X2,一定有( )。
A. E (X 1+X 2)=E (X 1)+E (X 2)B. V (X 1+X 2)=V (X 1)+ V (X 2)C. E (X 1+X 2)=E (X 1)·E (X 2)D. V (X 1+X 2)=V (X 1)·V (X 2)E. E (X 1+X 2)=E (X 1X 2)二、问答题1.简述概率的统计定义。
2.举例说明医学观察结果中的离散型随机变量和连续型随机变量。
3.举例说明医学现象中的先验概率和后验概率。
4.简述二项分布的应用条件。
5.简述Poisson 分布的性质特征。
6.简述概率和概率分布在临床决策中的运用。
概率论与数理统计答案第五章(东华大学出版)
第五章复习题Page1941、 设i (i=1,2,,50)ξ 是相互独立的随机变量,且它们都服从参数为0.03λ=的泊松分布。
记1250ξξξξ=+++ ,试用中心极限定理计算P(3)ξ≥。
解:由中心极限定理可认为~ξ((),())(1.5,1.5)N E D N ξξ=,则(3)P ξ≥1.31.5)1)1(1.225)10.889751.51.5P ===-Φ=-=。
2、 一部件包括10部分。
每部分的长度是一个随机变量,它们相互独立且具有同一分布。
其数学期望为2mm ,均方差为0.05mm ,规定总长度为20±0.1mm 时产品合格,试求产品合格的概率。
解:由中心极限定理可认为总长度~ξ((),())(20,0.025)N E D N ξξ=,则(19.920.P ξ≤≤()2(0.6325)10.4735025P ξ=≤=Φ-=。
3、 一个加法器同时收到20个噪声电压(1,2,,20)k V k = 。
设它们是相互独立的随机变量,且都在区间[0,10]上服从均匀分布。
V 为加法器上受到的总噪声电压,求(105)P V >解:由中心极限定理可知)3500,100()121020,520())(),((~2N N V D V E N V =⨯⨯=,则(105))1(0.39)10.65170.3483P V P >=>=-Φ=-= 4、 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(0.5,0.5]-上服从均匀分布。
(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2) 问几个数加在一起可使得误差总和的绝对值小于10的概率为0.90?解:(1)由中心极限定理:误差总和)125,0()1211500,01500(~N N =⨯⨯ξ,因此(||15)2(12(10.9099)0.1802P P ξ>=>=-Φ=⋅-=。
第五章 概率及概率分布
P A B P ( A) P ( B)
16
第一节 概率的一般概念
三、概率的加法和乘法 1、概率的加法 例如:抛掷一枚硬币,正面朝上和正面朝下的概率各为0.50, 问在实验中,硬币正面朝上或朝下的概率是多少? 答:硬币正面朝上或朝下的概率是1。 获得一、二、三等奖的概率分别为:0.002、0.005和0.993, 获奖的概率是多少? 答:获奖的概率为1。
17
第一节 概率的一般概念
三、概率的加法和乘法 2、概率的乘法 A事件出现的概率不影响B事件出现的概率,这两个事件为独 立事件。 两个独立事件积的概率,等于这两个事件概率的乘积。表示 两个事件同时出现的概率。 用公式可表示为:
P ( A B ) P ( A) P ( B)
18
第一节 概率的一般概念
npq 101/ 2 1/ 2 1.58
31
第二节 二项分布
四、二项分布的平均数和标准差 例如:有一份试卷,共有50道选择题,并且都为四选一,假 定一个学生一点都不会,只能凭猜测来回答。问凭猜测来回 答,平均能猜对几道题,猜对题目数的标准差为多少。 分析:因为完全不会做而只是靠猜测,因此属于二项分布的 运用条件。
8
第一节 概率的一般概念
一、概率的定义 (2)后验概率——
表5.1 抛掷硬币试验中正面朝上的频率 试验者 德摩根 蒲丰 皮尔逊 皮尔逊 抛硬币次数 2048 4040 12000 24000 正面朝上次数 1061 2048 6019 12012 正面朝上频率 0.5181 0.5069 0.5016 0.5005
职教学院 刘春雷 E-mail:lcl2156@
1
第五章
概率及概率分布
第一节 概率的一般概念 第二节 二项分布
陈国华等主编概率论与数理统计第五章习题解答
x>0 x≤0
(α > 0, β > 0)
a a 1 1 1 dx = ∫ cos(tx) ⋅ dx + ∫ sin(tx) ⋅ dx −a −a −a 2a 2a 2a 1 1 1 = ⋅ sin(tx) |a sin(at ) x =− a = at 2a t t −1 (2)参数为 λ 的指数分布的特征函数为, φ X (t ) = (1 − i ) ,参数为 λ 的指数分布可看做
1
π (1 + x 2 )
(−∞ < x < +∞) ;
⎧A ⎪ (D) X i 的概率函数为 : g ( x) = ⎨ x 3 ⎪0 ⎩
x ≥1 x <1
(i = 1,2,3, ) .
