概率与数理统计 第五章-2-中心极限定理

合集下载

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计第五章 大数定律及中心极限定理
解: 设Xk为第k次炮击炮弹命中的颗数(k=1,2,…,100),
在100次炮击中炮弹命中的总颗数
100
X = ∑ Xk k =1
相互独立地服从同一分布,
E(Xk)=2, D(Xk)=1.52 (k=1,2,…,100)
随机变量
∑ 1
100 × 1.5
100 k =1
(
X
k

2)
=
1 15
(
X

200)
2. 伯努利定理 事件发生的频率依概率收敛于事件的概率
3. 辛钦定理 (随机变量序列独立同分布且数学期望存在)
n个随机变量的算术平均值以概率收敛于算术 平均值的数学期望。
给出了“频率稳定性”的严格数学解释. 提供了通过试验来确定事件概率的方法. 是数理统计中参数估计的重要理论依据之一.
§5.2 中心极限定理
望 E( Xk ) = µ (k = 1,2,"),则对于任意ε > 0,有
∑ lim
n→∞
P {|
1 n
n k =1
Xk

µ
|<
ε
}
=
1
说明
伯努利大数定理是辛钦定理的特殊情
况。n个随机变量的算术平均值以概率收敛于算
术平均值的数学期望。
三 小结
1、切比雪夫(Chebyshev)定理的特殊情况 算术平均值依概率收敛于数学期望
= 1 − P { V − 100 ≤ 0.387 } (10 12 ) 20
∫ 0.387
≈ 1−
1
e − t 2 dt
−∞ 2π
= 1 −Φ (0.387) = 0.348
所以 P{V > 105} ≈ 0.348

概率论与数理统计 第五章

概率论与数理统计 第五章

Xn ⎯ ⎯→ X 2. 依概率收敛与依分布收敛的关系
依概率收敛 ⇒ 依分布收敛
L
3. 定义:中心极限定理 设随机变量 X ~ N(0,1),{Xi },i = 1, 2, … 相互独 立,且数学期望和方差都存在, 若标准化随机变量序列

n
i =1
Xi −
∑ E(X
i =1
n
i
)

n
i =1
D(X i)
所以结论成立。 由此有,若X ~ B( n, p ),对于足够大的n,有 ⎧ m1 − np X − np m2 − np ⎫ ⎪ ⎪ < ≤ P{m1 < X ≤ m2 }= P ⎨ ⎬ np(1 − p) np(1 − p) ⎪ ⎪ np(1 − p) ⎩ ⎭
⎧ Yn − np ⎫ ⎪ ⎪ ≤ x ⎬ = Φ( x ) lim P ⎨ n →∞ ⎪ np(1 − p ) ⎪ ⎩ ⎭
证明:对于任意正整数n,随机变量Yn 可表示为 证明:对于任意正整数n Yn = X1+ X2+…+ Xn X1, X2,…, Xn 相互独立,Xi ~ B( 1, p ),且有 E( Xi ) = p , D( Xi ) = p(1-p) 所以随机变量序列{ Xi }, i =1,2,…满足独立同分布 中心极限定理条件。即有
切比雪夫不等式的应用 1)估计随机变量落在某个区间内的概率 (P125例5.5.2) 2)估计ε的值, 使 P(│X - E(X)│<ε) ≥ a (0<a<1) 3)证明大数定律。
二. 大数定律 定义: 依概率收敛 设{Xn}是一个随机变量序列,X 是一个随机变量 或常数,若对于任意的ε> 0,有 lim P{| X n − X |≥ ε } = 0

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理

概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。

数学中研究大量的工具是极限。

因此这一章学习概率论中的极限定理。

第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。

意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。

大数定律解释了这一结论。

首先介绍切比雪夫不等式。

一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。

切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。

进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。

当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。

二、依概率收敛随机变量序列即由随机变量构成的一个序列。

不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。

只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。

依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。

注意这三个大数定律的条件有何异同。

定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。

定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。

伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。

伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。

5大数定律与中心极限定理 课件(共31张PPT)- 《概率论与数理统计(第2版)》同步教学(人民邮电

5大数定律与中心极限定理 课件(共31张PPT)- 《概率论与数理统计(第2版)》同步教学(人民邮电

三、大数定律
第5章 大数定律及中心极限定理 12
定理4(独立同散布大数定律)
设随机变量序列X1, X2, , Xn, 独立同分布,若E Xi ,D Xi = 2 ,
i 1, 2, 。则对任意 0,有
lim P n
1 n
n i 1
Xi
1.
这里随机变量序列X1, X2, , Xn , 独立同分布指随机变量序列相互独立, 且序列中随机变量的分布类型及参数均相同。
例2 设X ~ N (, 2,) 用切比雪夫不等式估计概率P( X 3 ) 。

