第五章 拉伸与压缩(三)

合集下载

第五章拉伸剪切与挤压的强度计算

第五章拉伸剪切与挤压的强度计算

内力在截面上的集度称为 应力(垂直于杆 横截面的应力称为正应力,平行于横截面的 称为 切应力 ) 。应力是判断杆件是否破坏的 依据。
单位是帕斯卡,简称帕,记作 Pa ,即 l 平方米 的面积上作用1牛顿的力为1帕,1N/m2=1Pa。
1kPa=103Pa,1MPa=106Pa 1GPa=109Pa
二、拉(压)杆横截面上的正应力
平面假设
变形前的横截面,变形后仍为平面,仅其位置略作平移,这一假 设称为平面假设。
根据杆件变形的平面假设和材料均匀连续性假设可推 断:轴力在横截面上的分布是均匀的,且方向垂直于横截面。 所以,横截面的正应力σ计算公式为: m n F F F
σ=
N
A
MPa
m
n
FN 表示横截面轴力(N) F A 表示横截面面积(mm2)
40KN
B C
30KN
FN1= 10KN
L
10KN
L
σ1 =
FN1 / A1 = 50 MPa FN2= -30KN σ2 = FN2 / A2 = 100 MPa 轴力图如图:
FN1 FN2
10KN
30KN
FN
x
30KN
由于AB、BC两段面积不同,变形量应分别计算。
由虎克定律

FN L L EA
L1 —试件拉断后的标距 A1 —试件断口处的最小横截面面积
L1 L0 伸长率: 100 % L0 A0 A1 断面收缩率 : 100% A0
L0 —是原标距 A0 —原横截面面积。
、 值越大,其塑性越好。一般把 ≥5%的材 料称为塑性材料,如钢材、铜、铝等;把 <5%的 材料称为脆性材料,如铸铁、混凝土、石料等。

工程力学习题册第五章 - 答案

工程力学习题册第五章 - 答案

第五章拉伸和压缩一、填空题1.轴向拉伸或压缩的受力特点是作用于杆件两端的外力__大小相等___和__方向相反___,作用线与__杆件轴线重合_。

其变形特点是杆件沿_轴线方向伸长或缩短__。

其构件特点是_等截面直杆_。

2.图5-1所示各杆件中受拉伸的杆件有_AB、BC、AD、DC_,受压缩的杆件有_BE、BD__。

图5-13.内力是外力作用引起的,不同的__外力__引起不同的内力,轴向拉、压变形时的内力称为_轴力__。

剪切变形时的内力称为__剪力__,扭转变形时的内力称为__扭矩__,弯曲变形时的内力称为__剪力与弯矩__。

4.构件在外力作用下,_单位面积上_的内力称为应力。

轴向拉、压时,由于应力与横截面__垂直_,故称为__正应力__;计算公式σ=F N/A_;单位是__N/㎡__或___Pa__。

1MPa=__106_N/m2=_1__N/mm2。

5.杆件受拉、压时的应力,在截面上是__均匀__分布的。

6.正应力的正负号规定与__轴力__相同,__拉伸_时的应力为__拉应力__,符号为正。

__压缩_时的应力为__压应力_,符号位负。

7.为了消除杆件长度的影响,通常以_绝对变形_除以原长得到单位长度上的变形量,称为__相对变形_,又称为线应变,用符号ε表示,其表达式是ε=ΔL/L。

8.实验证明:在杆件轴力不超过某一限度时,杆的绝对变形与_轴力__和__杆长__成正比,而与__横截面面积__成反比。

9.胡克定律的两种数学表达式为σ=Eε和ΔL=F N Lo/EA。

E称为材料的_弹性模量__。

它是衡量材料抵抗_弹性变形_能力的一个指标。

10.实验时通常用__低碳钢__代表塑性材料,用__灰铸铁__代表脆性材料。

11.应力变化不大,应变显著增大,从而产生明显的___塑性变形___的现象,称为__屈服___。

12.衡量材料强度的两个重要指标是__屈服极限___和__抗拉强度__。

13.采用___退火___的热处理方法可以消除冷作硬化现象。

第五章 拉伸与压缩

第五章 拉伸与压缩
铸铁的抗压强度极限比其 抗拉强度极限高4~ 5倍
铸铁广泛用于机床床身, 机座等受压零部件
§5-7 拉伸和压缩的强度计算
I. 安全因数和许用应力
对拉伸和压缩的杆件,塑性材料以屈服为破坏标志, 脆性材料以断裂为破坏标志。
应选择不同的强度指标作为材料所能承受的极限应力 0
极限应力 0

