D中心极限定理

合集下载

中心极限定理

中心极限定理

2 设二维随机变量X,Y)的密度函数为 、 ( 1 p( x,y) = [ϕ1( x,y) +ϕ2 ( x,y)] 2 ,且它们 其中 1( x,y)和ϕ2( x,y)都是二维正态密度函数 ϕ 1 1 对应的二维随机变量的 相关系数为 和− .它们的 3 3 边际密度函数所对应的 随机变量的数学期望都 0 是,
1. 方差都是 (1)求随机变量 和Y的密度函数 X ( x)和pY ( y), 及X和Y X p
. 的相关系数
(2)问X和Y是否独立? 是否独立?
第四章 1 求特征函数;已知特 . 、求特征函数; 征函数求密度函数
( 4 特征函数的基本性质P201性质 .1.1− 4.1.5) 2、大数定律的一般形式 会判断 .v.序列是否 ; r ( 律 服从大数定律马尔可夫与辛钦大数定 )
解:
i 1 若学生答对第题 , Xi = i , 0 若学生答错第题 于是 i 相互独立,且服从二点 : X 相互独立, 分布: 分布 i i P( Xi = 1) = pi = 1− , P( Xi = 0) = 1− pi = , 100 100 i = 1,2,L,99
Bn =
E Xi − pi
* n
记Bn =
2
∑σ
i =1
n
2 i
Var(Yn ) = ∑σ i
n i =1
n
n Yn − EYn Yn − ∑µi Xi − µi Y = i =1 =∑ = Var(Yn ) Bn i =1 B
n
1 n 2 lim 2 2 ∑∫ ( x-µi ) pi ( x)dx = 0 | x− µi |>τBn n→+∞τ B n i =1 林德贝格条件
P153 6、 14 P164 2、(1)、(1)、 、 8 9 13 18 P182 10、 、 、 、 14 24 38 41 P197 2、、、 4 7 10

中心极限定理的理解

中心极限定理的理解

中心极限定理的理解
中心极限定理是概率论中的一个重要定理,它指出在一定条件下,对于一个大样本量的随机变量的和或均值,其分布会趋近于一个正态分布。

具体来说,中心极限定理包括以下三个方面的理解:
1. 大样本量:中心极限定理适用于大样本量的情况,也就是说当样本量足够大时,中心极限定理成立。

2. 随机变量的和或均值:中心极限定理适用于将大样本量的随机变量进行求和或求均值的情况。

通过对这些随机变量的操作,得到的新的随机变量在一定条件下会服从近似正态分布。

3. 近似正态分布:当样本量足够大时,中心极限定理告诉我们随机变量的和或均值的分布会接近于正态分布。

这意味着当我们对大量随机变量进行求和或求均值时,可以用正态分布来进行近似计算。

总的来说,中心极限定理是概率论中非常重要的一个定理,它提供了在大样本量情况下近似计算随机变量和或均值分布的方法,为许多统计推断和假设检验提供了理论基础。

中心极限定理

中心极限定理

中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。

而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。

中心极限定理是概率论中最著名的结果之一。

它提出,大量的独立随机变量之和具有近似于正态的分布。

因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。

中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。

即:该定理是辛钦中心极限定理的特例。

在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。

(三)李亚普洛夫中心极限定理设是一个相互独立的随机变量序列,它们具有有限的数学期望和方差:。

记,如果能选择这一个正数δ>0,使当n→∞时,,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。

(四)林德贝尔格定理设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有。

中心极限定理

中心极限定理

中心极限定理
(3)与参数估计的关系:
E(xi) X 样本n : x1 , x2 , xn , 取自总体,故 , D xi)= 2 ( n E( xi) nX n i 1 样本和 xi , n i 1 D ( xi)=n 2 i 1 根据中心极限定理推论,有:lim P(z1 <
X 周围1个标准差( n )范围内分布着68.26%的 x 2个标准差( n )范围内分布着95.46%的 x 3个……. ……… t 个标准差( n )范围内分布着F(t)的 x
其它条件不变时,置信度F(t)越大,则 t 越大,反之亦然 给定F(t),样本规模越大, t 越小 给定t ,样本规模越大, F(t)越小
n N
x
i 1 z2 2
n
i
nX <z2 )=
n dz
1 2

