薄膜生长的基本过程
第4章 薄膜的形核与生长

4.5 生长过程
薄膜的形成过程分四个阶段:
(1)
(2)
(4)
(3)
① 小岛阶段—成核和核长大
透射电镜观察:大小一致2-3nm的核突然出现。平行基片平面两维大于垂直方向的第三维
② 结合阶段
两个圆形核结合时间小于0.1s,并且结合后增大了高度,减少了在基片所占的总面积。结 合时类液体特性导致新出现的基片面积上会发生二次成核,结合后的复合岛若有足够时 间,可形成晶体形状,多为六角形。
(其中f ( ) 2 3cos cos3 ) 4
体积自由能变化:GV
4 3
r
3
Gv
f
( )
原子聚集理论的基本内容
原子聚集理论将核(原子团)看作一个大分子,用其内部原子之间
的结合能或与基片表面原子之间的结合能代替热力学理论中的自由能。
结合能不是连续变化而是以原子对结合能为最小单位的不连续变化。
原子聚集理论中,临界核和最小稳定核的形状与结合能的关系如图所示。
1)较低基体温度T1,临界核是 吸附在基体表面上的单个原子。 每一个吸附原子一旦与其他吸 附原子相结合都可形成稳定的 原子对形状稳定核。 2)温度大于T1之后,临界核是 原子对。因为此时每个原子若 只受单键的约束是不稳定的, 必须具有双键才能形成稳定核。 此时,最小稳定核是三原子的 原子团。另一种可能是四原子 3)当温度高于T2后,临界核是三原子或四原子团。因为这的方形结构,概率小。 时双键已不能使原子稳定在核中。要形成稳定核,每个原 子至少有三个键,稳定核是四原子团或五原子团。 4)当温度再进一步升高达到T3以后,临界核显然是四原子 团和五原子团,有的可能是七原子团。
临界核:比最小稳定核再小点,或者说再小一个原子,原子团就变成不稳定的。 这种原子团为临界核。
薄膜的生长过程和薄膜结构

薄膜生长过程概述
(2)表面扩散迁移 吸附气相原子在基体表面上扩散迁移,互相碰 撞结合成原子对或小原子团,并凝结在基体表面上。 (3)原子凝结形成临界核 这种原子团和其他吸附原子碰撞结合 ,或者释放一个单原子。这个过程反复进行,一旦原子团中的原 子数超过某一个临界值,原子团进一步与其他吸附原子碰撞结合 ,只向着长大方向发展形成稳定的原子团。含有临界值原子数的 原子团称为临界核,稳定的原子团称为稳定核。 (4)稳定核捕获其他原子生长 稳定核再捕获其他吸附原子,或者 与入射气相原子相结合使它进一步长大成为小岛。
(5-16)
式中,第一项正是自发形核过程的临界自由能变化(式5-5),
而后一项则为非自发形核相对于自发形核过程能量势垒降低的因
子。接触角θ越小,即衬底与薄膜的浸润性越好,则非自发形核
的能垒降低得越多,非自发形核的倾向也越大。在层状模式时,
形核势垒高度等于零。
薄膜的非自发形核理论
2、薄膜的形核率
形核率是在单位面积上,单位时间内形成的临界核心数目。为
10可求出形核自由能取得极值的条件为:
r* 2(a3 vf a2 fs a2 sv )
3a1GV
(5-14)
应用式5-11后,上式仍等于式5-4,即
r* 2 vf
GV
因而,虽然非自发形核过程的核心形状与自发形核时有所不同,
但二者所对应的临界核心半径相同。
将上式代入5-10得到相应过程的临界自由能变化为:
根据图5.5中表面能之间的平衡条件,核心形状的稳定性要求各
界面能之间满足关系式
sv fs vf cos
(5-11)
即θ取决于各界面之间的数量关系。薄膜与衬底的浸润性越差,
薄膜生长步骤

薄膜生长步骤
薄膜生长指的是在基底上通过化学或物理方法制备出一层薄膜的
过程。
这项技术具有广泛的应用前景,例如电子器件、光学材料、涂
料等领域。
下面我们将分步骤介绍薄膜生长的过程。