S

0.2
轴线:杆的各横截面形心的连线 直杆:轴线为直线的杆
曲杆:轴线为曲线的杆 杆的横截面 :垂直于 杆轴线的截面
等直杆:横截面的形状和大 小不变的直杆
杆件变形的基本形式
1.轴向拉伸及轴向压缩
2.剪切
3.扭转
4.弯曲
当杆件的变形较为复杂时, 可看成是由上述几种基本变形组合 而成, 称为组合变形。
静载荷:很缓慢地加到构件上的载荷,而且加上 去之后就不再改变,或者改变得很缓慢。
第二篇
材料力学
第五章 拉伸与压缩
主要内容: 轴向拉伸与压缩的概念与实例
轴向拉伸或压缩时横截面上的内力 轴向拉伸或压缩时横截面上的应力 应力集中的概念 轴向拉伸或压缩时的变形
材料在拉伸或压缩时的力学性质
拉伸和压缩的强度计算 简单拉(压)超静定问题
第五章 拉伸与压缩
材料力学的任务:
❖ 保证工程构件在使用中不破坏,满足构件的强度条件. ❖ 满足工程构件的变形要求,满足构件的刚度条件. ❖ 使工程构件(受压杆)处于稳定平衡状态,满足构件的 稳定条件. ❖主要研究构件的强度及其材料的弹性变形问题,而且只研 究小变形的情况。
FN EA E
E
胡克定律可简述为:若应力未超过材料的比例极限时,
线应变与正应力成正比。
E:拉伸或压缩时材料的弹性模量

《工程力学》第五章拉伸和压缩试卷

《工程力学》第五章拉伸和压缩试卷

《工程力学》第五章拉伸和压缩试卷一、单项选择题1.由于常发生在应力集中处,须尽力减缓应力集中对构件的影响。

(2 分)A.变形B.失稳C.噪声D.破坏2.按照强度条件,构件危险截面上的工作应力不应超过材料的。

(2 分)A.许用应力B.极限应力C.破坏应力3.下图中,真正符合拉杆受力特点的是。

(2 分)A.aB.bC.cD.a、b、c4."截面法"是材料力学中常用的的方法。

(2 分)A.假想切断杆件并研究截面上内力B.实际切断杆件并研究截面上内力C.实际切断杆件后,画出外力代表内力5.拉(压)杆的危险截面必为全杆中的横截面。

(2 分)A.正应力最大B.面积最大C.轴力最大6.如图所示AB杆两端受大小为F的力的作用,则杆内截面上的内力大小为。

(2 分)A.FB.F/2C.07.安全系数n取值大于1,在建立材料的许用应力时可。

(2 分)A.将极限应力折减B.将极限应力增大C.方便计算8.低碳钢等塑性材料的极限应力是材料的。

(2 分)A.许用应力B.屈服极限C.抗拉强度R mD.比例极限9.铸铁,适宜制造承压零件。

(多选)(2 分)A.抗压性能优良B.价格低廉、易浇铸成形C.材料坚硬耐磨10.采用过渡圆角等避免截面尺寸突变的措施,可应力集中现象。

(2 分)A.消除B.降低C.增大二、判断题11.( )两根材料不同、长度和横截面积相同的杆件,受相同轴向力作用,则两杆的相对变形相同。

(2 分)12.( )两根材料不同、长度和横截面积相同的杆件,受相同轴向力作用,则材料的许用应力相同。

(2 分)13.( )下图的σ- ε曲线上,对应a点的应力称为比例极限。

(2 分)14.( )受力构件的内力是指构件材料内部颗粒间的相互作用力。

(2 分)15.( )两根材料不同、长度和横截面积相同的杆件,受相同轴向力作用,则两杆的绝对变形相同。

(2 分)16.( )塑性材料许用应力[σ]为材料断裂时的应力除以安全系数。

材料科学第5章轴向拉压

材料科学第5章轴向拉压

§5–1 轴向拉压的概念及实例§5–2 轴向拉压横截面上的内力§5–3 轴向拉压横截面上的应力§5–4 材料在轴向拉压时的力学性能§5–5 轴向拉压时的强度计算§5–6轴向拉压时的变形分析第五章轴向拉伸和压缩§5–1 轴向拉压的概念及实例工程实例程实例程实例由二力杆组成的桥梁桁架工程实例工程实例由二力杆组成的桁架结构内燃机的连杆工程实例程实例受力特点:外力的合力作用线与杆件的轴线重合。

受力特点:外力的合力作用线与杆件的轴线重合。

变形特点拉伸变形轴线方向伸长,横向尺寸缩短。

变形特点压缩变形轴线方向缩短,横向尺寸增大;F F拉伸F F压缩拉压变形简图以拉压变形为主的杆件——杆偏心压缩讨论12、“等直杆的两端作用一对等值、反向、共线的集中力时,杆将产生轴向拉伸或压缩变形。