Z2
Z1
e

z2 2
dz
即:
xX lim P(z1 < n N n
<z2 )=
1 2

Z2
Z1
e
据此可知,样本平均数服从均值为x,方差为 2 n 的正态分布, 从而可以对X 作出区间估计。
中心极限定理
(4)根据中心极限定理有: 样本平均数的平均数等于总体平均数:x X
p( E ( ) s) 0.6826 (s = p( E ( ) 1.96s) 0.9500 p( E ( ) 2s) 0.9544 p( E ( ) 2.58s) 0.9900 p( E ( ) 3s) 0.9973 n)
(1)定理(推论):
E ( ) P(z1 < <z2 )= D ) (

中心极限定理

中心极限定理

-8 -7 -6 -5 -4 -3 -2 -1 O 1
x 2 3 4 5 6 7 8
记 则
Xk
1, 小球碰第 1, 小球碰第
k 1
( k 1, 2, ,15) n 15 k 层钉后向左落下 0, 2 1 近似 15 2 15 n 2 X N 0 1n 5 N( n , , ) ) 大数定律和中心极限定理 k
即至少要抽查147件产品才能保证拒绝这批产品的概率达到0.9.
大数定律和中心极限定理
例2.一批种子, 其中良种占1/6, 在其中任选6000粒, 试问在这
些种子中, 良种所占的比例与1/6之差的绝对值小于1%的概率. 解:设X表示取6000粒种子中的良种粒数, 则X~B(6000, 1/6), E(X)=6000×(1/6)=1000, D(X)=6000×(1/6)×(5/6).
Y20~N(10, 20/12)
P{Y20≤9.1} = P{Y20-10≤9.1-10}
Y20 10 Y20 10 9.1 10 P 0.7 P 20 /12 20 /12 20 /12
(0.7) 0.2420.
n X k n t2 x 1 2 k 1 lim Fn ( x ) lim P x e dt . n n n 2
大数定律和中心极限定理
n
中心极限定理的意义
对于均值为 ,方差 2 0 的独立同分布的 r.v. 列 有
2
证: 由于服从二项分布的随机变量和n 可看作n个相互独立服从 参数为p的(0-1)分布的随机变量X1,X2,…,Xn之和,即
n X i , 其中E( X k ) p, D( X k ) pq, k 1, 2,, n, q 1 p.

中心极限定理 n趋近无穷 标准正态

中心极限定理 n趋近无穷 标准正态

中心极限定理是概率论中一个非常重要的定理,它告诉我们在一定条件下,当样本容量足够大时,样本均值的分布将近似于正态分布。

这个定理对于统计推断和假设检验有着重要的意义,因此被广泛应用于各个领域。

1. 中心极限定理的概念中心极限定理是指在一定条件下,当样本容量足够大时,样本均值的分布将近似于正态分布。

无论总体的分布是什么样子,只要样本容量足够大,样本均值的分布都会接近正态分布。

这个定理对于统计学来说非常重要,因为它告诉我们在很多情况下,我们可以使用正态分布来近似描述样本均值的分布。

2. 为什么中心极限定理成立中心极限定理之所以成立,是因为当样本容量足够大时,样本均值的分布受到多个随机因素的影响,而这些随机因素的总和近似呈现出正态分布的特征。

