广东省广州市广大附属实验学校2018届高三8月份调研数学试题 缺答案

合集下载

高三数学-【数学】2018年广州市高三年级调研测试-数学(文) 精品

高三数学-【数学】2018年广州市高三年级调研测试-数学(文) 精品

试卷类型:A2018年广州市高三年级调研测试数学(文科)本试卷共4 页,共21 题,满分150 分。

考试用时120 分钟。

2018.01 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上, 并用2B 铅笔在答题卡上的相应位置填涂考生号。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符 合题目要求的.1. 函数()g x =A .{3x x ≥-} B .{3x x >-} C .{3x x ≤-} D .{3x x <-}2.已知i 为虚数单位, 则复数z =i (1+i )在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.设向量(2,0)=a ,(1,1)=b ,则下列结论中正确的是A .||||=a b B . 12=a b C .//a b D .()-⊥a b b4.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的图2侧视图俯视图正视图方程为A.y = B.y C.3y x =-D.3y x = 5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 A .甲 B . 乙 C . 丙 D .丁6.如果执行图1的程序框图,若输入6,4n m ==,那么输出的p 等于A .720B .360C .240D .1207.“2>x ”是“0232>+-x x ”成立的 图1A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.定义3x y x y ⊗=-, 则()h h h ⊗⊗等于 A .h - B .0 C .h D .3h9. 一空间几何体的三视图如图2所示, 该几何体的体积为12π+,则正视图中x 的值为 A .5 B .4 C .3 D .2 10.若把函数()=y f x 的图象沿x 轴向左平移4π个单位, 沿y 轴向下平移1个单位,然后再把图象上每个点的 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数 sin =y x 的图象,则()=y f x 的解析式为 A .sin 214⎛⎫=-+ ⎪⎝⎭y x π B .sin 212⎛⎫=-+ ⎪⎝⎭y x π图3NC .1sin 124⎛⎫=+- ⎪⎝⎭y x πD .1sin 122⎛⎫=+- ⎪⎝⎭y x π二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知等比数列{}n a 的公比是2,33a =,则5a 的值是 .12.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则sin sin()AA C =+ .13.设函数()()[)22,,1,,1,.x x f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩ 若()4f x >,则x 的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,四边形ABCD 内接于⊙O , BC 是直径,MN 与⊙O 相切, 切点为A ,MAB ∠35︒=,则D ∠= .15.(坐标系与参数方程选讲选做题)已知直线l 的参数方程为:2,14x t y t=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为ρθ=,则直线l 与圆C 的位置关系为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量a (sin ,2)θ=,b (cos ,1)θ=, 且a //b ,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若3sin(), 052πθωω-=<<,求cos ω的值. 17.(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数 分布)如下表:A B CPD(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x 、y 的值.18.(本小题满分14分)如图4,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知24BD AD ==,2AB DC ==(1)求证:BD ⊥平面PAD ;(2)求三棱锥A PCD -的体积.19.(本小题满分14分) 图4已知椭圆()222:133x y E a a+=>的离心率12e =. 直线x t =(0t >)与曲线E 交于 不同的两点,M N ,以线段MN 为直径作圆C ,圆心为C . (1)求椭圆E 的方程;(2)若圆C 与y 轴相交于不同的两点,A B ,求ABC ∆的面积的最大值.20.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,且满足1(n n S a n =-∈N *).各项为正数的数列}{n b 中,对于一切n ∈N *,有nk ==且1231,2,3b b b ===.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n n a b 的前n 项和为n T ,求证:2n T <.21.(本小题满分14分) 已知函数()(af x x a x=+∈R ), ()ln g x x =. (1)求函数()()()F x f x g x =+的单调区间;(2)若关于x 的方程()()22g x f x e x=-(e 为自然对数的底数)只有一个实数根, 求a 的值.。

2018年高三最新 广州市2018年华附、省实高三联考试题及答案[整理] 精品

2018年高三最新 广州市2018年华附、省实高三联考试题及答案[整理] 精品

高三综合能力测试数 学本试卷分选择题和非选择题两部分,共4页.满分为150分。

考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试题卷和答题卡一并交回.第一部分 选择题(共50分)参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2 如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是符合题目要求的.1.已知集合P ={ 0,m },Q ={x │Z x x x ∈<-,0522},若P ∩Q ≠Φ,则m 等于 (*)(A) 1(B) 2(C) 1或25(D)1或22.在ABC ∆中,若C ∠为钝角,则tan A·tan B 的值为(*)(A)小于1 (B) 等于1 (C) 大于1 (D) 不能确定3.若双曲线 x 28 - y 2m2 =1 (m >0)的一条准线与抛物线y 2 = 8x 的准线重合,则m 的值为(*)(A) 2 (B) 2 2 (C) 4 (D) 4 24.动点在圆122=+y x 上移动时,它与定点)0,3(B 连线的中点的轨迹方程是(*)(A)4)3(22=++y x (B)1)3(22=+-y x(C)14)32(22=+-y x(D)21)23(22=++y x5.若 | a | = 2, | b | = 5, | a +b | = 4,则| a -b |的值为(*)(A) 13 (B) 3 (C) 42 (D) 76.已知直线a , b ,平面α ,且b ⊂ α ,那么“a ∥b ”是“a ∥α ”的(*)(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 7.若函数m y x +=-|1|)21(的图象与x 轴有公共点,则m 的取值范围是(*)(A )m ≤-1 (B )-1≤m <0 (C )m ≥1(D) 0<m ≤18.若x ≥0,y ≥0且x +2y = 1,那么2x +3y 2的最小值为 (* )(A )2 (B )34 (C )23(D )09.有一个正四棱锥,它的底面边长与侧棱长均为a ,现用一张正方形包装纸将其完全包住 (不能裁剪纸,但可以折叠),那么包装纸的最小边长应为(*) (A )262+a (B )()26+a (C ) 132+a(D ) ()13+a10.已知a n = log (n +1) (n +2),我们把使乘积a 1a 2…a n 为整数的数n 称为“劣数”,则在区间(0,2018)内所有劣数的个数为(*) (A )7 (B )8 (C )9 (D )10第二部分 非选择题(共100分)二、填空题:本大题共4小题,每小题5分,共20分. 11.已知 ⎩⎪⎨⎪⎧ y ≤x +1 x +y ≤2x ≥0 y ≥0 ,则z = x -2y 的最大值为*****.12.椭圆125922=+y x 上的一点P 到两焦点的距离的乘积为m ,则当m 取最大值时,点P 的坐标是*****.13.已知函数f (x )= ⎩⎪⎨⎪⎧log 2(x+2) x>0x x -1 x≤0 ,则f (- 12 ) = *****;(2分)f-1(3 ) = *****。

