人教版七年级数学上册 代数式专题练习(word版

合集下载

代数式专题练习(word版

 代数式专题练习(word版

一、初一数学代数式解答题压轴题精选(难)1.(1)一个两位正整数,a表示十位上的数字,b表示个位上的数字(a≠b,ab≠0),则这个两位数用多项式表示为(含a、b的式子);若把十位、个位上的数字互换位置得到一个新两位数,则这两个两位数的和一定能被整除,这两个两位数的差一定能被整除.(2)一个三位正整数F,各个数位上的数字互不相同且都不为0.若从它的百位、十位、个位上的数字中任意选择两个数字组成6个不同的两位数.若这6个两位数的和等于这个三位数本身,则称这样的三位数F为“友好数”,例如:132是“友好数”.一个三位正整数P,各个数位上的数字互不相同且都不为0,若它的十位数字等于百位数字与个位数字的和,则称这样的三位数P为“和平数”;①直接判断123是不是“友好数”?②直接写出共有个“和平数”;③通过列方程的方法求出既是“和平数”又是“友好数”的数.【答案】(1)解:这个两位数用多项式表示为10a+b,(10a+b)+(10b+a)=10a+b+10b+a=11a+11b=11(a+b),∵11(a+b)÷11=a+b(整数),∴这个两位数的和一定能被数11整除;(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b),∵9(a﹣b)÷9=a﹣b(整数),∴这两个两位数的差一定能被数9整除,故答案为:11,9(2)解:①123不是“友好数”.理由如下:∵12+21+13+31+23+32=132≠123,∴123不是“友好数”;②十位数字是9的“和平数”有198,297,396,495,594,693,792,891,一个8个;十位数字是8的“和平数”有187,286,385,584,682,781,一个6个;十位数字是7的“和平数”有176,275,374,473,572,671,一个6个;十位数字是6的“和平数”有165,264,462,561,一个4个;十位数字是5的“和平数”有154,253,352,451,一个4个;十位数字是4的“和平数”有143,341,一个2个;十位数字是3的“和平数”有132,231,一个2个;所以,“和平数”一共有8+(6+4+2)×2=32个.故答案为32;③设三位数既是“和平数”又是“友好数”,∵三位数是“和平数”,∴y=x+z.∵是“友好数”,∴10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,∴22x+22y+22z=100x+10y+z,∴12y=78x﹣21z.把y=x+z代入,得12x+12z=78x﹣21z,∴33z=66x,∴z=2x,由②可知,既是“和平数”又是“友好数”的数是396,264,132.【解析】【分析】(1)分别求出两数的和与两数的差即可求解;(2)①根据“友好数”的定义即可判断求解;②根据“和平数”的定义列举出所有的“和平数”即可求解;③设三位数既是“和平数”又是“友好数”,根据“和平数”的定义,得出y=x+z.再由“友好数”的定义,得出10x+y+10y+x+10x+z+10z+x+10y+z+10z+y=100x+10y+z,化简即为12y=78x−21z.把y=x+z代入,整理得出z=2x,然后从②的数字中挑选出符合要求的数即可.2.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。

最新七年级上册代数式易错题(Word版 含答案)

最新七年级上册代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.2.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?【答案】(1)解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2(2)解:2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)解:①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.【解析】【分析】(1)根据相反数及倒数的性质即可得出a+b=0,cd=1,再根据绝对值的意义,由|x|=1,得x=±1,然后分别将a+b=0,cd=1,x=1与x=-1代入代数式,即可算出答案;(2)首先列出加法算式,算出10箱苹果,超过的千克数或不足的千克数,然后用10乘以标准质量再加上超过或不足的千克数即可算出答案;(3)用6元的基准价加上超过基准价的最大值即可得出这10枝钢笔的最高的售价,用6元的基准价加上超过基准价的最小值即可得出这10枝钢笔的最低的售价,用这十支钢笔的总售价减去进价和为正数则小亮赚钱,和为负数则小亮亏钱。