第一步,先准备好基底,一般选用的是高质量的单晶硅片或玻璃
基板。
这个步骤的关键在于确保基底表面平整、无杂质,以及合适的
晶格结构和晶向。
第二步,进行基底表面预处理。
这个步骤的目的是去除表面的氧
化物和污染物,以及提高表面的反应活性。
常用的方法包括机械抛光、酸洗、热压等。
第三步,选择适当的生长技术。
常见的薄膜生长技术有物理气相
沉积、化学气相沉积、分子束外延、溅射等。
不同的技术具有不同的
优缺点和适用范围,应该根据具体需要选择。
第四步,进行薄膜的生长。
生长过程中需要控制温度、气压、反
应进气量等参数来控制膜的厚度和质量。
在生长过程中还需要根据需
要加入掺杂元素或在不同的反应条件下进行生长。
第五步,进行后处理。
薄膜生长后需要进行一定的后处理,例如
进行退火、氧化等,这些步骤有助于提高膜质量和改变其性能。
以上就是薄膜生长的主要步骤。
在实际操作中,还需要注意一些细节,例如仪器的维护、材料的选择、反应条件的调整等,才能得到高质量的薄膜。
薄膜生长的原理范文

薄膜生长的原理范文薄膜生长是一种通过在基底上逐层沉积材料来制备薄膜的过程。
薄膜生长技术在许多领域中被广泛应用,如半导体器件、薄膜太阳能电池、涂层技术、生物传感器等。
薄膜生长的原理涉及材料的原子或分子沉积、表面扩散、自组装等过程。
本文将详细介绍薄膜生长的原理。
首先,薄膜生长涉及材料的原子或分子在基底表面的沉积过程。
在薄膜生长中,一般采用物理气相沉积(PVD)或化学气相沉积(CVD)等方法。
在PVD中,材料通常以固体的形式存在,通过激光蒸汽、电子束蒸发等方式将材料蒸发到真空腔体中,然后沉积到基底表面。
在CVD中,材料以气体的形式存在,反应气体通过化学反应生成沉积材料,并在基底表面上沉积。
这些方法中,材料的原子或分子需要穿过气体或真空中的传递路径,然后与基底表面发生相互作用,并最终沉积到基底表面上。
其次,薄膜生长还涉及沉积材料的表面扩散。
由于沉积材料和基底的晶体结构不匹配,沉积过程中会产生应变能,而表面扩散可以减小材料的应变能。
表面扩散是指原子或分子在表面上的迁移过程,使得材料可以在基底表面上扩散形成更大晶体的过程。
表面扩散是通过原子或分子的跳跃运动来实现的,这种跳跃过程受到热能的影响。
在薄膜生长过程中,通常会提供适当的热能,以促进表面扩散,使得材料更好地填充基底表面。
此外,薄膜生长还涉及材料的自组装。
自组装是指原子、分子或纳米颗粒自发地在基底表面上组装成有序结构的过程。
材料的自组装通常受到表面能、体能和介面能的影响。
表面能是指材料表面的自由能,体能是指材料的体积自由能,介面能是指材料与基底之间的能量。
当材料在基底表面上形成一定的有序结构时,可以通过降低介面能来减小自由能,从而提高生长速率和质量。
自组装还可以通过改变材料的结构和形貌来调控其性能,如提高材料的导电性、光学性能等。
总之,薄膜生长的原理涉及材料的原子或分子沉积、表面扩散和自组装等过程。
通过控制这些过程的条件和参数,可以实现对薄膜的生长速率、厚度、晶体结构和形貌的调控。
薄膜的形成过程及生长方式

低温抑制型薄膜沉积过程的特点:
• 原子的表面扩散能力较低,其沉积的 位置就是其入射到薄膜表面时的位置;
• 决定薄膜组织的唯一因素是原子的入 射方向;
• 形成的薄膜充满了缺陷和孔洞,表面 粗糙。
16
5.3.3 高温热激活型薄膜生长
• 当沉积温度较高时,原子扩散较为充分 ,扩散就会影响薄膜的组织结构和形貌 。它可以消除孔洞的存在,使薄膜组织 状变为柱状晶形态。
因于生长过程,所以薄膜生长是最为基 本的。
4
• 5.12薄膜的生长模式