答案:CABAD 三.解答题
1.一颗骰子连续掷 4 次,点数总和记为 X ,估计 p (10 < X < 18) .
3.已知随机变量 X 的数学期望为 10,方差 DX 存在且 P (−20 < X < 40) ≤ 0.1 ,则
DX ≥ . 4.设 X 1 , X 2 , , X n, 为独立同分布的随机变量序列,且 X i (i = 1,2, ) 服从参数为 2 的
指数分布,则 n → ∞ 当时, Yn =
1 n 2 ∑ X i 依概率收敛于 n i =1
1 1 ln n + ln n = 0 2 2
n
DX n = EX n = ln n
n 1 1 D ( Xi) = 2 ∑ 2 n n i =1
2
∑ ln i → 0(n → ∞)
i =1
根据马尔可夫大数定律, {X n } 服从大数定律。
3 、 已 知 随 机 变 量 X 和 Y 的 数 学 期 望 、 方 差 以 及 相 关 系 数 分 别 为 E ( X ) = E (Y ) = 2 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小游戏:轮盘赌
• 2次都停在红色的概率?
9.事件的独立性(independence)
• 一个事件的发生与否并不影响另一个事件发 生的概率,则称两个事件独立
• 若事件A与B独立, 则P(B|A)=P(B), P(A|B)=P(A) P(AB)=P(A)P(B|A)=P(A)· P(B) P(A1 A2 …An)=P(A1)P(A2) … P(An)
i 1 n
• 贝叶斯公式: P( Ai | B)
P ( Ai ) P ( B | Ai )
P( A
j 1
n
j
) P( B | A j )
练1:芒果公司有2款游戏,调查发现100名玩家中
有80位玩第1款游戏,有20位玩第2款游戏,在游戏
1的玩家中有60%的客户认为好玩,在游戏2的玩家
中有30%的客户认为不好玩,经理在这100名玩家
以他们调查了96个人,其中32人参加瑜伽班,72人
参加游泳班,还有24人两个班都参加,问参加瑜伽
班和游泳班是相关的,还是独立的?
练4:抛硬币,连续10次都是正面朝上,问第11次
反面朝上的概率是多少?
二、离散型随机变量及其分布
1.随机变量(random variables)
试验 抽查100个产品 一家餐馆营业一天 电脑公司一个月的销售 销售一辆汽车 试验 抽查一批电子元件 新建一座住宅楼 测量一个产品的长度 随机变量 取到次品的个数 顾客数 销售量 顾客性别 随机变量 使用寿命(小时) 半年后工程完成的百分比 测量误差(cm) 可能的取值 0,1,2, …,100 0,1,2, … 0,1, 2,… 男性为0,女性为1 可能的取值 X0 0 X 100 X0
A3 为丙机床需要看管的事件,
(1) P(A1A2A3)= P(A1) ∙P(A2) ∙ P(A3)=0.9×0.8×0.85=0.612 (2) P(A1A2A3)= P(A1) ∙P(A2) ∙ P(A3)
= 0.9×0.8×(1-0.85)=0.108
小游戏:轮盘赌
黑
18/37 8/18
奇
偶 奇 偶 偶
2. 概率函数与概率分布
X = xi P(X =xi)
P(X) 1 1/6 2 1/6 3 1/6 4 1/6 5 1/6 6 1/6
1/6
1
2
3
4
5
6
X
2. 概率函数与概率分布
X = xi P(X =xi)
P(X) 1 1/4 2 1/2 3 1/4
1/2
1/4 1 2 3 X
2. 概率函数与概率分布
X = xi P(X =xi)
P(X)
0.95
0 0.05
1 0.95
0
1
X
3. 期望与方差
X = xi P(X =xi)
1 1/6
6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6
E ( X ) xi p i 1
i 1
1 1 6 3.5 6 6
2
D( X ) xi E ( X ) pi
10/18
10/18 8/18
18/37
红
1/37
绿
1/1
10.全概公式
• 设事件A1,A2,…,An 两两互斥 • A1+A2+…+ An=,且P(Ai)>0(i=1,2, …,n)
P( B) P( Ai ) P( B | Ai )
i 1
n
例 6:某车间用甲、乙、丙三台机床进行生产,各种机床的 次品率分别为 5%、 4%、 2% ,它们各自的产品分别占总产 量的25%、35%、40%,将它们的产品组合在一起,求任取 一个是次品的概率。 解:设 A1表示“产品来自甲台机床”, A2表示“产品来自乙台机床”, A3表示“产品来自丙台机床”, B表示“取到次品”。
第 5 章 概率与概率分布
小游戏:掷骰子
• 掷1枚骰子有几种结果
• 如果只掷1次,结果是?