人教版七年级上册数学3.1.1代数式练习题

人教版七年级上册数学3.1.1代数式练习题

2019年12月01日初中数学组卷参考答案与试题解析一.选择题(共37小题)1.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定【分析】由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.【解答】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.【点评】本题考查了代数式的换算,比较简单,容易掌握.2.下列各式符合代数式书写规范的是()A.B.a×3 C.2m﹣1个D.1m【分析】根据代数式的书写要求判断各项.【解答】解:A、符合代数式的书写,故A选项正确;B、a×3中乘号应省略,数字放前面,故B选项错误;C、2m﹣1个中后面有单位的应加括号,故C选项错误;D、1m中的带分数应写成假分数,故D选项错误.故选:A.【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.下列式子a+b,S=ab,5,m,8+y,m+3=2,中,代数式有()A.6个 B.5个 C.4个 D.3个【分析】利用代数式的定义分别分析进而得出答案.【解答】解:a+b,S=ab,5,m,8+y,m+3=2,中,代数式有:a+b,5,m,8+y,共有4个.故选:C.【点评】此题主要考查了代数式的定义,正确把握定义是解题关键.4.下列式子中,符合代数式的书写格式的是()A.(a﹣b)×7 B.3a÷5b C.1ab D.【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是7(a﹣b),选项B正确的书写格式是,选项C正确的书写格式是ab,选项D的书写格式是正确的.故选D.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.5.下面用数学语言叙述代数式﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的相反数的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【分析】根据代数式的读法对各选项分析判断后利用排除法求解.【解答】解:A、﹣b表示比a的倒数小b的数正确,故本选项错误;B、1除以a的商与b的相反数的差表示为﹣(﹣b)=+b,故本选项正确;C、1除以a的商与b的相反数的和表示为﹣b,故本选项错误;D、b与a的倒数的差的相反数表示为﹣(b﹣)=﹣b,故本选项错误.故选B.【点评】本题考查了代数式,主要是代数式的读法和意义,此类问题应结合实际,根据代数式的特点解答.6.代数式x2+1,,|y|,(m﹣1)2,中一定是正数的有()A.1个 B.2个 C.3个 D.4个【分析】绝对值,平方数,算术平方根都是非负数,但未必都是正数,据此可判断得出选项.【解答】解:∵x2≥0,∴x2+1>0,∴x2+1一定是正数;而当x=0时,=0,=0,都不是正数,当y=0时,|y|=0不是正数,当m=1时,(m﹣1)2=0,不是正数,所以一定是正数的只有一个,答案为A.【点评】此题主要考查绝对值、算术平方根和平方数等的非负性,解题的关键是对0的特殊性的理解和运用,容易出错.7.下列书写符合要求的是()A.2y2B.ay•3C.﹣D.a×b【分析】直接利用代数式的书写要求分别判断得出答案.【解答】解:A.2y2,应该写为:y2,故此选项错误;B.ay•3,应该写为:3ay,故此选项错误;C.﹣,此选项正确;D.a×b,应该写为:ab,故此选项错误.故选:C.【点评】此题主要考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.8.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.【点评】本题考查了代数式,理解题意列出函数关系式是解题关键.9.下列符合代数式的书写格式的是()A.﹣aab B.2ab2C.a÷b D.(1+20%)a【分析】利用代数式书写格式判定即可.【解答】解:A、该代数式应该是﹣a2b,故本选项错误;B、该代数式应该是ab2,故本选项错误;C、该代数式应该是,故本选项错误;D、该代数式的书写符合要求,故本选项正确;故选:D.【点评】本题主要考查了代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.10.下列式子中,不属于代数式的是()A.a+3 B.2mn C.D.x>y【分析】代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式,分别进行各选项的判断即可.【解答】解:A、是代数式,故本选项错误;B、是代数式,故本选项错误;C、是代数式,故本选项错误;D、不是代数式,是不等式,故本选项正确;故选D.【点评】本题考查了代数式的知识,注意将代数式与等式及不等式区分开来.11.一个运算程序输入x后,得到的结果是2x2﹣1,则这个运算程序是()A.先乘2,然后平方,再减去1 B.先平方,然后减去1,再乘2C.先平方,然后乘2,再减去1 D.先减去1,然后平方,再乘2【分析】直接利用各选项得出关系进而判断得出答案.【解答】解:A、先乘2,然后平方,再减去1,得到(2x)2﹣1=4x2﹣1,故此选项错误;B、先平方,然后减去1,再乘2得到2(x2﹣1)=2x2﹣2,故此选项错误;C、一个运算程序输入x后,先平方,然后乘2,再减去1,得到的结果是2x2﹣1,故此选项正确;D、先减去1,然后平方,再乘2,得到2(x﹣1)2,故此选项错误;故选C.【点评】本题考查了代数式,正确列出代数式是解题关键.12.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元【分析】首先根据x﹣10得到原价减去10元,再根据“折”的含义,可得(x﹣10)变成(x﹣10),是把原价减去10元后再打6折,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣10)元出售,是把原价减去10元后再打6折.故选:A.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.13.一个运算程序输入x后,得到的结果是4x3﹣2,则这个运算程序是()A.先乘4,然后立方,再减去2 B.先立方,然后减去2,再乘4C.先立方,然后乘4,再减去2 D.先减去2,然后立方,再乘4【分析】直接利用各选项得出关系进而判断得出答案.【解答】解:A、先乘4,然后立方,再减去2,得到(4x)3﹣2=64x3﹣2,故此选项错误;B、先立方,然后减去2,再乘4得到4(x3﹣2)=4x3﹣8,故此选项错误;C、一个运算程序输入x后,先立方,然后乘4,再减去2,得到的结果是4x3﹣2,故此选项正确;D、先减去2,然后立方,再乘4,得到4(x﹣2)3,故此选项错误;故选:C.【点评】此题主要考查了代数式,正确列出代数式是解题关键.14.2015年双十一期间,某网店对一品牌服装进行优惠促销,将原价a元的服装以(a﹣20)元售出,则以下四种说法中可以准确表达该商店促销方法的是()A.将原价降低20元之后,再打8折B.将原价打8折之后,再降低20元C.将原价降低20元之后,再打2折D.将原价打2折之后,再降低20元【分析】由代数式的运算顺序可得到问题的答案.【解答】解:代数式a﹣20的意义是比a的80%少20元.故选:B.【点评】本题主要考查的是代数式的意义,明确代数式的意义是解题的关键.15.代数式的意义是()A.a除以b加1 B.b加1除aC.b与1的和除以a D.a除以b与1的和所得的商【分析】根据代数式的意义,注意表示a除以b与1的和所得的商.【解答】解:代数式表示a除以b与1的和所得的商.故应选D.【点评】注意掌握代数式的意义,注意把运算过程表述清楚.16.设某数为m,那么代数式表示()A.某数的3倍的平方减去5除以2B.某数的3倍减5的一半C.某数与5的差的3倍除以2D.某数平方的3倍与5的差的一半【分析】根据代数式的性质得出代数式的意义.【解答】解:∵设某数为m,代数式表示:某数平方的3倍与5的差的一半.故选:D.【点评】此题主要考查了代数式的意义,根据已知得出代数式的意义是考查重点.17.下列各式符合代数式书写规范的是()A.a8 B.m﹣1元 C.D.1x【分析】本题根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【解答】解:A、数字应写在前面正确书写形式为8a,故本选项错误;B、正确书写形式为(m﹣1)元,故本选项错误;C、书写形式正确,故本选项正确;D、正确书写形式为,故本选项错误,故选:C.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式,注意代数式的书写格式.18.下面判断语句中正确的是()A.2+5不是代数式B.(a+b)2的意义是a的平方与b的平方的和C.a与b的平方差是(a﹣b)2D.a,b两数的倒数和为【分析】根据代数式的定义以及代数式的含义判断各项.注意单独的一个数或一个字母也是代数式.【解答】解:A、2+5是代数式;B、(a+b)2的意义是a与b的和的平方;C、a与b的平方差是a2﹣b2;D、a,b两数的倒数和为,正确.故选D.【点评】注意代数式的定义与代数式的含义,会用数学语言叙述代数式的含义.19.代数式的意义为()A.x与y的一半的差B.x与y的差的一半C.x减去y除以2的差 D.x与y的的差【分析】根据代数式的意义可知:x﹣y表示x与y的差,表示x与y的差的一半,据此解答.【解答】解:代数式的意义为x与y的差的一半.故选:B.【点评】本题考查了代数式的知识,解题的关键是将分式的分子与分母用语言叙述出来.20.代数式a﹣b2的意义表述正确的是()A.a减去b的平方的差 B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:a﹣b2的意义为a减去b的平方的差.故选:A.【点评】此题主要考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.21.下列各式:3a,1a,,a×3,3x﹣1,2a÷b,其中符合书写要求的有()A.1个 B.2个 C.3个 D.4个【分析】根据代数式的书写要求判断各项.【解答】解:3a,,3x﹣1正确;1a应书写为a;a×3应书写为3a;2a÷b 应书写为;所以符合书写要求的共3个,故选C.【点评】本题主要考查了代数式的书写,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.22.下面用数学语言叙述代数式﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差【分析】利用数学语言表述代数式即可.【解答】解:用数学语言叙述代数式﹣b为a的倒数与b的差,故选C.【点评】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.23.某商场举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是()A.原价打8折后再减10元 B.原价减10元后再打8折C.原价减10元后再打2折 D.原价打2折后再减10元【分析】根据代数式的意义,可得价格的变化.【解答】解:促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确反映该商场的促销方法的是原价打8折后再减10元,故选:A.【点评】本题考查了代数式,理解题意并结合价格的变化是解题关键.24.下列代数式的书写正确的是()A.a÷b B.3×x C.﹣1ab D.xy【分析】根据代数式的书写要求判断各项.【解答】解:A、a÷b正确的书写格式是,故选项错误;B、3×x正确的书写格式是3x,故选项错误;C、﹣1ab正确的书写格式是﹣ab,故选项错误;D、书写正确.