”PP3、情况下,构件会发生轴向拉压?F N -F=0F N =F轴力;FF F N FF N N F 的作用线与轴线重合单位:牛顿(N )F §5–2 轴向拉压时横截面上的内力一、内力轴力概念无论取左段还是右段,两段轴力大小相等,方向相反同一位置左、右侧截面内力分量必须具有相同的正负号。

轴力正负号规定轴力以拉为正,以压为负。

二、轴力图形象表示轴力随截面的变化情况,发现危险面;FF2F2F112233F N1=FFF N1F2FFF N 2F N2FFF N 3F N3例题作杆件的内力图,确定危险截面轴力图xNF FF2F2FFFF例题:已知F1=10kN;F2=20kN;F3=35kN;F4=25kN;试画出图示杆件的轴力图。

CF1F3F2F 4A B DkN 1011 F F N F N1F 1F 1F 3F 2F 4AB C DkN10F 2N 2233F N3F 4F N2F 1F 2F F F 122N kN2543 F F N 2、绘制轴力图。

拉伸和压缩

拉伸和压缩

解 (1)计算AB杆和BC杆的轴力
d
A
B
30
取结点B为研究对象,其受力如图所示。由 平衡方程
Fx 0, FNBC cos 30 FNAB 0
Fy 0, FNBC sin 30 F 0
C aa FNAB
F
B AB
FNAB
3F,FNBC
2F
(2)校核AB杆和BC杆的强度
FNAB AAB
3F d2 /4
3
二、内力与应力
1、内力
杆件在外力作用下产生变形,其内部相互间的 作用力称为内力。这种内力将随外力增加而增 大。当内力增大到一定限度时,杆件就会发生 破坏。内力是与构件的强度密切相关的,拉压
杆上的内力又称为轴力。
F
FN
2、求内力的方法—截面法
将受外力作用的杆件假想地 切开,用以显示内力的大 小,并以平衡条件确定其 合力的方法,称为截面法。 它是分析杆件内力的唯一 方法。具体求法如下:
例 图示支架中,杆①的许用应力[]1=100MPa,杆②的许用 应力[]2=160MPa,两杆的面积均为A=200mm2,求结构的许
可载荷[F]。
解 (1)计算AC杆和BC杆的轴力
B 取C铰为研究对象,受力如图所示。列平衡
方程
A ① 45 30 ②
§2-2 拉伸和压缩
一、拉伸与压缩时的应用与特点
实验:
F
ac
a
c
F
b
d
bd
1.变形现象
横向线ab和cd仍为直线,且仍然垂直于轴线;
结论:各纤维的伸长相同,所以它们所受的力 也相同。 2.平面假设
变形前原为平面的横截面,在变形后仍保
持为平面,且仍垂直于轴线。

05材料力学-轴向拉伸与压缩

05材料力学-轴向拉伸与压缩

§5.2 拉、压杆的强度计算
保证构件不发生强度破坏并有一定安全余量的条件准则。
N ( x) max max( ) A( x)
依强度准则可进行三种强度计算: ① 校核强度:

其中:[]—许用应力, max—危险点的最大工作应力。

max


P
② 设计截面尺寸: Amin N max
1


构件是各种工程结构组成单元的统称。机械中的轴、杆
件,建筑物中的梁、柱等均称为构件。当工程结构传递运动或
承受载荷时,各个构件都要受到力的作用。为了保证机械或建 筑物的正常工作,构件应满足以下要求: 强度要求 所谓强度,是指构件抵抗破坏的能力。 刚度要求 所谓刚度,是指构件抵抗变形的能力。
稳定性要求 所谓稳定性,是指构件保持其原有平衡形态的
22
均匀材料、均匀变形,内力当然均匀分布。 2. 拉伸应力:
P

N(x)
N ( x) A
轴力引起的正应力 —— : 在横截面上均布。
3. 危险截面及最大工作应力: 危险截面:内力最大的面,截面尺寸最小的面。 危险点:应力最大的点。
N ( x) max max( ) A( x)
23
能力。 构件的强度、刚度和稳定性问题与其所选用材料的力学性
质有关,而材料的力学性质必须通过实验来测定。
2
杆件在不同的外力作用下将产生不同形式的变形,主要有: 1.轴向拉伸和压缩 :其受力特点是:作用在杆件的力,大 小相等、方向相反,作用线与杆件的轴线重合,因此在这种外 力作用下,变形特点是:杆件的长度发生伸长或缩短。起吊重 物的钢索、桁架的杆件、液压油缸的活塞杆等的变形,都属于

拉伸和压缩实验.