• 薄膜的生长模式可以归纳为三种: • (1)岛状模式(Volmer-Weber模
式); • (2)层状模式(Frank-van der
Merwe); • (3)层岛复合模式(Stranski-
Krastanov) • 三种模式的示意图5.2
• 由于原子的平均扩散距离随着温度的上 升呈指数形式增加,因此,组织形态的 转变发生在0.3Tm附近很小的温度区域
17
。
•图5.17是 二维模拟得 出的30°角 倾斜入射沉 积时,薄膜 组织随沉积 温度的变化 情况。
• 由图可以看出,随着衬底温度的上升,薄膜
中的孔洞迅速减少。
18
图5.18显示了衬底温度对薄膜表面形貌的 影响
薄膜生长过程与薄膜结构薄膜的生长模式可以分为外延式生长和非外延式生长两种生长模式
薄膜的形成过程及生长方式
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
目录
• 5.1 薄膜生长过程概述 • 5.2 形核阶段 • 5.3 薄膜生长过程与薄膜结构
习题
2
5.1、薄膜生长过程概述
薄膜形成过程和生长模式

薄膜的形成——薄膜形成过程和生长模式
0 cos 1 2 0
岛的形成又可以用另一热力 学变量描述:吸附能 界面结合能(粘附功)是指 原子团(核)吸附前后体系总的 自由能变化,即 Ecom
Ecom 2 0 1 0 ( 2 1 ) 0 0 cos 0 (1 cos )
薄膜的形成——溅射薄膜的形成过程
★ 溅射薄膜的形成过程
关于溅射薄膜形成过程的特点和溅射薄膜形成与生
长问题,在第三章已讨论。 真空蒸发薄膜和溅射薄膜形成物理过程的不同点:
沉积粒子产生过程 沉积粒子迁移过程
成膜过程
薄膜的形成——薄膜的外延生长
★ 薄膜的外延生长
外延的概念 同质外延 异质外延 失配度
薄膜的形成——薄膜形成过程和生长模式
沟道阶段 孤立的岛有变圆的趋势。当岛结合以后,在岛的生
长过程中变圆趋势减小,岛被拉长,连接网状结构,其 中分布着宽度为5-20nm的沟道。 随着沉积,在沟道中会发生二次或三次成核。
连续薄膜阶段
当沟道和孔洞消除后,入射到基片表面上的原子直 接吸附在薄膜上,形成连续薄膜。
薄膜的形成——薄膜形成过程和生长模式
薄膜形成可划分为四个阶段:成核、结合、沟道、连续 岛状阶段 岛的演变特点 可观察到的最小核尺寸:2-3nm; 核进一步长大变成小岛,横向生长速度大于纵向 生长速度; 形状:球帽形——原形以用热力学变量描述:表面自由能
薄膜的形成——薄膜形成过程和生长模式
★ 薄膜形成过程和生长模式
薄膜形成过程是 指形成稳定核之后的
过程。
薄膜生长模式是 指薄膜形成的宏观形 式。
薄膜的形成——薄膜形成过程和生长模式
生物物理学中的薄膜生长机制

生物物理学中的薄膜生长机制薄膜是许多生物体中细胞膜、核膜和内质网膜等重要生物膜的基本组成部分。
研究薄膜生长机制对于理解生命过程、药物开发以及纳米技术等领域有着重要的意义。
一、薄膜的结构和功能薄膜是由脂质分子层构成的两层膜结构,每层膜中都有互相对称的脂质分子。
这种结构使得薄膜具有重要的隔离和传递信号的功能。
由于脂质分子的疏水性和亲水性,薄膜还可以起到选择透过的分子和离子的作用。
二、薄膜的生长过程和机制薄膜的生长过程是自组装的过程。
在一个有限的空间内,脂质分子将互相吸引并形成一个连续、平整的薄膜。
薄膜的生长速度和分子结构的选择性可以通过控制脂质分子的化学性质和空间几何形状来调整。
生物体内的薄膜生长过程通常由脂质酰基转移酶(LGT)介导。
LGT负责将脂质分子的疏水基团从乙酰辅酶A上转移至脂肪酸基团,形成甘油三酯或者磷脂酰胆碱等脂质分子。
这些脂质分子可以自组装形成生物体内的各种薄膜结构。