故选:D.【点评】考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.25.下列式子中代数式的个数有()﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3,﹣6.A.2 B.3 C.4 D.5【分析】根据代数式的定义,可得答案.【解答】解:﹣2x﹣5,﹣y,4a4+2a2b3,﹣6是代数式,故选:C.【点评】本题考查了代数式,数与字母经过加减、乘除、乘方、开方运算是代数式.26.下列代数式中符合书写要求的是()A.ab2×4 B.C.D.6xy2÷3【分析】本题较为简单,对各选项进行分析,看是否符合代数式正确的书写要求,即可求出答案.【解答】解:A:ab2×4,正确的写法应为:4ab2,故本项错误.B:xy为正确的写法,故本项正确.C:2a2b,正确写法应为a2b,故本项错误.D:6xy2÷3,应化为最简形式,为2xy2,故本项错误.故选:B.【点评】本题考查代数式的书写规则,根据书写规则对各项进行判定即可.27.下列说法正确的是()A.2a是代数式,1不是代数式B.代数式表示3﹣b除aC.当x=4时,代数式的值为0D.零是最小的整数【分析】根据代数式的定义、表示的意义、求值等知识点判断各项.【解答】解:单独的数或字母都是代数式,故A不正确;代数式表示3﹣b除以a或3﹣b与a的商,故B不正确;C正确;整数包括正整数、0、负整数,故D不正确.故选C.【点评】此题综合考查代数式的定义、表示的意义、求值等知识点.28.下列代数式书写规范的是()A.8x2y B.C.ax3 D.2m÷n【分析】根据代数式的书写要求判断各项即可得出正确答案.【解答】解:选项A正确,B正确的书写格式是b,C正确的书写格式是3ax,D正确的书写格式是.故选A.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.29.下列写法正确的是()A.x5 B.4m×n C.x(x+1)D.﹣ab【分析】根据字母与数字相乘或数字与括号相乘时,乘号可省略不写,但数字必须写在前面可分别进行判断.【解答】解:A、x与5的积表示为5x,所以A选项错误;B、4m与n的积表示为4mn,所以B选项错误;C、x与(x+1)的积的表示为x(x+1),所以C选项错误;D、﹣ab书写正确,所以D选项正确.故选D.【点评】本题考查了代数式:用运算符号(指加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.数的一切运算规律也适用于代数式.单独的一个数或者一个字母也是代数式.30.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣15)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价降价15元后再打8折B.原价打8折后再降价15元C.原价降价15元后再打2折D.原价打2折后再降价15元【分析】根据题意给出的等量关系即可求出答案.【解答】解:x表示原价打了8折,﹣15表示打折后再将15元,故选(B)【点评】本题考查列代数式,需要根据题意理解代数式的意义.31.下列判断错误的是()A.多项式5x2﹣2x+4是二次三项式B.单项式﹣a2b3c4的系数是﹣1,次数是9C.式子m+5,ab,﹣2,都是代数式D.多项式与多项式的和一定是多项式【分析】利用多项式的系数与次数定义,单项式次数与系数定义判断即可.【解答】解:A、多项式5x2﹣2x+4是二次三项式,正确;B、单项式﹣a2b3c4的系数是﹣1,次数是9,正确;C、式子m+5,ab,﹣2,都是代数式,正确;D、多项式与多项式的和不一定是多项式,错误,故选D.【点评】此题考查了代数式,熟练掌握各自的定义是解本题的关键.32.代数式“a2+b2”用文字语言叙述,其中叙述不正确的是()A.a、b两数的平方和B.a与b的和的平方C.a2与b2的和D.边长为a的正方形与边长为b的正方形的面积和【分析】根据代数式的结构即可判断.【解答】解:(B)a与b的和的平方,应表示为(a+b)2,故B错误,故选(B)【点评】本题考查代数式的概念,属于基础题型.33.在下列式子中:3xy﹣2、3÷a、(a+b)、a•5、﹣3abc中,符合代数式书写要求的有()A.1个 B.2个 C.3个 D.4个【分析】根据代数式的书写要求对各个式子依次进行判断即可解答.【解答】解:3xy﹣2符合书写要求;3÷a应写成分数的形式;(a+b)符合书写要求;a•5数字要写在字母的前面;﹣3abc中带分数要写成假分数.故选:B.【点评】本题主要考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.34.下列语句不正确的是()A.0是代数式B.a是整式C.x的3倍与y的的差表示为3x﹣yD.s=πr2是代数式【分析】根据代数式的定义分别进行分析,即可得出答案.【解答】解:A、0是代数式是正确的,不符合题意;B、a是整式是正确的,不符合题意;C、x的3倍与y的的差表示为3x﹣y是正确的,不符合题意;D、S=πr2不是代数式,原来的说法是错误的,符合题意;故选D.【点评】此题考查了代数式,关键是掌握好代数式的定义即代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.35.下列代数式书写规范的是()A.a4 B.C.x2÷y D.【分析】根据代数式的书写要求判断各项.【解答】解:A、正确的书写格式是4a,错误;B、正确的书写格式是,错误;C、正确的书写格式是,错误;D、正确的书写格式是,正确;故选D【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.36.下列代数式书写正确的是()A.b÷2a2B.1a2C.﹣a2×b D.【分析】根据代数式的书写要求判断各项.【解答】解:A、b÷2a2正确的书写格式是,故选项错误;B、1a2正确的书写格式是a2,故选项错误;C、﹣a2×b正确的书写格式是﹣a2b,故选项错误;D、书写正确.故选:D.【点评】此题考查了代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.37.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣15)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去15元后再打9折B.原价打9折后再减去15元C.原价减去15元后再打1折D.原价打1折后再减去15元【分析】首先根据“折”的含义,可得x变成x,是把原价打9折后,然后再用它减去15元,即是x﹣15元,据此判断即可.【解答】解:根据分析,可得将原价x元的衣服以(x﹣15)元出售,是把原价打9折后再减去15元.故选:B.【点评】此题主要考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,要熟练掌握,解答此题的关键是要明确“折”的含义.二.解答题(共13小题)38.说出下列代数式的意义:(1)a2﹣b2;(2)(a﹣b)2.【分析】结合实际情境作答,答案不唯一.【解答】解:(1)a的平方与b的平方的差.(2)a与b的差的平方.【点评】此类问题应结合实际,根据代数式的特点解答.39.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元,说明代数式500﹣3a﹣2b表示的意义.【分析】由于一个足球a元,一个篮球b元,则3a表示3个足球的钱,2b表示两个蓝球的钱,则他余下的钱可表示为500﹣3a﹣2b.【解答】解:∵一个足球a元,一个篮球b元,∴500﹣3a﹣2b表示的意义为体育委员买了3个足球,2个篮球b元后所剩下的钱.【点评】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.40.说出下列各式的意义.(1)(2)6(8﹣a)(3)(3x﹣2y)2.【分析】根据式子可以表示出它们的意义,本题得以解决.【解答】解:(1)表示x的2倍与3的和与a的商;(2)6(8﹣a)表示8与a的差的6倍;(3)(3x﹣2y)2表示x的3倍与y的2倍的差的平方.【点评】本题考查代数式,解题的关键是根据式子可以说出它们的意义.41.请按代数式lOx+30y编写一道与实际生活相关的应用题.【分析】结合实际情境作答,答案不唯一.【解答】解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是10x+30y.【点评】此类问题应结合实际,根据代数式的特点解答.42.用字母表示图中阴影部分的面积.【分析】(1)读图可得,阴影部分的面积=大长方形的面积﹣小长方形的面积;(2)阴影部分的面积=正方形的面积﹣扇形的面积.【解答】解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.【点评】解决问题的关键是读懂图,找到所求的阴影部分的面积和各部分之间的等量关系.43.指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x﹣1(2)a=1(3)S=πR2(4)π(5)(6)>.【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【点评】此题考查代数式的辨别,注意掌握代数式的定义.44.下列各式哪些是代数式?哪些不是代数式?(1)3>2;(2)a+b=5;(3)a;(4)3;(5)5+4﹣1;(6)m米;(7)5x﹣3y 【分析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.【解答】解:(1)、(2)中的“>”、“=”它们不是运算符号,因此(1)、(2)不是代数式.(3)、(4)中a、3是代数式,因为单个数字和字母是代数式.(5)中是加减运算符号把5、4、1连接起来,因此是代数式.(6)m米含有单位名称,故不是代数式.(7)5x﹣3y中由乘、减两种运算联起5、x、3、y,因此是代数式.答:代数式有(3)(4)(5)(7);(1)(2)(6)不是代数式.【点评】注意掌握代数式的定义.45.(1)下列代数式哪些书写不规范,请改正过来.①3x+1;②m×n﹣3;③2×y;④am+bn元;⑤a÷(b+c);⑥a﹣1÷b(2)说出下列代数式的意义:①2(a+3);②a2+b2;③.【分析】(1)根据代数式的书写要求判断.(2)根据代数式的书写写出其意义.【解答】解:(1)①3x+1书写规范;②m×n﹣3应该是mn﹣3;③2×y应该是2y;④am+bn元应该是(am+bn)元;⑤a÷(b+c)应该是;⑥a﹣1÷b应该是a﹣;(2)①2(a+3)表示a与3的和的2倍;②a2+b2表示a、b的平方的和;③表示n与1的和除以n与a的差.【点评】本题考查了代数式.代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.46.(1)指出下列各小题中的两个代数式的意义有什么不同?①5(x﹣3),5x﹣3;②,.(2)根据生活经验,试对下列各式作出解释:①;②2πx;③πR2;④.【分析】(1)根据运算顺序和运算法则说出代数式的意义;(2)赋予代数实际意义即可.【解答】解:(1)①5(x﹣3)表示5与x﹣3的积;5x﹣3表示x的5倍与3的差;②表示x与y的差的倒数;表示x、y的倒数的差;(2)①三角形的底边长为a,高为b,则三角形的面积为;②圆的半径为x,则它的周长为2πx;③半径为R的圆的面积为πR2;④有一堆煤,重量为x吨,平均分给41个家庭,每个家庭可分得吨.【点评】本题主要考查的是代数式,依据代数式的算顺序和运算法则说出代数式的意义是解题的关键.47.指出下列各代数式的意义:(1)3a+2b;(2)3(a+2b);(3);(4)a﹣.【分析】结合代数式,说出代数式的意义即可.【解答】解:(1)a的3倍与b的2倍的和;。

