薄膜生长
薄膜生长

薄膜生长与薄膜结构1、概述“薄膜”很难用一句话来定义。
为了与厚膜相区别,一般认为厚度小于1μm的膜称为薄膜。
另外针对于薄膜的生长过程和形态,人们对于薄膜的认知也不同,比如在成膜初期的岛状不连续构造,很多人不认为是薄膜。
薄膜(film)材料和块体(bulk)材料有很多的不同。
首先薄膜生长伴随着温度的急剧变化,内部会存在大量的缺陷;其次,薄膜的厚度与表面尺寸相比相差甚远,可以看成二维结构,表面效应非常强。
薄膜的最终性能与薄膜的生长过程密切相关。
从微观角度看,入射到基板或薄膜表面的气相原子,一部分被反射回去,一部分被表面捕获吸附后吸收能量再蒸发出去,一部分被表面捕获吸附后凝结成核,逐渐长大,最终形成连续的膜层。
下面将详细分析薄膜的生长过程。
2、吸附材料表面是一种特殊的状态,从结构方面讲,这里存在原子或分子间结合键的中断,因此具有吸引外来原子或分子的能力;从能量方面来讲,这里具有一种较高的能量:表面自由能,只有吸附了气相原子之后,自由能才会减小,从而变得稳定。
这种气相原子被吸引住的现象称为吸附,伴随吸附现象的发生而释放的能量称为吸附能。
入射到基板表面的原子可能会发生三种现象:1、与基板表面进行能量交换被吸附;2、吸附后在基板表面做短暂停留,能量过大或吸收能量后再次蒸发;3、直接被基板表面反弹回去。
用溅射法制备薄膜时,入射到基板表面的气相原子,绝大多数都与基板表面原子进行能量交换而被吸附。
如果吸附仅仅是由原子电偶极矩间的范德华力起作用,则称为物理吸附,比如冬天窗户上形成的雾状水气;如果吸附是由化学键结合力起作用,则称为化学吸附,比如当前研究比较热的纳米氧化层。
作为实际问题,使用何种材料,进行什么处理,在真空容器内发生哪种吸附,效果怎么样,这些还不能简单说清楚,特别是表面状态不能保持一定,越发使问题复杂化。
到现在为止,这方面的研究还不多。
在薄膜制造中,如果我们想要获得新材料,那么可以积极利用这种吸附情况;如果我们想得到清洁的纯膜,那么这种吸附会引起麻烦。
薄膜生长步骤

薄膜生长步骤
薄膜生长指的是在基底上通过化学或物理方法制备出一层薄膜的
过程。
这项技术具有广泛的应用前景,例如电子器件、光学材料、涂
料等领域。
下面我们将分步骤介绍薄膜生长的过程。
第一步,先准备好基底,一般选用的是高质量的单晶硅片或玻璃
基板。
这个步骤的关键在于确保基底表面平整、无杂质,以及合适的
晶格结构和晶向。
第二步,进行基底表面预处理。
这个步骤的目的是去除表面的氧
化物和污染物,以及提高表面的反应活性。
常用的方法包括机械抛光、酸洗、热压等。
第三步,选择适当的生长技术。
常见的薄膜生长技术有物理气相
沉积、化学气相沉积、分子束外延、溅射等。
不同的技术具有不同的
优缺点和适用范围,应该根据具体需要选择。
第四步,进行薄膜的生长。
生长过程中需要控制温度、气压、反
应进气量等参数来控制膜的厚度和质量。
在生长过程中还需要根据需
要加入掺杂元素或在不同的反应条件下进行生长。
第五步,进行后处理。
薄膜生长后需要进行一定的后处理,例如
进行退火、氧化等,这些步骤有助于提高膜质量和改变其性能。
以上就是薄膜生长的主要步骤。
在实际操作中,还需要注意一些细节,例如仪器的维护、材料的选择、反应条件的调整等,才能得到高质量的薄膜。
薄膜的生长过程和薄膜结构