拉伸和压缩实验.

拉伸和压缩实验拉伸和压缩试验是建筑材料力学性能试验中最基本和最普通的实验,它对于评定材料的基本力学性能关系最密切。

对于大多数建筑材料是使用其拉伸强度还是压缩强度,基本上取决于材料的工作条件,而工作条件又取决于材料本身的结构性能,即:根据材料的性能,决定材料的工作条件——受拉或受压等。

或根据受力特点——受拉或受压,选择结构材料。

例如:金属材料具有较高的抗拉强度,同时也具有较高的抗压强度,而用做受拉力作用的材料则更为有效,而用作受压杆(若为细长杆)容易失稳,为此,需增加杆件的截面积,而材料的强度值未能充分得以利用。

因此,按材料的性能进行设计时,钢结构中的杆件应尽可能设计为受拉杆件。

又如:大多数无机非金属材料如:混凝土、砖、砂浆等,都具有较大的脆性,其抗拉强度与抗压强度相比很低,因此常用于抵抗压力的作用,因此其抗压试验的作用和意义与拉伸试验相比就显得很重要。

而这类材料用于承受拉力荷载显然是不适合的,当然象砖砌件这类结构其破坏又是由于砖的折(拉)断而开始的。

总之,材料受拉力和压力的作用,是材料受力的两个最基本形式,此外材料还可能受到弯、剪、扭等力的作用,材料抗拉强度与抗压强度之间有一定关系(材料不一样关系不一样),抗压强度与抗弯、抗剪和抗扭之间也有一定的关系,这些关系难有准确的表达式,而拉、压强度是材料使用得最为广泛的两个强度值。

(建筑结构中,柱墙主要承受压力,梁、板主要承受弯曲应力,屋架中的拉杆承受拉力)第一节拉伸实验一、对试件的要求(对试件总的要求是,对试验结果影响大的应消除)1、试件形式,有园柱形,如钢,平板形,如钢板等,8字形,如砂浆等,受拉截面一般为园形、正方形或长方形。

为了使断裂面发生在试件中长度的中部试件总是制成在长度中间的横截面小于两端的横截面,在这个断面上的应力不受夹具装置的影响。

2、试件的端部形状,应适合于试验材料本身的性能和试验机夹具装置。

可做成平滑的、阶梯形、螺纹形或锥形等。

端部的直径或宽度与中间偏袄截面直径或宽度之比与材料性能有关,如钢材为1.5:1,材料1.7—3.75:1,对脆性材料端部的制作特别重要,由于受夹具作用应力的影响,避免在端部破坏,应做得大一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以 5 0 0 为界

5、无明显屈服现象的塑性材料
名义屈服应力:(0.2%残余应变)

0.2
0.2 ,即此类材料的失效应力。
0
0.2

bL
6、铸铁拉伸时的机械性能
bL ---铸铁拉伸强度极限(失效应力)
0

二、压缩时材料的力学性能
d
h
by---铸铁压缩强度极限; by(4~6)bL
(一) 低碳钢拉伸的弹性阶段 (oe段) 1、op -- 比例段:
p -- 比例极限
2、pe --曲线段:
e -- 弹性极限
由于比例极限与弹性极限 通常很接近,因此工程上 常不作区分。
(二) 低碳钢拉伸的屈服(流动)阶段 (es 段)
e s --屈服段: s ---屈服极限
塑性材料的失效应力:s 。
h 2
§5-7 材料在拉伸与压缩时的力学性能
力学性能:材料在外力作用下表现的有关强度、变形方面的特性。
一、拉伸时材料的力学性能
1、试验条件:常温(20℃);静载(极其缓慢地加载);标准 试件(P129,GB/T6397-1986)。
2、试验仪Leabharlann :万能材料试验机;变形仪(常用引伸仪)。
3、低碳钢试件的应力--应变曲线( -- 图)
本章作业
Page 128

题:5-1(b、d),5-3,5-4,5-7,5-14,5-15。
齿轮与轴由平键(b×h×L=20×12×100)连接,它传递的扭矩
m=2KNm,轴的直径d=70mm,键的许用剪应力为[ ] = 60MPa ,
许用挤压应力为[jy]= 100M Pa,试校核键的强度。 m
滑移线:
(三)、低碳钢拉伸的强化(硬化)阶段 (sb 段)
1、b---强度极限
2、卸载定律:
3、冷作硬化: 加载时变形变 小,弹性极限提高
(四)、低碳钢拉伸的颈缩(断裂)阶段 (b f 段)
1、延伸率:
2、面缩率:
3、脆性、塑性材料
L1 L0 100 0 0 L0
A0 A1 100 0 0 A0
相关文档
最新文档