人教版七年级上册数学 代数式专题练习(解析版)

人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。

”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。

(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。

(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。

(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。

2.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

2-1整式—列代数式专项练习题人教版七年级数学上册

2-1整式—列代数式专项练习题人教版七年级数学上册

2.1整式——列代数式专项练习题一.选择题1.下列代数式书写正确的是()A.a4 B.m÷n C.D.x(b+c)2.代数式的意义是()A.x除以y加3B.y加3除xC.y与3的和除以xD.x除以y与3的和所得的商3.代数式x﹣y2的意义为()A.x的平方与y的平方的差B.x与y的相反数的平方差C.x与y的差的平方D.x减去y的平方的差4.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格5.下列代数式中符合书写要求的是()A.ab4 B.4x C.x÷y D.﹣a6.代数式的正确解释是()A.a与b的倒数的差的立方B.a与b的差的倒数的立方C.a的立方与b的倒数的差D.a的立方与b的差的倒数7.某商店举办促销活动,促销的方法是将原价x元的衣服以(x﹣10)元出售,则下列说法中,能正确表达该商店促销方法的是()A.原价减去10元后再打6折B.原价打6折后再减去10元C.原价减去10元后再打4折D.原价打4折后再减去10元8.小明、小亮参加学校运动会800米赛跑:小明前半程的速度为2x米/秒,后半程的速度为x米秒,小亮则用米/秒的速度跑完全程,结果是()A.小明先到终点B.小亮先到终点C.同时到达D.不能确定9.已知点A,B,C,D在数轴上的位置如图所示,且相邻两点之间的距离均为1个单位.若点A表示数a,点D表示数d,且d=﹣2a,则与数轴的原点重合的点是()A.A B.B C.C D.D10.某水果批发市场规定,批发苹果重量不多于100kg时,批发价为2.5元/kg,批发苹果重量多于100kg时,超过的部分按批发价打八折.若某人批发苹果重量为x(x>100)kg 时,需支付多少现金,可列式子为()A.100xB.100x+2.5×0.8×(x﹣100)C.100×2.5+2.5×0.8×(x﹣100)D.x+2.5×(x﹣100)二.填空题11.若商场去年的总销售量为n,预计今年增加20%的销售量,则今年的销售量为.12.九年级某班同学,每人都会打篮球或踢足球,其中会打篮球的人数比会踢足球的人数多12人,两种都会的有8人,设会踢足球的有a人,则该班同学共有人(用含a的代数式表示).13.某眼镜公司积极响应国家号召,在技术顾问和市场监管局的帮助下,开始生产医用护目镜.第一周生产a个,工人在技术员的指导下,技术越来越熟练,第二周比第一周增长10%.用含a的代数式表示该公司这两周共生产医用护目镜个.14.《孙子算经》是中国南北朝时期重要的数学专著,其中包含了“鸡兔同笼”“物不知数”等许多有趣的数学问题.《孙子算经》中记载:“今有物不知数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”其译文为:“有一个正整数,除以3余2,除以5余3,除以7余2,求符合条件的正整数.”请用含有k的代数式表示满足条件的所有正整数.15.今年5月1日,历时8年修复的太原古县城正式开城迎客.统计结果显示,太原古县城第一时段a天内共接待游客m万人次,第二时段b天内共接待游客3m万人次,则这两个时段内平均每天接待游客万人次.16.如图,一块长为m,宽为n的长方形草坪,上下开辟的花园,都是由等半径的两个四分之一圆和一个半圆组成,那么中间草坪的面积是.三.解答题17.如图是用总长为12米的篱笆围成的区域.此区域由面积均相等的三块长方形①②③拼成的,若FC=EB=x米.(1)用含x的代数式表示AB=米、BC=米;(2)用含x的代数式表示长方形ABCD的面积(要求化简).18.如图,在一条数轴上,点O为原点,点A、B、C表示的数分别是m+1,2﹣m,9﹣4m.(1)求AC的长;(用含m的代数式表示)(2)若AB=5,求BC的长.19.已知a,b,c,d四个数,a<b<c<d,满足|a﹣b|=|c﹣d|,其中n≥2且为正整数.(1)若n=2.①当b﹣a=1,d=5,求c的值;②给定有理数e,满足|b﹣e|=|c﹣d|,请用含a,b的式子表示e;(2)若f=|a﹣c|,g=|b﹣c|且|f﹣g|=|c﹣d|,求n的值.20.已知数轴上有A、B、C三点,分别表示有理数:﹣22,﹣2,8,动点P从A点出发,以每秒1个单位长度的速度向终点C运动,设点P运动时间为t秒.(1)填空:AB=,PA=,PC=.(可用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位长度的速度向终点C运动,请用含t的代数式表示P、Q两点之间的距离.21.求两位数的平方,可以用“列竖式”的方法进行速算,求解过程如图1.(1)仿照图1,补全图2的竖式;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3,若这个两位数的十位数是a,用含a的代数式表示这个两位数.22.今年春季,三元土特产喜获丰收,某土特产公司组织10辆汽车装运甲,乙两种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一土特产,且必须装满,设装运甲种土特产的汽车有x辆,根据如表提供的信息,解答以下问题:土特产种类甲乙每辆汽车运载量4 3(吨)100 90每吨土特产利润(元)(1)装运乙种土特产的车辆数为辆(用含有x的式子表示);(2)求这10辆汽车共装运土特产的数量(用含有x的式子表示);(3)求销售完装运的这批土特产后所获得的总利润(用含有x的式子表示).。