三、薄膜生长的分子模拟分子模拟是研究薄膜生长过程的重要手段。
通过在计算机中建立薄膜的原子级描述,可以模拟出薄膜生长的过程。
这种方法可以帮助研究者了解脂质分子的自组装过程、薄膜的物理性质及其在药物传递等方面的应用。
分子模拟的一种重要方法是分子动力学。
分子动力学通过在计算机上模拟分子运动过程,能够得出薄膜的能量、热力学性质和机械性质等信息。
同时,分子动力学也可以研究脂质分子的配合、内部结构和相互作用等微观物理学问题。
四、薄膜生长的应用薄膜的生长过程被广泛应用于药物递送、纳米器件制造和微流控芯片等领域。
其中,药物递送是薄膜生长的最主要应用之一。
通过控制薄膜生长过程中薄膜孔径的大小和分子结构的选择性,可以实现针对特定分子的递送功能。
此外,薄膜的自组装过程也被应用于纳米器件制造和微流控芯片等领域。
通过控制薄膜的结构和性质,可以制备出高效的光电器件和传感器等纳米器件,并实现芯片尺寸的微观控制。
总之,薄膜生长机制的研究对于我们深入理解生命过程和应用纳米技术等领域有着重要的作用。
薄膜生长的基本过程

Monte Carlo 模拟和DLA模型
Monte Carlo simulation DLA (Diffusion Limited Aggregation) Hit-and-stick DLA model
Monte Carlo方法
利用随机数进行统计计算 利用随机投针法计算圆周率
P=2L/πd
1. 产生随机数 2. 设定游戏规则
参数比较容易测量。
Gc i / 2
Parameter dependencies of the maximum cluster density
起始沉积
成核
稳定核长大
稳定核相遇
融合后产生新的核
1.5 min
R = 1013 atoms/cm sec
15 min
8 min
85 min
Au/ NaCl(001)
其它因素: 台阶边缘的Schwoebel 势垒
33 oC 81 oC 105 oC
❖ Ag(111) 上Au核分布 的STM 图. ❖ 平台上的Au核表明台阶边缘的Schwoebel 势垒在低温
下阻碍原子的在台阶间的扩散。
不同D/J值时团簇密度 nj的直方图,n0为衬底表 面的原子数。
其它因素: 表面扩散的各向异性
Ed
v1e kT
Ed为扩散激活能 v1为横向振动频率
横向振动频率/纵向振动频率 ~ 0.25,可认为相等
吸附原子被捕获的几率 ~
Ea
吸附原子在衬底上的驻留时间: a v1e kT
一般的Ea>Ed 温度变化对驻留时 间的影响更显著
1/N0
Ea
Ed
Ra ~ a0 exp[(Ea Ed ) / 2kT ]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ag 在NaCl(100)的成核率与温度的关系,右上 图是最小稳定晶核与临界晶核。
形成不同尺寸晶核的条件: i=1i=2i=3 或 i=1i=3……
Ji ( R / N
i=1i=2
T12
i 1
i 1 0
) e
i ( Ei (i 1) Ea Ed )/ kT
J1 J 2 T12
(a) Transformed fraction of CoSi2 as a function of time as measured by change in resistivity, (b) Arrhenius plot of log t1/2 vs 1/TK.
CoSi2 : EN = 0.3 eV and EG = 0.92 eV. Often, EN is taken to be zero so that Et = 3EG.