2018届广州市高三年级调研测试(文数)

2018届广州市高三年级调研测试(文数)

2018届广州市高三年级调研测试数学(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =A .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =A .52B .32C .102D .623.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭ A .13 B .3 C .13- D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012xx >,则下列命题中是真命题的是 A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角6θπ=.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是 A .232- B .32 C .14D .127.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知7b =,4c =,3cos 4B =,则△ABC 的面积等于A .37B .372C .9D .928.在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是 A .sin xB .cos xC .sin x -D .cos x -9.正方体1111ABCD A B C D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的 长为 A .23B .12 C .16 D .1310.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A .12π B .6πC .4π D .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为 A .13+B .3C .233D .23+12.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为 A .112π B .6π C .11π D .12π 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(),2x x =+a ,()3,4=b ,若//a b ,则向量a 的模为____.14.已知函数a x f xx+-=122)(为奇函数,则实数=a ________. 15.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为_______.开始 输入f 0(x )i =0 i = i +11()()i i f x f x -'=i >2017?输出()i f x结束否是16.在直角坐标系xOy 中,已知直线0x +-=与椭圆C :22221x y a b+=()0a b >>相切,且椭圆C 的右焦点(),0F c 关于直线cy x b=的对称点E 在椭圆C 上,则△OEF 的面积为 .三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤. (一)必考题:共60分. 17.(本小题满分12分)已知数列{}n a 满足211234444n n na a a a -++++=()*n ∈N . (1)求数列{}n a 的通项公式;(2)设421n nn a b n =+,求数列{}1n n b b +的前n 项和n T .18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,PA ED //,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2)若 o 60=∠ABC ,求三棱锥P ACE -的体积.EDBCAP2018届广州市高三年级调研测试数学(文科)19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)已知抛物线()2:20C y px p =>的焦点为F ,抛物线C 上存在一点E ()2,t 到焦点F 的距离等于3.(1)求抛物线C 的方程;(2)过点()1,0K -的直线l 与抛物线C 相交于A ,B 两点(A ,B 两点在x 轴上方),点A 关于x 轴的对称点为D ,且FA FB ⊥,求△ABD 的外接圆的方程.21.(本小题满分12分)已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,讨论函数()f x 的单调性;(2)当0a b +=,0b >时,对任意1,e ex ⎡⎤∈⎢⎥⎣⎦,有()e 1f x ≤-成立,求实数b 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y '=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值.2018届广州市高三年级调研测试数学(文科)参考答案一.选择题二.填空题13.10 14.21- 15.1ln 2+ 16.1三、解答题17. 解:(1)当1n =时,114a =.………………………………………………………………1分 因为221*123-144+44,4n n n n na a a a a n --++++=∈N , ①所以22123-1-1444,24n n n a a a a n -++++=≥. ②…………………………3分①-②得1144n n a -=.……4分 所以()*1=2,4n n a n n ≥∈N .…5分由于114a =也满足上式,故*1=()4n n a n ∈N .……………………………………………6分(2)由(1)得421n n n a b n =+=121n +7分所以()()11111=212322123n n b b n n n n +⎛⎫=- ⎪++++⎝⎭…9分 故1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭……10分 1112323n ⎛⎫=-⎪+⎝⎭…11分 69nn +=.…………………………………………………………………………………12分18.(1)证明:连接 BD ,交 AC 于点O ,设PC 中点为F , 连接OF ,EF .因为O ,F 分别为AC ,PC 的中点, 所以PA OF //,且12OF PA =, 因为PA DE //,且12DE PA =, 所以DE OF //,且OF DE =.………………………………………………………………1分 所以四边形OFED 为平行四边形,所以EF OD //,即EF BD //.………………………2分因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥. 因为PAAC A =,所以BD ⊥平面PAC .…………………………………………………4分因为EF BD //,所以EF ⊥平面PAC .………………………………………………………5分 因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………6分 (2)解法1:因为60ABC ∠=,所以△ABC 是等边三角形,所以2AC =.…………………7分又因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥.所以122PAC S PA AC ∆=⨯=.………………………………………………………………8分 因为EF ⊥面PAC ,所以EF 是三棱锥E PAC -的高. …………………………………9分因为EF DO BO ===…………………………………………………………………10分所以13P ACE E PACPAC V VS EF --∆==⨯……11分123=⨯=.…12分 解法2:因为底面ABCD 为菱形,且︒=∠60ABC ,所以△ACD 为等边三角形.………7分 取AD 的中点M ,连CM ,则AD CM ⊥,且3=CM .…………………………………8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.………………………………9分 因为122PAE S PA AD ∆=⨯=.………………………………………………………………10分所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯123=⨯=.12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.…………1分因为51()()(3)(1)000316ii i xx y y =--=-⨯-++++⨯=∑, ………………………………2分,52310)1()3()(22222512=+++-+-=-∑=i i x x ………………………………………3分==……………………………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与x的关系.…………………………………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.……………………………………………………8分当50≤X≤70时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.…………………………………………………………9分当X<50时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.……………………………………………………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.……………………………………12分20.解:(1)抛物线的准线方程为2px=-,所以点E()2t,到焦点的距离为232p+=.…………………………………………………1分解得2p=.所以抛物线C的方程为24y x=.……………………………………………………………2分(2)解法1:设直线l的方程为()10x my m=->.……………………………………………3分将1x my=-代入24y x=并整理得2440y my-+=,……………………………………4分由()24160m∆=->,解得1m>.………………………………………………………5分设()11,A x y,()22,B x y,()11,D x y-,则124y y m+=,124y y=,…………………………………………………………………6分因为()()()2212121212·11(1)2484FA FB x x y y m y m y my y=--+=+-++=-,………………7分因为FA FB ⊥,所以0=⋅FB FA .即2840m -=,又0m > ,解得m =.……………………………………………………8分所以直线l 的方程为10x +=. 设AB 的中点为()00,x y , ,0013x my =-=,………………………………………………9分所以直线AB 的中垂线方程为)3y x -=-. 因为AD 的中垂线方程为0y =,所以△ABD 的外接圆圆心坐标为()5,0.……………………………………………………10分因为圆心()5,0到直线l 的距离为AB ==,……………………………………………………11分所以△ABD 的外接圆的方程为()22524x y -+=.…………………………………………12分 解法2:依题意可设直线()():10l y k x k =+>.……………………………………………3分 将直线l 与抛物线C 联立整理得0)42(2222=+-+k x k x k .………………………………4分 由04)42(422>--=∆k k ,解得10<<k .………………………………………………5分 设),,(),,(2211y x B y x A 则1,4221221=+-=+x x k x x .……6分 所以4)1(2121221=+++=x x x x k y y , 因为12121224()18FA FB x x x x y y k⋅=-+++=-,…………………………………………7分 因为FA FB ⊥,所以0=⋅FB FA .所以2480k-=,又0k > ,解得22=k .……8分 以下同解法1.21.解:(1)函数()f x 的定义域为()0,+∞.当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.…………………………1分① 当0a >时,()0f x '>,所以函数()f x 在()0,+∞上单调递增.………………………2分② 当0a <时,令()0f x '=,解得x =当0x <<()0f x '<,所以函数()f x 在⎛ ⎝上单调递减;当x >()0f x '>,所以函数()f x 在⎫+∞⎪⎪⎭上单调递增.…………………3分 综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x 在⎛⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.…4分 (2)因为对任意1,e ex ⎡⎤∈⎢⎥⎣⎦,有()e 1f x ≤-成立,所以()max e 1f x ≤-.……………………5分 当0a b +=即a b =-时,()ln b f x b x x =-+,()()11bb b x b f x bx x x---'=+=. 令()0f x '<,得01x <<;令()0f x '>,得1x >.所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,…………………………………7分()max f x 为1e e b f b -⎛⎫=+ ⎪⎝⎭与()e e b f b =-+中的较大者.…………………………………8分设()()1e e e2e bbg b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则0222)('=-⋅>-+=--b b b b e e e e b g ,所以()g b 在()0,+∞上单调递增,故()()00g b g >=所以()1e e f f ⎛⎫> ⎪⎝⎭,从而()max f x =⎡⎤⎣⎦()e e bf b =-+.……………………………………………………………9分 所以e e 1bb -+≤-即e e 10bb --+≤.设()=e e 1bb b ϕ--+()0b >,则()=e 10bb ϕ'->.…………………………………………10分所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10b b --+≤的解为1b ≤.……………………………………………11分 因为0b >,所以b 的取值范围为(]0,1.………………………………………………………12分 22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数),因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.………………………………………2分所以2C 的普通方程为224x y ''+=.…3分 所以2C 为圆心在原点,半径为2的圆.4分所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………5分(2)解法1:直线l 的普通方程为100x y --=.…………………………………………………6分曲线2C 上的点M 到直线l的距离+)10|d απ-==.…………8分 当cos +=14απ⎛⎫ ⎪⎝⎭即()=24k k αππ-∈Z 时,d取到最小值为2.……………9分 当cos +=14απ⎛⎫- ⎪⎝⎭即()3=24k k απ+π∈Z 时,d取到最大值为+………10分 解法2:直线l 的普通方程为100x y --=.…………………………………………………6分 因为圆2C 的半径为2,且圆心到直线l 的距离252|1000|=--=d ,……………………7分因为225>,所以圆2C 与直线l 相离.……………………………………………………8分 所以圆2C 上的点M 到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分。