人教版七年级上册数学 第三章 代数式 单元检测题

人教版七年级上册数学   第三章   代数式   单元检测题

人教版七年级上册数学第三章代数式单元检测题一.单选题1.下列代数式表示“a 的3倍与7的差”的是()A.27a +B.37a +C.27a -D.37a -2.以下列各式中:①12,②210a -=,③ab a =,④()2212a b -,⑤a,⑥0.是代数式的有()A.1个B.2个C.3个D.4个3.“△”表示一种运算符号,其意义是:2a b a b =-V ,那么13 等于()A.1B.1-C.5D.5-4.当2x =-时,代数式32x +的值是()A.7-B.7C.1D.1-5.已知x ,y 都是自然数,如果133515x y +=,那么x y +的结果是()A.3B.5C.136.苹果原价是每斤x 元,按八折优惠出售,列代数式表示现价正确的是()元A.8xB.0.8xC.2xD.0.2x7.如果2a +与()21b -互为相反数,那么代数式()2017a b +的值是()A.1B.1-C.1±D.20088.若2x =,y 的相反数是3-,则x y -的值为()A.5-或1-B.5-或1C.5或1-D.5或19.若a,b 是互为倒数,m,n 是互为相反数,则()25ab m n -++的值是()A.2B.2-C.0D.310.如图,是一个用四块形状和大小都一样的长方形纸板拼成的一个大正方形,中间空的部分是一个小正方形,已知长方形纸板的长为a ,宽为()b a b >,则中间空白部分(小正方形)的周长是()A.a b +B.a b-C.()4a b -D.()4b a -11.琪琪今年n 岁,爸爸今年35岁,10年后爸爸比琪琪大()岁.A.35n-B.3510n -+C.10D.2512.婷婷从家去学校然后又按原路返回,去时每分钟行a 米,回来时每分钟行b 米,求婷婷来回的平均速度的正确算式是()A.()2a b +÷B.2()a b ÷+C.111a b ⎛⎫÷+ ⎪⎝⎭D.112a b ⎛⎫÷+ ⎪⎝⎭二.填空题13.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c ++=.14.已知22120+x y --=,则22x y +的值等于.15.如果关于x 的多项式4242mx x +-与多项式35n x x +的次数相同,则2234n n -+-的值为.16.设甲数是m ,乙数是n ,用代数式表示:甲、乙两数平方的和为,甲、乙两数和的立方为.17.冬天天气寒冷,羽绒服的销量很火爆,已知一件羽绒服的标价为a 元,现将标价打8.5折出售,则现在的售价为元.(用含a 的代数式表示)18.军训期间,学校搭建如图1所示的单顶帐篷需要17根钢管,这样的帐篷按图2、图3的方式串起来搭建,则串起来搭建6顶帐篷需要根钢管,有171根钢管可以串起来搭建顶帐篷,如果想串起来搭建n 顶帐篷,需要根钢管.三.解答题19.如图是学校图书馆的一个活动教室的平面图,请你计算这个活动教室的面积和周长(单位:米,不计损耗)20.已知有理数a ,b ,c ,d ,e ,其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c dab e +++的值.21.如图,长方形窗户上遮光窗帘(阴影部分)的下沿是由半径均为a 的两个四分之一圆组成,已知没被窗帘遮挡部分的面积为3平方米,请用a 的代数式表示窗户的高度h.22.某校七(2)班的3名老师决定带领本班a 名学生(学生人数不少于3人)在十一期间去北京旅游,咨询甲、乙两个旅行社,甲旅行社说:“若老师买全票,则学生可享受半价优惠”,乙旅行社说:“老师和学生全部按全票的六折优惠”.已知甲、乙旅行社的全票票价均为400元/人.(1)用含a 的式子分别表示甲、乙旅行社的收费金额;(2)如果这个班的学生有30人,他们选择哪家旅行社较为合算?23.整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如21x x +=,求22022x x ++的值,我们将2x x +作为一个整体代入,则原式120222023+==.仿照上面的解题方法,完成下面的问题:(1)若2210x x +-=,则222022x x +-=_____.(2)若222523a ab b ab +=-+=,,求22232a b ab --的值.24.列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2,则这个三位数可以用含m的代数式表示为:______;(2)某电影院第一排有15个座位,后面每排比前一排多2个座位,则第n排的座位数可以表示为:______;(3)如图,将长为4m的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,那么每个小长方形的周长用含m的式子表示为______.。