2
低沉积率 高扩散 高沉积率 低扩散
L2R/D << 1
L2R/D ~ 1
L2R/D > 1 L2R/D >> 1
其它因素: 台阶边缘的Schwoebel 势垒
33 oC
81 oC
Schwoebel 势垒 的影响因素: 台阶边缘缺陷 表面活性剂
105 oC
Ag(111) 上Au核分布 的STM 图. 平台上的Au核表明台阶边缘的Schwoebel 势垒在低温 下阻碍原子的在台阶间的扩散。
薄膜生长初期阶43 PRL 76 (1996) 1304 没有实验观察
计算得到 分形图形
到在正方表面 晶格上形成的 分形生长图形
( Ea Ed )/ kT
起始完全沉积
1/ 2 Ed / 2kT N x ( N0 R / ) e
饱和稳定晶核密度随温度的变化
Au、Ag/碱卤化物的吸附能和扩散激活能
样品 Au/NaCl Au/KCl Ea/eV 0.68~0.74 0.66~0.71 Ed/eV 0.27~0.36 0.21~0.28
薄膜生长的成核长大动力学
薄膜生长的基本过程
热力学:判断过程是否能进行 动力学:过程怎么进行 热力学平衡的时候薄膜不能生长
原子流密度J
入射流密度
脱附流密度
净沉积率
气相温度增加
温度
讨论:平衡时Jc=J0 薄膜生长时处于非平衡状态Jc>J0 温度升高会降低沉积速率,甚至无法沉积
1/N0
Ea
Ed
Ra ~ a0 exp[( Ea Ed ) / 2kT ]
r为初始晶核的半径,X为neck的半径,该方程是描述 两个半径为r的晶核合并过程中neck半径的变化.
原子团的迁移机制
D(r ) B(T ) / r exp(Ec / kT )
s
B(T)是与温度相关的常数,S:1~3
成核与生长的转化方程
exp(
π 2 3 NG t0.5 ) 0.5 3
Ag/NaCl Ag/KCl
0.61~0.65 0.41~0.53
0.18~0.24 0.08~0.31
不同温度下沉积的 Au核的形貌图 覆盖度 0.2ML
100K 400K 300K 450K
(a) (b)
100 K 300 K
(c)
(d)
400 K
450 K
温度上升,晶核数减小,是起始完全沉积状态
D R L2 R Peclet No. 2 J D / L D
where L = ave. step spacing
不同D/J值时团簇密度 nj的直方图,n0为衬底表 面的原子数。
其它因素: 表面扩散的各向异性
0.1 ML Si 563 K 0.1 ML Si
Denuded
Hit-and-stick DLA model
1. 2. 3. 4.
产生随机数——蒸镀原子的坐标 产生随机数——蒸镀原子随机扩散 如果遇到其他原子则凝聚下来 如果没有遇到其他原子则继续扩散
计算模拟所得的图形 —分形图形
Hit-and-stick DLA model
四方格子生长的图形
三角格子生长出的图形
单位面积 衬底分为 两部分
稳定晶核区nxma/N0 单原子区1-nxma/N0
温度下降,起始不完全沉积起始完全沉积
起始完全沉积的稳定晶核密度: 由于增原子密度高,所以在 小于a的时间内增原子就会 被俘获,无规行走时间(或称 单原子寿命)不再是a,而是 c,且c<a
起始不完全沉积
Nx N0e
半球体原子数的变化
rc (t ) rc (t0 )[1 (t t0 ) / ]
1/ 4
rc 4 (t0 ) / b
b N0 22 Ds / kT
r (t ) ~ t 大原子团 r (t ) ~ t 小原子团
4 c 4 c
Si上生长Sn 原子的过程
不同生长模式下的生长时间标度率
在熟化过程中,包括原子从小原子团脱离,原子扩散 到大原子团附近,再被大原子团俘获等一系列过程, 在后两种情况下,原子的脱离或俘获过程是限制过程
合并过程
Au /MoS2 , 400 oC, (a) 任意时间, (b) 0.06s, (c) 0.18s, (d) 0.50 s, (e) 1.06 s, (f) 6.18 s.