这也是为什么无论总体的分布是什么样子,只要样本容量足够大,样本均值的分布都会近似于正态分布的原因。

3. 中心极限定理的应用中心极限定理在统计学中有着广泛的应用。

在假设检验中,我们经常需要根据样本均值对总体均值做出推断。

而根据中心极限定理,我们可以知道当样本容量足够大时,样本均值的分布近似于正态分布,这样我们就可以使用正态分布的性质来进行推断和计算。

4. n趋近无穷的意义在中心极限定理中,n代表样本容量,当n趋近无穷时,样本均值的分布就会趋近于正态分布。

这也说明了中心极限定理的一个重要特点,即样本容量越大,样本均值的分布越接近正态分布。

当我们需要进行统计推断时,可以通过增大样本容量来让样本均值的分布更接近于正态分布,从而使得推断结果更加可靠。

5. 标准正态分布的意义标准正态分布是统计学中一个非常重要的分布,它的概率密度函数是一个钟形曲线,均值为0,标准差为1。

在实际的统计推断和假设检验中,很多情况下都需要使用标准正态分布来进行计算和推断。

而根据中心极限定理,当样本容量足够大时,样本均值的分布近似于正态分布,因此我们可以使用标准正态分布的性质来进行推断和计算,这对于统计学的应用具有重要的意义。

中心极限定理

中心极限定理
n
n X i n 1 -t 2 2 i 1 x e dt lim Fn ( x ) lim P x - n n 2 n ( x )
注 1、定理表明,独立同分布的随机变量之和 X k ,
k 1
n
当n充分大时,随机变量之和与其标准化变量分别有 X k ~ N ( n , n ) ;
2 nk 1 ~ N (0,1). n
n
2、独立同分布中心极限定理的另一种形式可写为 近似地 X 近似地 2 X ~ N ( , n) 或 ~ N (0,1) n 1 n 其中X X k n k 1
3、虽然在一般情况下,我们很难求出 X k 的分
第二节
中心极限定理
中心极限定理
例题
课堂练习
中心极限定理的客观背景: 在实际问题中许多随机变量是由相互独立随机 因素的综合(或和)影响所形成的. 例如:炮弹射击的 落点与目标的偏差, 就受着许多随机因 素(如瞄准,空气 阻力,炮弹或炮身结构等)综合影响的.每个随机因 素的对弹着点(随机变量和)所起的作用都是很小 的.那么弹着点服从怎样分布哪 ?
一、中心极限定理
定理1(列维—林德伯格定理)
设随机变量X 1 , X 2 , X n , 相互独立,服从同一分 布,且具有数学期望和方差 : E ( X k ) , D( X k ) 2 ( k 1,2n ,),则随机变量之和 X k的标准化变量 k 1 X n k Yn k 1 的分布函数Fn ( x )对于任意x满足 n
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.
高斯
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题. 当n无限增大时,这个和的极限分布是什么呢?

统计学中的中心极限定理简介

统计学中的中心极限定理简介

统计学中的中心极限定理简介统计学是研究数据收集、分析、解释和展示的科学。

在统计学中,有一个非常重要的概念被称为中心极限定理。

中心极限定理不仅为统计推断提供了理论基础,而且在实际应用中也起到了极其重要的作用。

无论是在自然科学、社会科学,还是在工程技术等多个领域,中心极限定理的应用无处不在。

本文将对中心极限定理进行详细介绍,探讨其含义、重要性、应用及相关实例。

中心极限定理的基本概念中心极限定理(Central Limit Theorem, CLT)是指在一定条件下,当样本容量足够大时,不论原始总体分布的形状如何,样本均值的分布趋近于正态分布。

这一定理为我们理解大量独立随机变量之和或者平均值提供了理论依据。

定义及数学表述若(X_1, X_2, , X_n)是来自同一总体的独立同分布随机变量,且它们的期望为()和方差为(^2),则当样本容量(n)趋近于无穷时,样本均值({X} = _{i=1}^{n} X_i)的标准化形式:[ Z = ]将趋向于标准正态分布,即(N(0, 1))。