1.试 验(experiment)
1. 在相同条察其出现的点数
2. 试验的特点
– 可以在相同的条件下重复进行 – 每次试验的可能结果可能不止一个,但试验的所有 可能结果在试验之前是确切知道的 – 在试验结束之前,不能确定该次试验的确切结果
例1:某钢铁公司所属三个工厂的职工人数如下表。从 该公司中随机抽取1人,问: (1)该职工为男性的概率 (2)该职工为炼钢厂职工的概率
某钢铁公司所属企业职工人数 工厂 炼钢厂 炼铁厂 轧钢厂 合计 男职工 4400 3200 900 8500 女职工 1800 1600 600 4000 合计 6200 4800 1500 12500
超过用电指标天数 12 P( A) 0.4 试验的天数 30
小游戏:轮盘赌
• 停在数字8的概率? • 停在数字37的概率? • 停在红色的概率?
• 停在红色或黑色的概率?
6.概率的性质
1. 非负性: 0 P(A) 1 2. 规范性:P ( ) = 1; P ( ) = 0 3. 可加性:
解:设A={读甲报纸}, B={读乙报纸}, C={至少读一种报纸}。 则 P ( C ) =P ( A∪B ) = P ( A ) + P ( B ) - P ( A∩B ) =0.2 + 0.16 - 0.08 = 0.28
小游戏:轮盘赌
• 特别情报:停在红色区 • 停在奇数的概率?
8
10
8
8.条件概率(conditional probability)
小结
• 随机事件:0 P(A) 1 • 必然事件:P ( ) = 1
• 不可能事件:P ( ) = 0
• 互斥事件:P ( A∪B ) = P ( A ) + P ( B ) • 非互斥事件:P ( A∪B ) = P ( A ) + P ( B )- P ( A∩B ) • 条件概率:P(A|B)=P(AB)/P(B),P(AB)=P(B)P(A|B) • 独立事件:P(AB)=P(A)· P(B) • 全概率公式: P( B) P( Ai ) P ( B | Ai )
解:设 A1表示“产品来自甲台机床”, A2表示“产品来自乙台机床”, A3表示“产品来自丙台机床”, B表示“取到次品”。
0.25 0.05 0.3623 0.0345 0.35 0.04 P ( A2 | B ) 0.406 0.0345 0.4 0.02 P ( A3 | B ) 0.232 0.0345 P ( A1 | B )
小游戏:抛硬币
• 试验 • 结果 • 样本空间
5.概率的统计定义
正面 /试验次数
1.00
0.75
0.50 0.25
0.00
0 25 50 75 试验的次数 100 125
m P( A) p n
例2:某工厂为节约用电,规定每天的用电量指标 为1000度。按照上个月的用电记录,30天中有12天的 用电量超过规定指标,若第二个月仍没有具体的节电 措施,试问该厂第一天用电量超过指标的概率。
i 1
6
1 1 2 (1 3.5) (6 3.5) 2.9167 6 6
2
3. 期望与方差
E ( X ) xi pi
i 1 n
( X取有限个值)
D( X ) xi E ( X ) pi
2 i 1
n
D( X )
4. 贝努里试验
• • • • 试验包含了n 个相同的试验 每次试验只有2个可能的结果,即“成功”和“失败” 出现“成功”的概率 p 对每次试验结果是相同的;“ 失败”的概率 q 也相同,且 p + q = 1 试验是相互独立的
中随机挑选了1名玩家,问他游戏是否好玩,他说好 玩,那么他玩游戏1的概率是多少?
练2:52张扑克牌中有13张红桃,问: • 随机从中抽了一张牌,发现是红桃的概率是多少? • 第1张不放回,又随机抽了一张红桃的概率是多少?
练3:芒果健身俱乐部现有游泳班和瑜伽班,他们想
知道参加游泳班的人是否更有可能参加瑜伽班,所
P ( AB ) P(A|B) = P(B)
P(AB)=P(B)P(A|B)
P(AB)=P(A)P(B|A)
例 4 :设有 1000 件产品,其中 850 件是正品, 150 件是次品,从中依次抽取 2 件,两件都是次 品的概率是多少?
解:设 Ai 表示“第 i 次抽到的是次品”(i=1,2),
P( A1 A2 ) P( A1 ) P( A2 | A1 ) 150 149 0.0224 1000 999
P( B) P( Ai ) P( B | Ai )
i 1
3
0.25 0.05 0.35 0.04 0.40 0.02 0.0345
小游戏:轮盘赌
黑
18/37 8/18
奇
偶 奇 偶 偶
10/18
10/18 8/18
18/37
红
1/37
绿
1/1
11.贝叶斯公式
2.事件的概念
1. 事件(event):随机试验的每一个可能结果(任何样本点集 合)
– 如:掷一枚骰子出现的点数为3
2. 随机事件 (random event) : 每次试验可能出现也可能不 出现的事件
– 如:掷一枚骰子可能出现的点数
3. 必然事件(certain event):每次试验一定出现的事件,用 表示
某钢铁公司所属企业职工人数 工厂 炼钢厂 炼铁厂 轧钢厂 合计 男职工 4400 3200 900 8500 女职工 1800 1600 600 4000 合计 6200 4800 1500 12500