因为 =3 ,由切比雪夫不等式得
P X EX DX 2
P
X
3
D(X )
3 2
=
1 9
一、切比雪夫不等式
第5章 大数定律及中心极限定理 7
例3
设随机变量 X 的方差 D X 0,求证,X 服从参数为 c 的退化散布。
n
n i 1
X
2 i
P 1 n
n i 1
E
X
2 i
E
X
2 i
D Xi
E2
Xi
三、大数定律
第5章 大数定律及中心极限定理 17
例4续
01 当Xi B(m, p)时,E Xi =mp, E
X
2 i
=mp 1 p m2 p2, 有
OPTION
X P mp,
1 n
n i 1
X
2 i
P mp 1
p
m2 p2
02 OPTION
当X i
E 时,E
Xi
=
1
,
E
X
2 i
=
2

概率论与数理统计:中心极限定理

概率论与数理统计:中心极限定理
X Xk
k 1
E(X ) 300, D(X ) 600
X ~ N (300,600) (近似)
P(280
X
320)
320 300 600
280603000
2
20 600
1
2 0.8165 1 0.5878
中心极限定理的意义
在实际问题中,若某随机变量可以看 作是有相互独立的大量随机变量综合作用 的结果,每一个因素在总的影响中的作用 都很微小,则综合作用的结果服从正态分 布.
1
x t2
e 2 dt
2
即对任意的 a < b,
lim P a Yn np b
n
np(1 p)
1
b t2
e 2 dt
2 a
Y n ~ N (np , np(1-p)) (近似)
正态分布的概率密度的图形
x
二项分布的随机变量可看作许多相互独立的0-1
分布的随机变量之和, 下面是当x-B(20,0.5)时, x的
k 1
定理2 李雅普诺夫(Liapunov)定理
设随机变量序列 X1, X 2,, X n , 相互 独立,且有有限的期望和方差:
E(Xk ) k ,
D(X k
)
2 k
0
,
k 1,2,

n
n
Bn2
D(X k )
2 k
k 1
k 1
若 0,
1
B 2 n
n
E(| X k
k 1
k
|2 ) n0
n
lim P k1
x
n
n
1
x t2
e 2 dt

概率论与数理统计 第五章 大数定律与中心极限定理

概率论与数理统计 第五章 大数定律与中心极限定理
nA 一种提法是: “当 n 足够大时,频率 n 与概率 p 有较大偏差
的概率很小” ,用数学语言表达,就是要证明: 0 ,有
nA nA lim P p 0 lim P p 1 n ,或 n n . n
另一种提法是:研究随机变量 n A 的分布的极限行为,即讨 论分布函数
nA lim P p 0 lim P n n 或 n
nA p 1 . n
证 引入
1 , 第i次试验中事件A发生 Xi ,i 1 , 2 , , n , 0 , 第i次试验中事件A不发生
下面我们进一步来讨论贝努利试验.若记 n A 为 n 次贝努利试
nA 验中事件 A 发生的次数, 则事件 A 发生的频率为 n . 所谓 “频 率的稳定性” ,无非是指当试验次数 n 无限增大(即 n )时,
nA 频率 n 无限接近于某个固定常数.这个固定的常数就是“事 件 A 在一次试验中发生的的概率 p” . nA 由此可见,讨论频率 n 的极限行为,是理解概率论中最基本
2019年1月14日星期一
11 / 102
§5.1
大数定律
作为预备知识,我们先明确随机变量序列收敛的
相关概念,同时给出一个重要的不等式,它是以下理 论证明所用的主要工具之一.
定 义 1.1 设 a 是常数,对于随机变量序列 ,如果 0 ,有
X1 , X 2 ,
, Xn ,
lim P
n
个常数,即在这个常数的附近摆动,这就是所谓的“频
率稳定性”.但对这一点,至今为止我们尚未给予理论 上的说明.另外,在第二章我们给出了二项分布的泊松 逼近,那么更一般的近似计算方案又是怎样呢?