2018届广州市高三年级调研测试(文科数学)答案

2018届广州市高三年级调研测试(文科数学)答案

2018届广州市高三年级调研测试(文科数学)答案D数学(文科)试题A 第 2 页共 20 页数学(文科)试题A 第 3 页共 20 页数学(文科)试题A 第 4 页共 20 页数学(文科)试题A 第 5 页共 20 页数学(文科)试题A 第 6 页 共 20 页设PC 中点为F ,连接OF ,EF .因为O ,F 分别为AC ,PC 的中点,所以OF PA ,且12OF PA =, 因为DE PA ,且12DE PA =, 所以OF DE ,且OF DE =.…………………………………………………………………………1分所以四边形OFED 为平行四边形,所以OD EF ,即BD EF .………………………………2分因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A =,所以BD ⊥平面PAC .…………………………………………………………4分因为BD EF ,所以EF ⊥平面PAC .………………………………………………………数学(文科)试题A 第 7 页 共 20 页………5分因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . ………………………………………………6分 (2)解法1:因为60ABC ∠=,所以△ABC 是等边三角形,所以2AC =.………………………7分又因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥. 所以122PAC S PA AC ∆=⨯=.……………………………………………………………………………8分因为EF ⊥面PAC ,所以EF 是三棱锥E PAC -的高. ……………………………………………9分因为EF DO BO ===………………………………10分 所以13P ACE E PAC PAC V V S EF --∆==⨯…………………………………………………………………11分1233=⨯=.………………………………………………………………………12分解法2:因为底面ABCD 为菱形,且︒=∠60ABC ,所以△ACD数学(文科)试题A 第 8 页 共 20 页为等边三角形.………………7分取AD 的中点M ,连CM ,则AD CM ⊥,且3=CM .………………………………………8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = , 所以CM⊥平面PADE ,所以CM 是三棱锥C PAE -的高.………………………………………9分 因为122PAE S PA AD ∆=⨯=.…………………………………………………………………………10分所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯……………………………………11分123=⨯=.…………………………………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.…………………1分因为51()()(3)(1)000316i i i xx y y =--=-⨯-++++⨯=∑,………………………………………2分数学(文科)试题A 第 9 页 共 20 页,52310)1()3()(22222512=+++-+-=-∑=i ix x ………………………………………………3分==……………………………………………………4分所以相关系数()()0.95n i i x x y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系. …………………………………………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元. …………………………………………………………………8分当50≤X ≤70时,共有35周,此时有2台光照控制仪运行,数学(文科)试题A 第 10 页 共 20 页 周总利润Y =2×3000-1×1000=5000元. …………………………………………………………………9分当X<50时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元. …………………………………………………………………………10分所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元. ………………………………………………12分20. 解:(1)抛物线的准线方程为2p x =-,所以点E ()2t ,到焦点的距离为232p +=.…………………………………………………………1分解得2p =.所以抛物线C 的方程为24y x =.………………………………………………………数学(文科)试题A 第 11 页 共 20 页………………2分(2)解法1:设直线l 的方程为()10x my m =->.………………………………………………………3分将1x my =-代入24yx=并整理得2440y my -+=, (4)分由()24160m ∆=->,解得1m >.……………………………………………………………………5分设()11,A x y , ()22,B x y , ()11,D x y -,则124y ym+=,124y y =,……………………………………………………………………………6分因为()()()2212121212·11(1)2484FA FB x x y y m y m y m y y =--+=+-++=-,………………7分因为FA FB ⊥,所以0FA FB =. 即2840m -=,又m > ,解得m =.…………………………………………………………8分所以直线l 的方程为10x -+=.数学(文科)试题A 第 12 页 共 20 页设AB 的中点为()0,x y ,0013x my =-=,……………………………………………………9分所以直线AB的中垂线方程为)3y x -=-.因为AD 的中垂线方程为0y =, 所以△ABD 的外接圆圆心坐标为()5,0.……………………………………………………………10分因为圆心()5,0到直线l 的距离为AB ==所以圆的半径…………………11分所以△ABD 的外接圆的方程为()22524x y -+=.…………………………………………………12分解法2:依题意可设直线()():10l y k x k =+>.……………………………………………………3分将直线l与抛物线C联立整理得数学(文科)试题A 第 13 页 共 20 页)42(2222=+-+k x k x k .………………………………………4分由4)42(422>--=∆k k ,解得10<<k .………………………………………………………5分设),,(),,(2211y x B y x A则1,4221221=+-=+x x kx x .