T
吸附与脱 附平衡
起始不易沉积状态和起始完全沉积状态下 晶核数和吸附原子数随时间的变化 Rt沉积总量,Rtb净沉积量(与稳定晶核数相关)
n1达到平衡之前是否已经开始成核
权重因子
C1=1;C2=3;C3=2;C4=3
ma
Ra
(rc / T ) R 0 (Gc / T ) R 0
1.5 min 15 min
8 min
85 min
250 °C
Au/ NaCl(001)
稳定核的生长、融合与减少
dn x K i n1ni U c U m dt
稳定核生长过程中的一般现象: 所有核在衬底表面的投射面积之和减小; 残存核的高度增加; 具有晶体外形的核有时会变形成圆; 岛随时间逐渐取晶体外形; 两个具有不同取向的岛融合时,融合后的岛取融 合前尺寸更大的晶体的取向; 融合过程经常有类液体的过程,比如形状变化; 原子团可以在表面迁移(迁移融合);
薄膜以layer-by-layer方式外延生长时,增原子必须扩散 到生长边缘,距离大概 100 ~ 1000 原子距离,要求扩散 系数大约为10-8cm2/s 所以 TE~0.5TM 半导体 ~0.3TM 金属 ~0.1TM 卤化物
起始沉积过程的分类
按起始沉积过程中再蒸发的难易程度和沉积 原子能够相遇结合起来的程度区分为三类
Es 2*2 R
2 1
Es (T ) 2 RT
2 1/3
RT 2 R1
Es 1/ 3 2 1 Es (T )
合并后总表面能降低
合并过程neck的尺寸变化:
合并过程neck的尺寸变化:
X / r A(T )t
n m
m,n与具体的扩散机制相关,体扩散n=5,m=2;表面 扩散n=7,m=3.
L<d P=2L/πd
分形生长:DLA,扩散限制聚集,动力学因素起作
用,低温高沉积率下比较常见
Hit-and-stick DLA model programm
初始条件:原点有一原子,范围为m*n。 计算程序: 产生随机数—
蒸镀原子坐标
产生随机数— 原子扩散方向
是否遇到 其它原子 否
是
与其它原子 凝聚在一起
每秒流入周长为2πr的 球体的原子数
N J 2 rDs R
Rr
N r N0e
2 rkT
2 Ds 2 Ds 2 ( Nr N0 ) N0 ln L ln L rkT
2 3 Q r / 3 dQ 2 r 2 dr 2 Ds 2 N0 dt dt ln L rkT
2 rkT
r
Nr为原子团表面吸附原子的浓度, N r N0e N0为平直表面上的吸附原子浓度
N r ln( Lr / R ) N 0 ln( r / R ) N ( R) ln L N r ln Lr N 0 ln r ( N 0 N r ) ln R ln L ln L
E2 Ea k ln( R / N 0v)
R12
E2 Ea N 0 v exp( ) kT
E2 Ea kT ln(R / N0v)
i=1i=3, i=2i=3
薄膜质量和成核的关系的一般规律
临界晶核为单个原子时的
稳定晶核密度
i=1 起始不完全沉积,设沉积进行一段时 间后,稳定晶核数为nx N0 < Rama < 2N0
3
A 4 r 2
熟化机制下的晶粒长大
极坐标下的扩散方程(二维):
N 1 N 1 ( Ds N ) ( RDs ) 2 t R R R R 2
2
1 N 稳态: ( RDs )0 R R R
边界条件: N(r)=Nr N(Lr)=N0
Nr N(R) N0 Lr
稳定核的生长、融合与减少的机制
熟化过程
不同大小的原子团附近的平 衡蒸汽压(或浓度)不同, 引起浓度差,从而导致原子 从小尺寸原子团到大尺寸原 子团的迁移。这种机制称作 熟化过程,熟化过程是单原 子迁移过程。 pb <
ps
GaAs衬底上Ga原子团的显微像
P, T 恒定时,dG 0 dG SdT Vdp ( V dnV C dnC ) dA ( V dnV C dnC ) dA 0 4 r dnV dnC 0 nC 3 dG = − SdT + Vdp + μdN+ dA 2 V C dnC r