第三章 代数式全章综合训练 2024—2025学年人教版数学七年级上册

第三章 代数式全章综合训练   2024—2025学年人教版数学七年级上册

第三章代数式全章综合训练一、选择题(每小题5分,共40分)1[2024湖南湘潭期末]下列代数式中,书写规范的是 ( )A.112a B.a÷b C. a;3 D.-lab2[2024四川泸州龙马潭区质检]苹果原价是每千克x元,按八折优惠出售,下列代数式中表示现价正确的是 ( )A.8x元/千克B.0.8x元/千克C.2x元/千克D.0.2x元/千克3[2024河南郑州金水区校级调研]x,y是两种相关联的量,下面能表示x,y成正比例关系的是( )A.y=611x B.x12=1yC. x+y=10D.5x=y4[2024甘肃张掖校级期末]一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩(单位:分)为 ( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)5[2024江苏徐州期末]下列代数式,满足表中条件的是 ( )x 0 1 2 3代数式的值-3 -1 1 3A.-x-3.B.x²+2x−3C.2x-3D.x²−2x−36[2024辽宁抚顺期末]下列能用2a+4表示的是( )7[2024安徽合肥期末]如图是计算机程序的一个流程图,现定义:“x←x+2”表示把x+2的值作为x的值输入程序再次计算.比如:当输入x=2时,依次计算作为第一次“传输”,可得2×2=4,4-1= 3,3²=9,,9 不大于 2 024,所以2+2=4,把x=4输入程序,再次计算作为第二次“传输”,可得4×2=8,8-1=7,…,直到计算结果大于2 024时输出结果y.若输入x=1,则经过几次“传输”后可以输出结果,结束程序 ( )A.11B.12C.21D.235[2024 重庆万州区期末]下列图形都是由相同的小正方形按照一定规律摆放而成的,第1 个图形中小正方形的个数是3,第2个图形中小正方形的个数是8,第3个图形中小正方形的个数是15,…,照此规律排列下去,则第6个图形中小正方形的个数是 ( )A.24B.30C.35D.48二、填空题(每小题5分,共10分)[2024江苏扬州期中]体育委员带了100元钱去买体育用品,已知一个足球a元,一个篮球b元,则代数式100–3a–2b 表示的意义为10[2024河北承德期末]如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数).设半圆形条钢的总个数为x(x为正整数).(1)当a=50,x=2时,护栏总长度为厘米;(2)当a=60时,护栏总长度为厘米(用含x的代数式表示,结果要求化简);(3)若护栏的总长度为15米,为尽量减少条钢用量,a的值应为 .三、解答题(共50分)的值.11[2024四川成都调研]当a取下列值时,求代数式a2−3a+15.1)a=4;(2)a=−1312[2024河北石家庄期末]现有甲、丙两种正方形和乙一种长方形卡片各若干张,如图(1)所示(a>1).小明分别用6张卡片拼出了如图(2)和图(3)的两个长方形(不重叠且无缝隙),其面积分别为S₁,S₂.(1)请用含a的式子分别表示 S₁,S₂;(2)当a=3 时,通过计算比较 S₁与 S₂的大小.13[2024山东青岛调研]如图是某居民小区的一块长为a米、宽为2b米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余地方种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)填空:种花的面积为平方米,种草的面积为平方米.(用含有a,b,π的式子表示)(2)当a=6,b=2,π取3.14时,美化这块空地共需多少元?14[2024河南周口期末]某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆放方式,可坐多少人?用第二种摆放方式,可坐多少人?(2)用含有n的代数式表示:有n张桌子,用第一种摆放方式可坐多少人?用第二种摆放方式可坐多少人?(3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌?并说明理由.1. C 【解析】A 选项, 112a 应该写为 32a,故A 错误,不符合题意;B 选项,( a ÷b 应该写为 a b ,故B 错误,不符合题意;C 选项, a 3书写规范,故C 正确,符合题意;D 选项, −1ab 应该写为 −ab,,故D 错误,不符合题意.故选C.2.B 【解析】苹果原价是每千克x 元,按八折优惠出售,现价是0.8x 元/千克,故选B.3. A 【解析】A 选项, y =611x,x ,y 成正比例关系,故此选项符合题意;B 选项, x 12=1y ,则 xy =12,x 和γ成反比例关系,故不符合题意;C 选项, x +y =10,x 和y 不成正比例关系,故此选项不符合题意;D 选项, y =5x ,x 和y 成反比例关系,故此选项不符合题意.故选 A.4.D 【解析】由题意可得他的成绩是[ [3x −(24−x)]分.故选 D.5. C 【解析】因为: x =0时,代数式的值为 −3; x =1时,代数式的值为 −1;x =2时,代数式的值为1,所以只有: 2x −3满足条件.故选C.6. C 【解析】A 选项,线段AB 的长为 2+3+4=9,则A 不符合题意;B 选项,组合图形的面积为 2×(3+4)=14,则B 不符合题意;C 选项,长方形的周长为 2(a +2)=2a +4,则 C 符合题意;D 选项,圆柱的体积为4a ,则D 不符合题意.故选 C.7.B 【解析】由题可知每次输入的数应该是1,3,5,7,9,…,所以第n 次输入的数应该是 2n −1.每次算出的数为|[2(2n −1)−1]².因为 45²=2025>2024,程序结束,所以 2(2n −1)− 1=45,解得 n =12..故选 B.8.D 【解析】由所给图形可知,第1个图形中小正方形的个数为 3=1²+1×2;第2个图形中小正方形的个数为 8=2²+2×2;第3 个图形中小正方形的个数为 15=32+3×2;⋯,依次类推,第n 个图形中小正方形的个数为 n²+2n.所以第6个图形中小正方形的个数是 6²+2×6=48,故选 D.9.买了3个足球,2个篮球,还剩多少元【解析】因为一个足球a 元,一个篮球b 元,所以100-3a-2b 表示的意义为体育委员买了3个足球,2个篮球后所剩下的钱,故答案为买了3个足球,2个篮球,还剩多少元.10.(1)130 (2)(60x+20) (3)71【解析】(1)由题意得护栏的总长度为[80+(x-1)a]厘米,所以当a=50,x=2时,80+(x-1)a=80+(2-1)×50=130,故答案为 130.(2)当a=60时,80+(x-1)a=80+60x-60=60x+20,所以当a=60时,护栏总长度为(60x+20)厘米,故答案为(60x+20).(3)15 米=1 500 厘米.令 80+(x-1)a=1 500,所以(x-1)a=1 420=71×20.因为a 为正整数且a<80,x 为正整数,所以为尽量减少条钢用量,a=71,x=21时符合题意. 故答案为 71.11.【解】(1)当( a =4时,原式 =16−12+15=1.=19+1+15=1945.(2)当 a =−13时,原式 12.【解】(1)根据题意得, S₁=a²+3a +2,S₂= 5a +1.(2)当( a =3时, S₁=3²+3×3+2=20,S₂=5×3+ 1=16..因为 20>16,所以 S₁>S₂.13.【解】(1)因为一个花台为 14圆,所以四个花台的面积为一个圆的面积,即种花的面积为 πb²平方米,所以种草的面积为 (2ab −πb²)平方米,故答案为 πb²,(2ab −πb²). (2)依题意,得美化这块空地共需的费用为 100×πb²+50×(2ab −πb²)=(100ab +50πb²)元.当 a =6,b =2,π=3.14时, 100ab + 50πb²=100×6×2+50×3.14×2²=1828(元),所以美化这块空地共需 1 828 元.14.【解】(1)有 4 张桌子,用第一种摆放方式,。