…………………………………………………………………………6分所以4)1(2121221=+++=x x x x k yy ,因为12121224()18FA FB x x x x y y k ⋅=-+++=-,…………………………………………………7分因为FA FB ⊥,所以0FA FB =. 所以2480k -=,又k > ,解得22=k .…………………………………………………………8分以下同解法1.21.解:(1)函数()f x 的定义域为()0,+∞.数学(文科)试题A 第 14 页 共 20 页当2b =时,()2ln f x a x x =+,所以()222a x af x x x x+'=+=.………………………………1分① 当0a >时,()0f x '>,所以函数()f x 在()0,+∞上单调递增.………………………………2分 ② 当0a <时,令()0f x '=,解得x =当0x <<()0f x '<,所以函数()f x在⎛ ⎝上单调递减;当x >()0f x '>,所以函数()f x在⎫+∞⎪⎪⎭上单调递增.………………………3分综上所述,当2b =,0a >时,函数()f x 在()0,+∞上单调递增;当2b =,0a <时,函数()f x在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.………4分(2)因为对任意1,e e x ⎡⎤∈⎢⎥⎣⎦,有()e 1f x ≤-成立,所以()max e 1f x ≤-.……………………………5分数学(文科)试题A 第 15 页 共 20 页当0a b +=即a b =-时,()ln bf x b x x =-+,()()11bb b x b f x bx x x---'=+=.令()0f x '<,得01x <<;令()0f x '>,得1x >.所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,…………………………………………7分()maxf x 为1e e b f b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+中的较大者.…………………………………………8分设()()1e ee 2ebb g b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则()ee 220bb g b -'=+->=,所以()g b 在()0,+∞上单调递增,故()()00g b g >=所以()1e e f f ⎛⎫> ⎪⎝⎭,从而()maxf x =⎡⎤⎣⎦()e e bf b =-+.………………………………………………………………………9分所以e e 1bb -+≤-即ee 10bb --+≤.设()=e e 1b b b ϕ--+()0b >,则()=e 10b b ϕ'->. (10)数学(文科)试题A 第 16 页 共 20 页分所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10bb --+≤的解为1b ≤.……………………………………………………11分因为0b >,所以b 的取值范围为(]0,1.………………………………………………………………12分22.解:(1)因为曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数), 因为2.x x y y '=⎧⎨'=⎩,,则曲线2C 的参数方程2cos 2sin .x y αα'=⎧⎨'=⎩,.………………………………………………2分 所以2C 的普通方程为224x y ''+=.……………………………………………………………………3分所以2C 为圆心在原点,半径为2的圆.…………………………………………………………………4分所以2C 的极坐标方程为24ρ=,即2ρ=.…………………………………………………………5分(2)解法1:直线l的普通方程为100x y--=.…………………………………………………………6分曲线2C上的点M到直线l的距离+)10|dαπ-==.…………8分当cos+=14απ⎛⎫⎪⎝⎭即()=24k kαππ-∈Z时,d取到最小值为2.……………9分当cos+=14απ⎛⎫-⎪⎝⎭即()3=24k kαπ+π∈Z时,d取到最大值为+10分解法2:直线l的普通方程为100x y--=.…………………………………………………………6分因为圆2C的半径为2,且圆心到直线l的距离252|100|=--=d,…………………………7分数学(文科)试题A 第 17 页共 20 页数学(文科)试题A 第 18 页 共 20 页因为225>,所以圆2C 与直线l相离.………………………………………………………………8分所以圆2C 上的点M到直线l 的距离最大值为225+=+r d ,最小值为225-=-r d .…10分 23.解:(1)当1=a 时,()|1|=+f x x .…………………………………………………………………1分 ①当1x ≤-时,原不等式可化为122x x --≤--,解得1≤-x .…………………………………2分②当112x -<<-时,原不等式可化为122+≤--x x ,解得1≤-x ,此时原不等式无解.……3分 ③当12x ≥-时,原不等式可化为12+≤x x,解得1≥x .…………………………………………4分 综上可知,原不等式的解集为{1x x ≤-或}1≥x .…………………………………………………5分 (2)解法1:①当3a ≤时,()3,3,23,3,3,.a x g x x a x a a x a -≤-⎧⎪=----<<-⎨⎪-≥-⎩………………………………………6分所以函数()g x 的值域[]3,3A a a =--,数学(文科)试题A 第 19 页 共 20 页因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得1a ≤.………………………………………………………7分②当3a >时,()3,,23,3,3, 3.a x a g x x a a x a x -≤-⎧⎪=++-<<-⎨⎪-≥-⎩…………………………………………………8分所以函数()g x 的值域[]3,3A a a =--,因为[2,1]-⊆A ,所以3231a a -≤-⎧⎨-≥⎩,,解得5a ≥.………………………………………………………9分综上可知,a 的取值范围是(][),15,-∞+∞.………………………………………………………10分解法2:因为|+||+3|x a x -≤()+(+3)3x a x a -=-,……………………………………………7分所以()g x =()|+3||+||+3|[|3|,|3|]-=-∈---f x x x a x a a . 所以函数()g x 的值域[|3|,|3|]A a a =---.…………………………………………………………8分数学(文科)试题A 第 20 页 共 20 页因为[2,1]-⊆A ,所以|3|2|3|1a a --≤-⎧⎨-≥⎩,,解得1a ≤或5a ≥.所以a 的取值范围是(][),15,-∞+∞.………………………………………………………………10分。