第五章 大数定律与中心极限定理 《概率论》PPT课件

第五章  大数定律与中心极限定理  《概率论》PPT课件

概率论与数理统计
§5.2 中心极限定理
2)中 心极限 定理表明,若 随 机 变 量 序 列
X 1 , X 2 , , X n 独立同分布,且它们的数学期
望及方差存在,则当n充分大时,其和的分布,
n
即 X k 都近似服从正态分布. (注意:不一定是 k 1
标准正态分布)
3)中心定理还表明:无论每一个随机变量 X k ,
概率论与数理统计
§5.1 大数定律
定理1(Chebyshev切比雪夫大数定律)
假设{ Xn}是两两不相关的随机
变量序列,EXn , DXn , n 1,2, 存在,
其方差一致有界,即 D(Xi) ≤L,
i=1,2, …, 则对任意的ε>0,
lim P{|
n
1 n
n i1
Xi
1 n
n i1
E(Xi ) | } 1.
概率论与数理统计
§5.2 中心极限定理
现在我们就来研究独立随机变量之和所 特有的规律性问题.
在概率论中,习惯于把和的分布 收敛于正态分布这一类定理都叫做中心 极限定理.
下面给出的独立同分布随机变量序 列的中心极限定理, 也称列维——林德 伯格(Levy-Lindberg)定理.
概率论与数理统计
§5.2 中心极限定理
大量的随机现象平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
概率论与数理统计
§5.1 大数定律
一、大数定律
阐明大量的随机现象平均结果的稳定性的一系
列定理统称为大数定律。
定义1 如果对于任意 0, 当n趋向无穷时,事件
" Xn X " 的概率收敛到1,即

概率论与数理统计----第五章大数定律及中心极限定理

概率论与数理统计----第五章大数定律及中心极限定理

= 1 − Φ(3.54)
=0.0002
一箱味精净重大于20500的概率为 的概率为0.0002. 一箱味精净重大于 的概率为
推论:
特别,若X~B(n,p),则当n充分大时, 特别, ~B(n 则当n充分大时,
X~N(np,npq) X~N(np,npq) np
若随机变量X~B( X~B(n, ),则对任意实数x有 ),则对任意实数 即 若随机变量X~B( ,p),则对任意实数 有
不等式证明 P{-1<X<2n+1}≥(2n+1)/(n+1)(n+1)
3. 设P{|X-E(X)|<ε}不小于 不小于0.9,D(X)=0.009.则用 不小于 则用
切比绍夫不等式估计ε的 最小值是( 切比绍夫不等式估计 的 最小值是
0.3 ).
4.(894) 设随机变量 的数学期望为 设随机变量X的数学期望为 的数学期望为µ, 标准差为σ,则由切比绍夫不等式 标准差为 则由切比绍夫不等式 P{|X-µ|≥3σ}≤( ). 1/9 5. 设随机变量X的分布律为 设随机变量 的分布律为 P{X=0.3}=0.2, P{X=0.6}=0.8, 用切比绍夫不等式估计 |X-E(X)|<0.2的概率 的概率. 的概率
1 n lim P ∑ Xi − µ < ε = 1 n→∞ n i =1
定理(贝努里利大数定律) 设每次实验中事件A发生的概率 定理(贝努里利大数定律) 设每次实验中事件A 为p,n次重复独立实验中事件A发生的次数为nA,则对任 次重复独立实验中事件A发生的次数为n 意的ε>0 意的ε>0 ,事件的频率 nA ,有 ε>

+∞
−∞
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14 14
2
/ 10
1
P
X
n 14 0.2
0
1 (0) 0.5.
例2 计算机在进行数字计算时,遵从四 舍五入原则。为简单计,现在对小数点后面
第一位进行舍入运算,则舍入误差X可以认 为服从[-0.5 , 0.5]上的均匀分布。若独立进 行了100次数字计算,求平均误差落在区间
3 20
在这里,我们只介绍其中两个最基本 的结论。
1. 当n无限增大时,独立同分布随机变量“之 和”的极限分布是正态分布;
2. 当n 很大时,二项分布可用正态分布近似。
为方便,我们研究 n 个随机变量之和标 准化的随机变量
n
n
Xk E( Xk )
Yn k 1
k 1 n
D( Xk )
k 1
的极限分布。
(3) (3) 0.9973
2. 二项分布的极限分布
定理2.2 (棣莫佛——拉普拉斯定理):
设随机变量X1, X2, …, Xn, … 相互独立,
并且都 服从参数为 p 的两点分布(0<p<1) ,则
对任意 x∈(-∞,+∞),有 E(Xi ) p.
n
lim
P
i 1
Xi
np
x
n
i1
i1
lim
P
i
1
Xi
n
x
x
1
-t2
e 2 dt
(x) ,
n n
- 2
其中Φ(x)是标准正态分布N(0, 1)的分布函数。
n
lim
P
i 1
Xi
n
x
x
n n-1Fra bibliotek- t2
e 2 dt
2