第三章++代数式++单元训练++++2024-2025学年人教版七年级数学上册

第三章++代数式++单元训练++++2024-2025学年人教版七年级数学上册

第三章代数式综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.下列是代数式的是()A.0<2B.x2-1≠0C.-3D.x+y=12.已知语句“b比a的3倍多1”,下列关于甲、乙的判断正确的是()甲:用a表示b的代数式是3a+1;乙:用b表示a的代数式是b+13.A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对3.一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为()A.abcB.a+b+cC.100a+10b+cD.100abc4.已知甲、乙两数的和为30,若甲数为x,则甲数的3倍与乙数的23的和用含有x的式子表示正确的是()A.3(30-x)+23B.23(3x+30-x)C.3x+23(30-x) D.3(30-x)+235.代数式a2+b2可以表示不同实际问题中的数量关系,下列举例恰当的是()A.长是a,宽是b的长方形的周长B.购买(a+b)本单价为(a+b)元的笔记本的总价钱C.买a支单价为a元的钢笔和b支单价为b元的铅笔的总价钱D.边长是a+b的正方形的面积6.下列四个说法:①书的总页数一定,未读的页数与已读的页数成正比例;②如果圆的半径不变,圆的周长与圆周率成正比例;③小麦的总产量一定,每公顷产量与公顷数成反比例;④圆柱的体积一定,圆柱的底面积与高成反比例.其中正确说法的个数是()A.1B.2C.3D.47.规定新运算:x◎y=xy-y2,则12◎(-2)=()A.-5B.3C.-3D.18.若2 024×7=x,则下列代数式可以表示2 024×5的是()A.x+4 048B.x-2 024C.x-2D.57x9.某商场针对一款服装给出两个调价方案:①先提价10%,再降价10%;②先降价20%,再提价20%.下列说法正确的是()A.①②两种方案的调价结果相同B.方案①的售价比方案②的售价低C.方案①的售价比方案②的售价高D.无法比较,调整后的售价高低取决于服装原售价10.某窗户的形状如图所示,其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a cm,长方形的长和宽分别为b cm和c cm.给出下面四个结论:①窗户外围的周长是(πa+3b+2c)cm;②窗户的面积是(πa2+2bc+b2)cm2;③b+2c=2a;④b=3c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②④D.③④二、填空题(将结果填在题中横线上)11.一支铅笔的价格是a元,一块橡皮的价格是b元,买3支铅笔和7块橡皮应付元.12.一个长方体容器的底面是长为a,宽为b的长方形,将体积为V的水倒入这个长方体容器,则水面的高度为.(用含a,b,V的式子表示)的4倍为z,则x+y+z=. 13.若比-2大3的数为x,-5的绝对值为y,-1414.已知甲、乙两种书的售价分别为12元/本、20元/本,现购买a本甲书和b本乙书,共付款W元.(1)W=;(用含a,b的式子表示)(2)若|a-2|+(b-1)2=0,则W的值为.15.一组数-2,5,-8,11,-14,17……按这样的规律排列下去,则第10个数为.16.某超市以m元/袋的价格购进了200袋相同的酱料,加价50%卖出了180袋,剩余每袋比进价增加n元后全部卖出,卖完这批酱料该超市可获得利润元.(用含m,n的代数式表示)三、解答题(解答应写出文字说明、证明过程或演算步骤)17.用代数式表示:(1)长为x,宽为y的长方形的面积;(2)棱长为a的正方体的表面积;,该班男生人数;(3)某班总人数为m,女生人数是男生人数的35(4)a的相反数与b的倒数的和(b≠0);(5)x,y两数的平方和减去它们积的2倍;(6)底面半径为r,体积为V的圆锥的高.18.下图是一个“数值转换机”的示意图.输入x→乘4→减6→除以2→输出(1)输出的结果用含x的代数式表示为;时,求输出的值.(2)当输入x=1319.已知m是6的相反数,n比-m的相反数大3.(1)直接写出m=,n=.(2)求-n-m+7的值.20.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带的定价打九折付款.现有某客户要到该服装厂购买西装50套,领带x条(x>50).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若该客户购买西装50套,领带60条,请通过计算说明按哪种方案购买较为合算.(3)若该客户购买西装50套,领带200条,请通过计算说明按哪种方案购买较为合算.21.观察、探究、应用(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)通过拼图,你发现前3个图形的面积与第4个图形的面积之间有什么关系?请用数学式子表示:(用含字母a,b的等式表示).(3)利用(2)的结论计算:①172+2×17×3+32;②1992+398+1的值.1.C2.C3.C4.C5.C6.B7.A 解析:因为x ◎y=xy-y 2,所以12◎(-2)=12×(-2)-(-2)2=-1-4=-5.8.D 9.C10.B 解析:根据题干图形,可知窗户的周长是12×2π×a+b+c+b+c+b=(πa+3b+2c )cm,故①正确;窗户的面积是12πa 2+2bc+b 2,故②错误;由题干图形可知b+2c=2a ,故③正确;由b+2c=2a ,得不出b 和c 之间的关系,故④错误.故选B .11.(3a+7b )12.V ab13.514.(1)(12a+20b ) (2)4415.2916.(90m+20n )17.解:(1)xy ;(2)6a 2;(3)58m ;(4)-a+1b ;(5)x 2+y 2-2xy ;(6)3V πr 2. 18.解:(1)2x-3(2)当x=13时,2×13-3=-73, 即当输入x=13时,输出的值为-73.19.解:(1)-6 -3 因为m 是6的相反数,所以m=-6,-m=6,所以-m 的相反数是-6.因为n 比-m 的相反数大3,所以n=-6+3=-3.(2)由(1)知m=-6,n=-3,-n-m+7=-(-3)-(-6)+7=3+6+7=16.20.解:(1)13 000+40x 13 500+36x方案一:[300×50+40(x-50)]=13 000+40x ;方案二:90%(300×50+40x )=13 500+36x.(2)当x=60时,方案一应付:13 000+40×60=15 400(元),方案二应付:13 500+36×60=15 660(元),15 400<15 660.答:方案一较合算.(3)当x=200时,方案一应付:13 000+40×200=21 000(元).方案二应付:13 500+36×200=20 700(元).20 700<21 000.答:方案二较合算.21.解:(1)①a2;②2ab;③b2;④(a+b)2.(2)(a+b)2=a2+2ab+b2根据拼图可知第4个图形是由前3个图形拼成的,即第4个图形的面积等于前3个图形面积的和.(3)①172+2×17×3+32=(17+3)2=202=400.②1992+398+1=1992+2×1×199+1=(199+1)2=2002=40 000.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。