2018年高三最新 广州数学抽检考题 精品

2018年高三最新 广州数学抽检考题 精品

2018年广州市高三教学质量抽测数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.考试时间120分钟.第 I 卷 (选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考生号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人员将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 不等式011≥-+x x 的解集是 (A ) }1|{-≥x x (B ) }1,1|{≠-≥x x x (C ) }1|{}1|{-≤>x x x x (D ) }1|{}1|{-≤≥x x x x(2) 若α是第二象限的角,且2sin 3α=,则=αcos(A )13 (B ) 13- (C ) 3 (D ) 3-(3) 圆的一条直径的端点是A (2,0),B (2,-2),则圆的方程是 (A )042422=++-+y x y x (B )042422=+--+y x y x (C )224240x y x y +-+-=(D )042422=--++y x y x(4) 三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与BCA 为面的二面角的大小为(A ) 300 (B ) 450 (C )600(D )900(5) 下列各式中,对任何实数x 都成立的一个是(A )1112≤+x (B ) xx 2lg )1lg(2≥+ (C ) 12+x x 2> (D ) 21≥+x x (6) 等差数列{}n a 中,12010=S ,那么29a a +的值是 (A ) 12 (B ) 24 (C ) 16(D ) 48(7) 下列命题中,正确的是(A )平行于同一平面的两条直线平行 (B )与同一平面成等角的两条直线平行(C )与同一半平面成相等二面角的两个半平面平行(D )若平行平面与同一平面相交,则交线平行(8) 二项式6)13(xx -的展开式的常数项是(A )20 (B )20- (C )540(D )540-(9) 电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时内恰好坏了一个的概率为(A ) 0.384 (B )13(C ) 0.128 (D ) 0.118 (10) 已知目标函数z =2x +y ,且变量x 、y 满足下列条件:4335251x y x y x -≤-⎧⎪+<⎨⎪≥⎩,则(A ) z 最大值=12,z 无最小值 (B ) z 最小值=3,z 无最大值(C ) z 最大值=12,z 最小值=3(D ) z 最小值=265,z 无最大值 (11) 探索以下规律:则根据规律,从2018到2018,箭头的方向依次是 (A ) (B )(C )(D )(12) 已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与 圆C 相切的两直线相交于点P ,则P 点的轨迹方程为(A )221(1)8y x x -=<- (B ))1(1822>=-x y x(C )1822=+y x (x > 0) (D )221(1)10y x x -=>12567 91011 …… 0 3 4 82018年广州市高三教学质量抽测数学第 Ⅱ 卷 (非选择题 共90分)注意事项:⒈ 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试题卷中. ⒉ 答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上。

高三数学-2018年广州市高三教学质量抽测 精品

高三数学-2018年广州市高三教学质量抽测 精品

2018年广州市高三教学质量抽测数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.共150分.考试时间120分钟.第 I 卷 (选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、考生号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人员将本试卷和答题卡一并收回. 参考公式:如果事件A 、B 互斥,那么球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )·P (B )球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概其中R 表示球的半径率k n kk n n P P C k P --=)1()(一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 不等式011≥-+x x 的解集是 (A ) }1|{-≥x x (B ) }1,1|{≠-≥x x x(C ) }1|{}1|{-≤>x x x x (D ) }1|{}1|{-≤≥x x x x(2) 若α是第二象限的角,且2sin 3α=,则=αcos(A ) 13 (B ) 13- (C )(D )(3) 圆的一条直径的端点是A (2,0),B (2,-2),则圆的方程是(A )042422=++-+y x y x (B )042422=+--+y x y x (C )224240x y x y +-+-=(D )042422=--++y x y x(4) 三棱锥D —ABC 的三个侧面分别与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与BCA 为面的二面角的大小为(A ) 300 (B ) 450 (C )600 (D )900(5) 下列各式中,对任何实数x 都成立的一个是(A )1112≤+x (B ) xx 2lg )1lg(2≥+ (C ) 12+x x 2> (D ) 21≥+x x (6) 等差数列{}n a 中,12010=S ,那么29a a +的值是 (A ) 12 (B ) 24 (C ) 16(D ) 48(7) 下列命题中,正确的是(A )平行于同一平面的两条直线平行 (B )与同一平面成等角的两条直线平行(C )与同一半平面成相等二面角的两个半平面平行(D )若平行平面与同一平面相交,则交线平行(8) 二项式6)13(xx -的展开式的常数项是(A )20 (B )20- (C )540(D )540-(9) 电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时内恰好坏了一个的概率为(A ) 0.384 (B )13(C ) 0.128 (D ) 0.118 (10) 已知目标函数z =2x +y ,且变量x 、y 满足下列条件:4335251x y x y x -≤-⎧⎪+<⎨⎪≥⎩,则(A ) z 最大值=12,z 无最小值 (B ) z 最小值=3,z 无最大值(C ) z 最大值=12,z 最小值=3(D ) z 最小值=265,z 无最大值 (11) 探索以下规律:则根据规律,从2002到2018,箭头的方向依次是 (A ) (B )(C )(D )(12) 已知点M (-3,0),N (3,0),B (1,0),圆C 与直线MN 切于点B ,过M 、N 与 圆C 相切的两直线相交于点P ,则P 点的轨迹方程为(A )221(1)8y x x -=<- (B ))1(1822>=-x y x(C )1822=+y x (x > 0) (D )221(1)10y x x -=> 1567 91011 …… 0 3 4 82018年广州市高三教学质量抽测数学第 Ⅱ 卷 (非选择题 共90分)注意事项:⒈ 第Ⅱ卷共4页,用钢笔或圆珠笔直接答在试题卷中. ⒉ 答卷前将密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上。

2018届广州市高三年级调研测试(理科数学)试题

2018届广州市高三年级调研测试(理科数学)试题

2018届广州市高三年级调研测试(理科数学)试题秘密★启用前试卷类型: A2018届广州市高三年级调研测试理科数学2017.12本试卷共5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡的相应位置填涂考生号。