光学器件
光学薄膜
01
光学薄膜由多层薄膜构成,用于控制光的反射、透射和偏振等
特性,广泛应用于光学仪器、摄影镜头和照明等领域。
激光器
02
薄膜在激光器中用作反射镜、输出镜和增益介质等,如染料激
光器和光纤激光器。
太阳能电池
03
薄膜在太阳能电池中用作光吸收层和电极等,如染料敏化太阳
能电池和钙钛矿太阳能电池。
等离子体增强化学气相沉积
通过引入等离子体增强反应气体活性,促进化学反应并提高沉积速 率。
液相外延(LPE)
选择性液相外延
通过控制溶液的浓度和热处理条 件,使源物质在基底表面特定区 域析出并生长形成薄膜。
横向液相外延
通过控制溶液的浓度和涂覆方式 ,使源物质在基底表面横向生长 形成薄膜。
分子束外延(MBE)
界面态
在薄膜与基底之间可能存在界面态,即电子或空穴被限制 在界面区域。界面态对薄膜的电子传输和光学性能有重要 影响。
界面结构
界面结构是指薄膜与基底之间的原子排列和相互作用方式。 不同的制备方法和工艺参数可能导致不同的界面结构,从 而影响薄膜的整体性能。
03
薄膜特性
力学性能
弹性模量
描述薄膜在受力时的刚度,反 映了材料抵抗弹性变形的能力
电阻率
衡量薄膜导电难易程度 的物理量,与电导率密
切相关。
击穿电压
描述薄膜所能承受的最 大电场强度,超过此值
会发生绝缘击穿。
光学性能
透光率
衡量光线通过薄膜的能力,与材料的吸收、 反射和散射特性有关。
光谱特性
描述薄膜在不同波长光线下的透射、反射和 吸收特性。
反射率
描述光线在薄膜表面反射的比例,影响光学 器件的性能。
薄膜生长过程

Eε ≥ Ed
2G f [(1 +ν ) /(1 ν )]d c f 2 = [G f Gs /(G f + Gs )][b 2 / π (1 +ν )][ln(d c / b) + 1] / S
4,位错与薄膜生长间的关系: ,位错与薄膜生长间的关系:
a,Frank-Read位错与薄膜生长间的关系——低饱和蒸气压下薄膜生长
}
为薄膜的两种基本生长模式。
3,薄膜中的晶体缺陷: ,薄膜中的晶体缺陷:
其中(c)服从所谓的 Vegards law:
a(Ax B = (1 x)a A + xa B )
(b)称为肖特基缺陷; (a)称为弗兰克尔缺陷。
3,薄膜中的晶体缺陷: ,薄膜中的晶体缺陷:
→
螺位错
刃位错
层错与分位错有关,小角(大角)晶界与刃位错有关。
薄 膜 生 长 过 程
1,真空度对薄膜生长的影响: ,真空度对薄膜生长的影响:
J=nv
Pim JX = 2πm k BT
(JX为沿X方向的入射粒子流通量。)
2,表面能(表面张力ε与表面能 的关系): ,表面能(表面张力 与表面能 的关系): 与表面能γ的关系
产生新的表面,需要破坏一定数量的化学键。因此是吸热过 程,体系能量上升。所以表面能符号应为“+”!
衬底温度 * :1,薄膜 衬底 2,
11,薄膜生长:衬底对薄膜生长的影响 ,薄膜生长:
薄膜 B A B A B A B A 衬底
A B A B A B A B
B A B A B A B A
B A B A B A B A
B A B A B A B A Nhomakorabea举例:衬底缺陷(层错(等等))必然对薄膜生长有影响。
薄膜生长的原理范文