换句话说,对于大样本而言,样本均值的分布近似于正态分布,而这正是中心极限定理所要表达的核心内容。

中心极限定理的重要性中心极限定理的重要性体现在以下几个方面。

1. 理论基础作为统计推断的一部分,许多统计方法(如假设检验、置信区间等)都依赖于样本均值的正态性假设。

中心极限定理提供了在什么条件下可以使用正态分布的方法,使得这些统计方法具有更广泛的适用性。

2. 实际应用在实际工作中,我们通常会处理来自不同类型总体的数据。

中心极限定理使得即使底层数据不服从正态分布,我们依然可以使用基于正态分布的方法进行分析,这大大提高了数据分析过程的便利性。

3. 数据分析工具的发展许多现代数据分析工具和软件包都使用了中心极限定理作为其基础,帮助用户进行更精确的数据分析。

例如,在执行回归分析时,许多测试统计量依赖于中心极限定理,使得结果更具可信度。

中心极限定理的条件虽然中心极限定理适用于许多情况,但其成立需要满足一定条件:独立性:样本观测值必须是独立的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P a i1
n
b Φ(b) Φ(a)
例2. 设某食品用机器装袋,每袋净重的期望为100g,标准
差为4g,一箱内装100袋,求一箱净重大于10100g的概率.
解: 设 Xi 表示第 i袋食品的净重,i=1,2, …,100.
则 X1, X 2,L X100 相互独立, 且 E Xi 100, D Xi 16,
第二节
第五章
中心极限定理
一、独立同分布中心极限定理 二、棣莫弗-拉普拉斯中心极限定理
引言
1.背景: 如果一个量是由大量相互独立的随机因素影响
所造成的,而每一个因素在总影响中所起的作用并不大,
则这种随机变量通常服从或近似服从正态分布.
2.内容: 设相互独立的随机变量序列 X1, X 2L , X n,L 的数
40
1 2.5 0.0062
二、De Moivre-Laplace 中心极限定理
(levy-Lindeberg 中心极限定理的特殊形式)
定理2: 设 un 是n重伯努利试验中事件A发生的次数,
P A p, 则对x R, 有
lim
P
n
un np x np(1 p)
x
1
t2
e 2 dt Φ(x)
定理1: 设相互独立的随机变量 X1,X 2,L , X n,L 服从相
同的分布,且 E( Xi ) , D(Xi ) 2 0
则对x R, 有
n
Xi n
lim
P
i1
n
n
x
1
x
t2
e 2 dt
Φ(x)
2
注: 当 n 比较大时,对任意的实数 a < b 有
n
Xi n
座位才能有99%的概率不会出现座位不够?
解: 设每天有 X 人用A工具去乙地
则 X : B(1000,0.5) X np : N (0,1) npq
np 500
npq 250
设A工具需准备 x 个座位
P
X
xPBiblioteka Xnpxnp
0.99
npq npq
查表得 x np 2.33 x 536.8 npq
Φ
30 100 0.2 100 0.2 0.8
Φ
14 100 0.2 100 0.2 0.8
Φ(2.5) Φ(1.5) 0.927
例4. 由甲地到乙地有A、B两种交通工具,每个乘客
以1/2的概率选择其中一个;假设每天有1000名乘客同 时由甲地去乙地。 问每种交通工具上应设置多少个
(2) 利用拉普拉斯中心极限定理, 求被盗理赔用户大于14 户且不多于30户的概率近似值.
解: (1) 易知 X ~ B100,0.2, 即 PX k C1k000.2k0.8100k , k 0,1,L ,100
(2) 已知n=100, p=0.2 由拉普拉斯中心极限定理可知:
P14 X 30

注:设 X ~ B(n, p), 若n比较大时,则对任意的a<b, 有
Pa
X
b
Φ
b np np(1 p)
Φ
a np
np(1
p)
例3. 某保险公司多年统计资料表明,在理赔用户中被盗 理赔用户占20%, 以X表示在随意抽查的100个理赔用户 中因被盗理赔的用户数,
(1) 写出X 的概率分布
学期望和方差都存在, 则当n 很大时
n
n
i1 Xi E i1 Xi ~ N (0,1)
n
D i1 Xi
3. 如何刻划:
n
P
i1
X
i
n E i1 Xi
x
x
n
n
D i1 Xi
一、Levy-Lindeberg 中心极限定理
(独立同分布的中心极限定理)
100
而一箱食品的净重 X Xi,
i1
100
100
E X E i1 Xi 10000, D X D i1 Xi 1600,
由独立同分布的中心极限定理可知: X ~ N 10000,402
PX 10100 1 PX 10100
1
P
X
10000 40
10100 10000
相关文档
最新文档