2.作答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

写在本试卷上无效。

3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

数学(理科)试题A 第 2 页共 11 页数学(理科)试题A 第 3 页 共 11 页4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =->,则A B =IA .{}1-B .{}1,0-C .{}1,3-D .{}1,0,3-2.若复数z 满足()12i 1i z +=-,则z =A .25B .35 C.5D3.在等差数列{}na 中,已知22a =,前7项和756S=,则公差d =A .2B .3C .2-D .3- 4.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为A .0B .4C .5D .6 5.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为A.212-B.92-C.92D.2126.在如图的程序框图中,()if x'为()i f x的导函数,若0()sinf x x=,则输出的结果是A.sin x-B.cos xC.sin xD.cos x-7.正方体1111ABCD A B C D-的棱长为2,点M为1CC的中点,点N为线段1DD上靠近1D的三等分点,平面BMN交1AA于点Q,则AQ的长为A.23B.12C.16D.138.已知直线2y kx=-与曲线lny x x=相切,则实数k的值为A.ln2B.1C.1ln2-D.1ln2+9.某学校获得5个高校自主招生推荐名额,其中甲大学数学(理科)试题A 第 4 页共 11 页数学(理科)试题A 第 5 页 共 11 页2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有 A .36种 B .24种 C .22种 D .20种10.()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为A .6πB .12πC .4πD .3π 11.在直角坐标系xOy 中,设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为ABC.1+ D.2+12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当数学(理科)试题A 第 6 页 共 11 页x ∈R,且0x ≠时,都有()0xf x '>; ③ 当120xx <<,且12xx =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+;()2e 1xf x x =--;()()3ln 1,0,0;2,x x f x x x ⎧-+≤⎪=⎨>⎪⎩()411,0,2120,0.xx x f x x ⎛⎫+≠ ⎪-⎝⎭=⎧⎪=⎨⎪⎩则其中是“偏对称函数”的函数个数为A .0B .1C .2D .3二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量(),2x x =-a ,()3,4=b ,若a b P ,则向量a 的模为________.14.在各项都为正数的等比数列{}na 中,若20182a=,则2017201912a a +的最小值为________.15.过抛物线C :22(0)ypx p => 的焦点F 的直线交抛物线C 于A,B 两点.若6AF =,3BF =,则p 的值为________.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥数学(理科)试题A 第 7 页 共 11 页的三视图,则该三棱锥的外接球的表面积为________.三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =,cos (2)cos a B c b A=-.(1)求角A 的大小; (2)求△ABC 周长的最大值.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD是边长为2的菱形,PA ⊥底面ABCD ,EDBCAPP,且22ED PA==.PA ED(1)证明:平面PAC⊥平面PCE;(2)若直线PC与平面ABCD所成的角为o45,求二面角-的余弦值.P-DCE19.(本小题满分12分)某基地蔬菜大棚采用水培、无土Array栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01).(若75.0||>r,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家数学(理科)试题A 第 8 页共 11 页数学(理科)试题A 第 9 页 共 11 页为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:周光照量X (单位:小时) 3050X <<5070X ≤≤70X >光照控制仪最多可运行台数3 2 1若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)如图,在直角坐标系xOy 中,椭圆C :22221y x a b +=()0a b >>的上焦点为1F ,椭圆C 的离心数学(理科)试题A 第 10 页 共 11 页率为12,且过点1,3⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B(B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若110F B F H •=u u u r u u u u r ,且MO MA =,求直线l 的方程.21.(本小题满分12分) 已知函数()ln bf x a x x=+()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=,0b >时,对任意121,,e e x x⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩,(α为参数),将曲线1C 经过伸缩变换2x x y y'=⎧⎨'=⎩,后得到曲线2C .在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线C是哪一种曲线,并将曲线2C的方程化2为极坐标方程;(2)已知点M是曲线C上的任意一点,求点M到直线l2的距离的最大值和最小值.23.(本小题满分10分)选修4-5:不等式选讲已知函数()||=+.f x x a(1)当1=a时,求不等式()211≤+-的解集;f x x(2)若函数()()3=-+的值域为A,且[]2,1Ag x f x x-⊆,求a的取值范围.数学(理科)试题A 第 11 页共 11 页。