【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。

(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。

(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。

3.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨元.(1)试用含的代数式填空:①涨价后,每个台灯的销售价为________元;②涨价后,商场的台灯平均每月的销售量为________台;③涨价后,商场每月销售台灯所获得总利润为________元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.【答案】(1);;(2)解:甲与乙的说法均正确,理由如下:依题意可得该商场台灯的月销售利润为:(600﹣10a)(10+a);当a=40时,(600﹣10a)(10+a)=(600﹣10×40)(10+40)=10000(元);当a=10时,(600﹣10a)(10+a)=(600﹣10×10)(10+10)=10000(元);故经理甲与乙的说法均正确【解析】【解答】解:(1)①涨价后,每个台灯的销售价为50+a(元);②涨价后,商场的台灯平均每月的销售量为800-10a(元);③涨价后,商场的台灯台每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );故答案为:50+a,800-10a,( 10 + a ) ( 800 − 10 a ).【分析】(1)根据题意由每个台灯的销售价上涨a元,得到每个台灯的销售价为50+a;商场的台灯平均每月的销售量为800-10a;商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a );(2)根据题意商场每月销售台灯所获得总利润为( 10 + a ) ( 800 − 10 a ),把a=40时和a=10时代入,求出月销售利润的值,判断即可.4.已知点A、B、C在数轴上对应的实数分别为a、b、c,满足(b+5)2+|a﹣8|=0,点P 位于该数轴上.(1)求出a,b的值,并求A、B两点间的距离;(2)设点C与点A的距离为25个单位长度,且|ac|=﹣ac.若PB=2PC,求点P在数轴上对应的实数;(3)若点P从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…(以此类推).则点p 能移动到与点A或点B重合的位置吗?若能,请探究需要移动多少次重合?若不能,请说明理由.【答案】(1)解:依题意,b+5=0,a﹣8=0,所以,a=8,b=﹣5,则AB=8﹣(﹣5)=13(2)解:点C与点A的距离是25个单位长度,所以A点有可能是﹣17,33,因为|ac|=﹣ac,所以点A点C所表示的数异号,所以点C表示﹣17;设点P在数轴上对应的实数为x,∵PB=2PC,∴|x+5|=2|x+17|,∴x+5=2(x+17),或x+5=﹣2(x+17),解得x=﹣29或﹣13,即点P在数轴上对应的实数为﹣29或﹣13(3)解:记向右移动为正,则向左为负.第一次点P对应的实数为﹣1,第二次点P对应的实数为2,第三次点P对应的实数为﹣3,第四次点P对应的实数为4,…则第n次点P对应的实数为(﹣1)n•n,∵点A在数轴上对应的实数为8,点B在数轴上对应的实数为﹣5,∴点P移动8次到达点A,移动5次到达B点【解析】【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a、b的值,根据两点间的距离,可得答案;(2)根据根据两点间的距离公式,可得答案;(3)根据观察,可发现规律,根据规律,可得答案.5.小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.(1)求a的值.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有A、B两种活动方案,如表:活动方案木地板价格地砖价格总安装费A8折8.5折2000元B9折8.5折免收料费及安装费)更低?【答案】(1)解:根据题意,可得a+5=4+4,解得a=3;(2)解:铺设地面需要木地板:4×2x+a[10+6−(2x−1)−x−2x]+6×4=8x+3(17−5x)+24=75−7x;铺设地面需要地砖:16×8−(75−7x)=128−75+7x=7x+53;(3)解:∵卧室2的面积为21平方米,∴3[10+6−(2x−1)−x−2x]=21,∴3(17−5x)=21,∴x=2,∴铺设地面需要木地板:75−7x=75−7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积−三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.6.某家具厂生产一种课桌和椅子,课桌每张定价180元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子方案二:课桌和椅」都按定价的80%付款某校计划添置100张课桌和把椅子,(1)若,请计算哪种方案划算;(2)若,请用含的代数式分别把两种方案的费用表示出来(3)若,乔亚萍认为用方案一购买省钱,小兰认为用方案二购买省钱,如果两种方案可以同时使用,你能帮助学校设讣·种比乔亚萍和小兰的方案都更省钱的方案吗?若能,请你写出方案,若不能,请说明理由.【答案】(1)解:当x=100时方案一:100×180=18000;方案二:(100×180+100×80)×80%=20800;18000<20800∴方案一划算;(2)解:当x>100时方案一:100×180+80(x-100)=80x+10000;方案二:(100×180+80x)×80%=64x+14400;(3)解:当x=320时按方案一购买:80×320+10000=35600按方案二购买:64×320+14400=3488035600>34880∴方案二更省钱.【解析】【分析】(1)根据两种方案的优惠方式,分别列式计算,再比较大小即可作出判断。

(2)根据x>100,根据两种优惠方案,分别列式即可。

(3)将x=320分别代入(2)中的两种优惠方案的费用中进行计算,再比较大小可作出判断。

7.一般情况下,“ ”并不成立,但当,取某些数时,可以使它成立,例如 .我们称能使“ ”成立的数对,为“优数对”,记为(,).(1)若(,)是一个“优数对”,求的值;(2)请你写出一个“优数对”(,),其中,且;(3)若(,)是一个“优数对”,求代数式的值. 【答案】(1)解:由题意得:,解得(2)解:答案不唯一,如取,则,解得,(2,)(3)解:由()是一个“优数对”得去分母,化简得:,【解析】【分析】(1)利用“优数对”的定义化简,计算即可求出b的值;(2)写出一个“优数对”即可;(3)利用“优数对”定义得到9a+4b=0,原式去括号整理后代入计算即可求出值.8.如图是用长度相等的小棒按一定规律摆成的一组图案.(1)第1个图案中有6根小棒;第2个图案中有________根小棒;第3个图案中有________根小棒;(2)第n个图案中有多少根小棒?(3)第25个图案中有多少根小棒?(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是滴几个图案;如果没有,请说明理由.【答案】(1)11;16(2)解:由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…,因此第n个图案中有5n+n-(n-1)=5n+1根(3)解:令n=25,得出,故第25个图案中有126根小棒(4)解:令,得出n=406.2,不是整数,故不存在符合上述规律的图案,由2032根小棒摆成【解析】【解答】(1)第2个图案中有11根小棒;第3个图案中有16根小棒;【分析】(1)(2)由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2-1=11根小棒,第3个图案中有3×5+3-2=16根小棒,…由此得出第n个图案中有5n+n-(n-1)=5n+1根小棒;(3)把数据代入(2)中的规律求得答案即可;(4)利用(2)中的规律建立方程求得答案即可.9.已知多项式,,其中,马小虎同学在计算“ ”时,误将“ ”看成了“ ”,求得的结果为.(1)求多项式;(2)求出的符合题意结果;(3)当时,求的值.【答案】(1)解:∵,,∴;(2)解:∵,,∴(3)解:当时,【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.10.观察下列等式:31-30=2×30,32-31=2×31,33-32=2×32,(1)试写出第个等式,并说明第个等式成立的理由;(2)计算30+31+32+…+32018+32019的值.【答案】(1)根据题意得第n个等式为3n-3n-1=2×3n-1,证明如下:3n-3n-1=3×3n-1-3n-1=2×3n-1,所以成立;(2)31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×3201832020-32019=2×32019将这些等式相加得(31-30)+(32-31)+(33-32)+…+(32019-32018)+(32020-32019)=2×(30+31+32+…+32018+32019)故32020-30=2×(30+31+32+…+32018+32019)∴30+31+32+…+32018+32019=【解析】【分析】(1)通过观察即可发现:等式的左边是一个减法算式,被减数的底数是3,指数与等式的序号一致,减数的底数也是3,指数比等式的序号小1;等式的右边是一个乘法算式,一个因数是2 ,另一个因数与左边的减数一致,利用发现的规律即可得出通用公式:第n个等式为3n-3n-1=2×3n-1;(2)利用(1)发现的规律得出 31-30=2×30,32-31=2×31,33-32=2×32,…32019-32018=2×32018,32020-32019=2×32019根据等式的性质,将这些等式直接相加,得出32020-30=2×(30+31+32+…+32018+32019) ,从而根据等式的性质即可得出答案。

相关文档
最新文档