Xn
1 n
n k 1
Xk
,则有
E(Xn ) , D(Xn )
lim
P
X
n
这就是中心极限定理。
这些定理在很一般的条件下证明了:无 论随机变量Xi服从什么分布,n个随机变量 的和X1+X2+…+Xn当n→∞时的极限分布是正 态分布。
利用这些结论,数理统计中许多复杂随 机变量的分布可以用正态分布近似,而正态 分布有许多完美的理论,从而可以获得既实 用又简单的统计分析。下面我们仅介绍其中 两个最基本的结论。
1 100 100 i1
Xi
.
0, 2
1. 12
根据中心极限定理
X
X 0 1
n 12
近似
20 3 X ~ N (0,1)
100
近似服从 N(0,1),于是
X
20
近似
3 X ~ N (0,1)
n
P{ 3 X 3}
20
20
P{ 3 20 3 20 3 X 3 20 3 }
20
20
概率论与数理统计
张保田 第五章 大数定律与中心极限定理
第五章 大数定律中心极限定理
概率论与数理统计是研究随机现象统计 规律性的学科。随机现象的统计规律性只有 在相同条件下进行大量的重复试验才能呈现 出来。
对随机现象的大量观测, 常采用极限 形式,由此导致了极限定理的研究。 极限 定理的内容很广泛, 最重要的有两种:
定义2.1 设{Xn}是一相互独立的随机变量 序列,数学期望E(Xk)和方差D(Xk)(≠0) 都存, k=1,2, …, 如果对任意的x,都有
n
n
limP
n
Xi E( X k )
i 1
k 1 n
D( Xi )
i 1
x
x1
- 2
(x)
e
-
t2 2
dt
则称随机变量序列{Xn}服从中心极限定理。
“大数定律”和“中心极限定理”。
第二节 中心极限定理
在实际问题中, 许多随机现象是由大量 相互独立的随机因素综合影响所形成, 其中 每一个因素在总的影响中所起的作用是微小 的.数学家棣莫弗 (De Moivre) 在18世纪首先 提出并证明了这类大量相互独立的随机变量 之和的极限分布为正态分布 .
表明: 当n很大时,二项分布Yn标准化后的
随机变量序列{Xn}满足什么条件,才服
从中心极限定理?
n
1.随机变量和 Xi 的极限分布
i 1
定理2.1 (列维——林德伯格定理): 设随机变量X1, X2, …, Xn… 相互独立,服
从同一分布,且 E(Xi) =μ, D(Xi)=σ2>0,对任给
x ∈(-∞, +∞), 均有
n
n
E( Xi ) n, D( Xi ) n 2.
x
x
1
2
. n- t 2
e 2d
t
.
n / n - 2
※无论随机变量Xi服从什么分布,只要
独立同分布,当n很大时有: n
Xi n 近似
i 1
~ N (0,1)
1 n
n i 1
n
Xi
X
/ n
/ n
近似
~ N (0,1)
近似
X ~ N(
n
近似
,
2
) n
,X
1 n
n i 1
Xi.
X i ~ N (n, n 2 )
,
3 20
上的概率。
解 设Xi是第i次计算的误差

Xi~ U[-0.5,0.5]
∴ E(Xi)=0,D(Xi)=[0.5-(-0.5)]2/12=1/12
解 设Xi是第i次计算的误差

Xi~ U[-0.5,0.5]
∴ E(Xi)=0,D(Xi)=1/12 i=1,2, ,100.
∴平均误差为 X
每箱产品的平均强度为
X
1 100 100 i1
Xi
, 14,
2 4
X
1 100 100 i1
Xi
14, 2 4
根据定理1,有
(1) P{X 14.5}
1
14.5-
n
1
14.5 0.2
14
1 (2.5) 0.0062 ;
(2)
P{X
n
14}
P
X n 14 2 /10
i 1
※无论随机变量Xi服从什么分布,只要独
立同分布,当n很大时有:
n
X i n 近似
i 1
~ N (0,1)
X
n
近似
~
N
(
,
2
n
)
P
1 n
n i 1
Xi
n
x
P
n i 1
Xi
n
x
(x)
/ n
n
P{X
x}
x
n
n 近似
Xi ~ N(n, n 2)
i1
P
n i1
Xi
x
x
n
n
例1 设一批产品的强度服从期望为14, 方差 为4的分布。每箱中装有这种产品100件。求 (1)每箱产品的平均强度超过14.5的概率; (2)每箱产品的平均强度超过期望14的概率。
解:n=100,设 Xi 是第 i 件产品的强度,则 E(Xi)=14, D(Xi)=4, i =1,2,…,100。
n np(1 p)
x
D( X i
1
) t2
e2
2 p(1 p)
dt (x).
2
证明: ∵E(Xi)=p, D(Xi)=(1-p)p , i=1,2, …
由定理1得结论。
n
※ 由于 Yn Xi : B(n, p)
i 1
所以,lim
P
Yn np
x (x).
n np(1 p)
相关文档
最新文档