2018届高三8月调研考试数学(理)试题含答案

2018届高三8月调研考试数学(理)试题含答案

2018级高三上学期8月调研考试数学(理)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2017(23)45i i z i-=+(i 为虚数单位),则在复平面内,复数z 所对应的点位于( )A .第一象限B . 第二象限C . 第三象限D .第四象限2.已知命题:p 直线1:230l x y -+=与2:230l x y ++=相交但不垂直;命题:q 0(0,)x ∃∈+∞,002x x e +>,则下列命题是真命题的为( )A .()p q ⌝∧B .p q ∧C .()p q ∨⌝D .()()p q ⌝∧⌝3.规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:101 111 011 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( ) A .8125 B .117125 C .81125 D .271254.已知抛物线C :22(0)x py p =>的焦点为F ,点P 为抛物线C 上的一点,点P 处的切线与直线y x =平行,且||3PF =,则抛物线C 的方程为( )A .24x y = B .28x y =C. 26x y = D .216x y =5.执行如图所示的程序框图,若输出的S 的值为2670,则判断框中的条件可以为( )A . 5?i <B .6?i < C. 7?i < D .8?i <6.已知正项等比数列{}n a 的前n 项和为n S ,且8425S S -=,则9101112a a a a +++的最小值为( )A .10B .15 C. 20 D .25 7.如图,已知矩形ABCD 中,483AB BC ==,现沿AC 折起,使得平面ABC ⊥平面ADC ,连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )A .5009π B .2503π C. 10003π D .5003π8.《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:①弩马第九日走了九十三里路; ②良马前五日共走了一千零九十五里路; ③良马和弩马相遇时,良马走了二十一日. 则以上说法错误的个数是( )个A . 0B .1 C. 2 D .39.已知函数2221()3,22,221()3,22xx x x x x ---⎧--<-⎪⎪⎪--≤≤⎨⎪⎪-->⎪⎩,若关于x 的方程()0f x a +=有2个实数根,则实数a 的取值范围为( )A .(0,3)B .(0,3] C. (0,3){4}D .(0,3]{4}10.如图,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的棱长不可能为( )A. B . 4 C.D.11.已知双曲线E :22221(0,0)x y a b a b-=>>上的四点,,,A B C D 满足AC AB AD =+,若直线AD的斜率与直线AB 的斜率之积为2,则双曲线C 的离心率为( )ABC.D.12.已知函数32()2f x x x x =-+,()y g x =的图像与|()|y f x =的图像关于x 轴对称,函数(),1()ln ,1g x x h x x x <⎧=⎨≥⎩,若关于x 的不等式()0h x kx -≤恒成立,则实数k 的取值范围为( ) A .21[,1]e B .2[,1]e C. 1[,1]eD .[1,]e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 622(21)x x+-的展开式中的常数项为 .(用数字填写正确答案)14.已知等腰直角三角形ABC 中,AB AC =,,D E 分别是,BC AB 上的点,且1AE BE ==,3CD BD =,则AD CE ∙= .15.已知实数,x y 满足2300230x y x y x y --≥⎧⎪+≥⎨⎪-+≥⎩,若22(4)(1)x y m ++-≥对任意的(,)x y 恒成立,则实数m 的取值范围为 .16.数列{}n a 满足:21(1)(21)1n n n na n a n a ++++=+-,11a =,26a =,令cos 2n n n c a π=∙,数列{}n c 的前n 项和为n S ,则4n S = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且A B C <<,2C A =.(1)若c =,求A 的大小;(2)若,,a b c 为三个连续正整数,求ABC ∆的面积.18. 已知多面体ABCDEF 中,四边形ABCD 为平行四边形,EF CE ⊥,且AC =1AE EC ==,2BCEF =,//AD EF . (1)求证:平面ACE ⊥平面ADEF ;(2)若AE AD ⊥,直线AE 与平面ACF 夹角的正弦值为3,求AD 的值.19. 已知具有相关关系的两个变量,x y 之间的几组数据如下表所示:(1)请根据上表数据在网格纸中绘制散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程^^^y b x a =+,并估计当20x =时,y 的值;(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线240x y --=右下方的点的个数为ξ,求ξ的分布列以及期望.参考公式:^1221()ni ii nii x y nx yb xn x ==-=-∑∑,^^^a yb x =-.20. 已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,且椭圆C过点(1,2-,记椭圆C 的左、右顶点分别为,A B ,点P 是椭圆C 上异于,A B 的点,直线21:l x a =与直线,AP BP 分别交于点,M N .(1)求椭圆C 的方程;(2)过点P 作椭圆C 的切线2l ,记2l MN Q =,且MQ QN λ=,求λ的值.21. 函数()ln()ln f x x m n x =+-.(1)当1m =,0n >时,求()f x 的单调减区间;(2)1n =时,函数()(2)()g x m x f x am =+-,若存在0m >,使得()0g x >恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线1C 的普通方程为22240x y x ++-=,曲线2C 的参数方程为2x t y t⎧=⎨=⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系. (1)求曲线1C 、2C 的极坐标方程;(2)求曲线1C 与2C 交点的极坐标,其中0ρ≥,02θπ≤<.23.选修4-5:不等式选讲已知函数()||||4f x x a x b =+-++. (1)若2a =-,0b =,在网格纸中作出函数()f x 的图像;(2)若关于x 的不等式()0f x ≥恒成立,求a b -的取值范围.2018级高三上学期8月调研考试数学(理)试题答案一、选择题 1-5:DABCC 6-10:CDBDB 11、12:AC 二、填空题 13.481 14.1215. (,29]-∞ 16. 2166n n + 三、解答题17.(1)∵c =,∴由正弦定理有sin C A =,又2C A =,即sin 2A A =,于是2sin cos A A A =,在ABC ∆中,sin 0A ≠,于是cos A =6A π=. (2)因为ABC <<,故a b c <<,故设a n =,1b n =+,2c n =+,*n N ∈;由2C A =,得sin sin 22sin cos C A A A ==,∴sin cos 2sin 2C cA A a==.6c = 由余弦定理得:22222b c a cbc a+-=,代入,,a b c 可得:222(1)(2)22(1)(2)2n n n n n n n +++-+=++,解得:4n =,∴4a =,5b =,故3cos 24c A a ==,故sin A =ABC ∆的面积为11sin 5622bc A =⨯⨯=18.(1)∵AC =1AE EC ==,∴222AC AE CE =+,∴AE EC ⊥;又EFCE ⊥,AEEF E =,∴CE ⊥平面ADEF ;因为CE ⊂平面ACE ,所以平面ACE ⊥平面ADEF . (2)因为平面ACE ⊥平面ADEF ,平面ACE平面ADEF AE =,AE AD ⊥,所以AD ⊥平面AEC ,AC ⊂平面AEC ,故ACAD ⊥;以A 为原点,,AC AD 所在直线分别为,x y 轴,过点A 且垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系, 设2AD a =,则(0,0,0)A,C,,22F a -,22E , 设平面ACF 的一个法向量(,,)m x y z =, 因为(2,0,0)AC =,2(,22AF a =-,∴00ay z =-=,取z =,1y a =,则1(0,m a=, 2(22AE =,设直线AE 与平面ACF 的夹角为θ,故||sin ||||1AE m AE m θ∙===,解得1a =(1a =-舍去),故2AD =. 19.(1)散点图如图所示:(2)依题意,1(246810)65x =++++=,1(3671012)7.65y =++++=,5214163664100220ii x==++++=∑,516244280120272i i i x y ==++++=∑,5^1522215272567.644 1.122056405()i ii ii x y x yb xx ==--⨯⨯====-⨯-∑∑,∴^7.6 1.161a =-⨯=; ∴回归直线方程为^1.11y x =+,故当20x =时,23y =.(3)可以判断,落在直线240x y --=右下方的点满足240x y -->, 故符合条件的点的坐标为(6,7),(8,10),(10,12),故ξ的可能取值为1,2,3;2123353(1)10C C P C ξ===,1223356(2)10C C P C ξ===,33351(3)10C P C ξ===,故ξ的分布列为故361189()23101010105E ξ=+⨯+⨯==. 20.(1)依题意,221314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得2a =,1b =,c =故椭圆C 的方程为2214x y +=. (2)依题意,(2,0)A -,(2,0)B ,直线1:4l x =,设000(,)(2)P x y x ≠±,则220014x y +=. 直线AP 的方程为00(2)2y y x x =++,令4x =,得点M 的纵坐标为0062M y y x =+; 直线BP 的方程为00(2)2y y x x =--,令4x =,得点N 的纵坐标为0022N y y x =-; 由题知,椭圆在点P 处切线斜率存在,可设切线方程为00()y y k x x -=-,由0022()44y k x x y x y =-+⎧⎨+=⎩,得2220000(14)8()4()40k x k y kx x y kx ++-+--=, 由0∆=,得2222000064()16(14)[()1]0k y kx k y kx --+--=, 整理得:22220000214y kx y k x k -+=+,将220014x y =-,22004(1)x y =-代入上式并整理得200(2)02x y k +=,解得004x k y =-,所以点P 处的切线方程为0000()4x y y x x y -=--. 令4x =得,点Q 的纵坐标为22000000000000(4)444(1)1444Q x x y x x x x y y y y y y --+--=-===, 设MQ QN λ=,所以()Q M N Q y y y y λ-=-,所以000000001621()22x y y x y x x y λ---=-+-, 所以220000000000(1)(2)62(1)(2)(2)(2)x x y y x x y x y x λ-+----=+-, 将220014x y =-代入上式,002(2)22x xλ-+=-+,因为022x -<<,所以1λ=.21.(1)()ln(1)ln f x x n x =+-,定义域为(0,)+∞,'1(1)()1(1)n n x n f x x x x x --=-=++, ①当1n =时,'1()0(1)f x x x -=<+,此时()f x 的单调减区间为(0,)+∞;②当01n <<时,01n x n <<-时,'()0f x <,此时()f x 的单调减区间为(0,)1n n-; ③当1n >时,1n x n >-时,'()0f x <,此时减区间为(,)1n n+∞-. (2)1n =时,()(2)[ln()ln ]g x m x x m x am =++--, ∵()0g x >,∴()0g x x >,即(1)ln (1)0m x m x m x a x x x++++-->, 设1m x t x +=>,∴(1)ln (1)0t t a t +-->,∴(1)ln 01a t t t -->+. 设(1)()ln 1a t h t t t -=-+,2'22(1)1()(1)t a t h t t t +-+=+,(1)0h =,①当2a ≤时,222(1)1210t a t t t +-+≥-+>,故'()0h t >,∴()h t 在(1,)+∞上单调递增,因此()0h t >;②当2a >时,令'()0h t =,得:11t a =-21t a =-由21t >和121t t =,得:11t <,故()h t 在2(1,)t 上单调递减,此时()(1)0h t h <=.综上所述,2a ≤. 22.(1)依题意,将cos sin x y ρθρθ=⎧⎨=⎩代入22240x y x ++-=中可得:22cos 40ρρθ+-=;因为2x t y t⎧=⎨=⎩,故2y x =,将cos sin x y ρθρθ=⎧⎨=⎩代入上式化简得:2sin cos ρθθ=; 故曲线1C 的极坐标方程为22cos 40ρρθ+-=,曲线2C 的极坐标方程为2sincos ρθθ=. (2)将2y x =代入22240x y x ++-=得2340x x +-=,解得:1x =,4x =-(舍去), 当1x =时,1y =±,所以1C 与2C 交点的平面直角坐标为(1,1)A ,(1,1)B -,∵A ρ=B ρ=tan 1A θ=,tan 1B θ=-,0ρ≥,02θπ≤<, ∴4A πθ=,74B πθ=,故曲线1C 与2C交点的极坐标)4A π,7)4B π. 23.(1)依题意,6,0()|2|||462,022,2x f x x x x x x <⎧⎪=--+=-≤≤⎨⎪>⎩,所求函数图像如图所示:(2)依题意,||||4x a x b +-+≥-(*)而由||||||||||x a x b x a x b a b +-+≤+--=-||||||||a b x a x b a b ⇒--≤+-+≤-,故要(*)恒成立,只需||4a b --≥-,即||4a b -≤,可得a b -的取值范围是[4,4]-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高三上学期8月调研考试
数学(理)试题
第Ⅰ卷
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数2017(23)45i i z i
-=+(i 为虚数单位),则在复平面内,复数z 所对应的点位于( ) A .第一象限 B . 第二象限 C . 第三象限 D .第四象限
2.已知命题:p 直线1:230l x y -+=与2:230l x y ++=相交但不垂直;命题:q 0(0,)x ∃∈+∞,002x x e +>,则下列命题是真命题的为( )
A .()p q ⌝∧
B .p q ∧
C .()p q ∨⌝
D .()()p q ⌝∧⌝
3.规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:
101 111 011 101 010 100 100 011 111 110
000 011 010 001 111 011 100 000 101 101
据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )
A .8
125 B .117125 C .81125 D .27125
4.已知抛物线C :22(0)x py p =>的焦点为F ,点P 为抛物线C 上的
一点,点P 处的切线与直线y x =平行,且||3PF =,则抛物线C 的方
程为( )
A .24x y =
B .28x y =
C. 26x y = D .216x y =
5.执行如图所示的程序框图,若输出的S 的值为2670,则判断框中的条
件可以为( )
A . 5?i <
B .6?i < C. 7?i < D .8?i <
6.已知正项等比数列{}n a 的前n 项和为n S ,且8425S S -=,则9101112a a a a +++的最小值为( )
A .10
B .15 C. 20 D .25
7.如图,已知矩形ABCD 中,483AB BC =
=,现沿AC 折起,使得平面ABC ⊥平面ADC ,
连接BD ,得到三棱锥B ACD -,则其外接球的体积为( )
A .5009π
B .2503π C. 10003π D .5003
π 8.《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:
①弩马第九日走了九十三里路; ②良马前五日共走了一千零九十五里路; ③良马和弩马相遇时,良马走了二十一日.
则以上说法错误的个数是( )个
A . 0
B .1 C. 2 D .3
9.已知函数2221()
3,22,22
1()3,22
x x x x x x ---⎧--<-⎪⎪⎪--≤≤⎨⎪⎪-->⎪⎩,若关于x 的方程()0f x a +=有2个实数根,则实数a 的取值范围为( )
A .(0,3)
B .(0,3] C. (0,3){4}
D .(0,3]{4} 10.如图,格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视
图,则该四棱锥的棱长不可能为( )
A
..
4 C.
.11.已知双曲线E :22
221(0,0)x y a b a b
-=>>上的四点,,,A B C D 满足AC AB AD =+,若直线AD 的斜率与直线AB 的斜率之积为2,则双曲线C 的离心率为( )
A
.12.已知函数32()2f x x x x =-+,()y g x =的图像与|()|y f x =的图像关于x 轴对称,函数
(),1()ln ,1g x x h x x x <⎧=⎨≥⎩
,若关于x 的不等式()0h x kx -≤恒成立,则实数k 的取值范围为( ) A .21[,1]e B .2[,1]e C. 1[,1]e
D .[1,]e 第Ⅱ卷(共90分)。

相关文档
最新文档