薄膜生长的原理范文薄膜生长是一种通过在基底上逐层沉积材料来制备薄膜的过程。
薄膜生长技术在许多领域中被广泛应用,如半导体器件、薄膜太阳能电池、涂层技术、生物传感器等。
薄膜生长的原理涉及材料的原子或分子沉积、表面扩散、自组装等过程。
本文将详细介绍薄膜生长的原理。
首先,薄膜生长涉及材料的原子或分子在基底表面的沉积过程。
在薄膜生长中,一般采用物理气相沉积(PVD)或化学气相沉积(CVD)等方法。
在PVD中,材料通常以固体的形式存在,通过激光蒸汽、电子束蒸发等方式将材料蒸发到真空腔体中,然后沉积到基底表面。
在CVD中,材料以气体的形式存在,反应气体通过化学反应生成沉积材料,并在基底表面上沉积。
这些方法中,材料的原子或分子需要穿过气体或真空中的传递路径,然后与基底表面发生相互作用,并最终沉积到基底表面上。
其次,薄膜生长还涉及沉积材料的表面扩散。
由于沉积材料和基底的晶体结构不匹配,沉积过程中会产生应变能,而表面扩散可以减小材料的应变能。
表面扩散是指原子或分子在表面上的迁移过程,使得材料可以在基底表面上扩散形成更大晶体的过程。
表面扩散是通过原子或分子的跳跃运动来实现的,这种跳跃过程受到热能的影响。
在薄膜生长过程中,通常会提供适当的热能,以促进表面扩散,使得材料更好地填充基底表面。
此外,薄膜生长还涉及材料的自组装。
自组装是指原子、分子或纳米颗粒自发地在基底表面上组装成有序结构的过程。
材料的自组装通常受到表面能、体能和介面能的影响。
表面能是指材料表面的自由能,体能是指材料的体积自由能,介面能是指材料与基底之间的能量。
当材料在基底表面上形成一定的有序结构时,可以通过降低介面能来减小自由能,从而提高生长速率和质量。
自组装还可以通过改变材料的结构和形貌来调控其性能,如提高材料的导电性、光学性能等。
总之,薄膜生长的原理涉及材料的原子或分子沉积、表面扩散和自组装等过程。
通过控制这些过程的条件和参数,可以实现对薄膜的生长速率、厚度、晶体结构和形貌的调控。
薄膜的形成过程及生长方式

低温抑制型薄膜沉积过程的特点:
• 原子的表面扩散能力较低,其沉积的 位置就是其入射到薄膜表面时的位置;
• 决定薄膜组织的唯一因素是原子的入 射方向;
• 形成的薄膜充满了缺陷和孔洞,表面 粗糙。
16
5.3.3 高温热激活型薄膜生长
• 当沉积温度较高时,原子扩散较为充分 ,扩散就会影响薄膜的组织结构和形貌 。它可以消除孔洞的存在,使薄膜组织 状变为柱状晶形态。
因于生长过程,所以薄膜生长是最为基 本的。
4
• 5.12薄膜的生长模式
• 薄膜的生长模式可以归纳为三种: • (1)岛状模式(Volmer-Weber模
式); • (2)层状模式(Frank-van der
Merwe); • (3)层岛复合模式(Stranski-
Krastanov) • 三种模式的示意图5.2
• 由于原子的平均扩散距离随着温度的上 升呈指数形式增加,因此,组织形态的 转变发生在0.3Tm附近很小的温度区域
17
。
•图5.17是 二维模拟得 出的30°角 倾斜入射沉 积时,薄膜 组织随沉积 温度的变化 情况。
• 由图可以看出,随着衬底温度的上升,薄膜
中的孔洞迅速减少。
18
图5.18显示了衬底温度对薄膜表面形貌的 影响
薄膜生长过程与薄膜结构薄膜的生长模式可以分为外延式生长和非外延式生长两种生长模式
薄膜的形成过程及生长方式
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
目录
• 5.1 薄膜生长过程概述 • 5.2 形核阶段 • 5.3 薄膜生长过程与薄膜结构
习题
2
5.1、薄膜生长过程概述
薄膜生长机理

薄膜的形成过程和生长模型薄膜的形成过程是指形成稳定核之后的过程。
薄膜生长模式是指薄膜形成的宏观形式。
成长有三种模式①岛状生长形式②层状生长形式③层岛结合形式。
薄膜的形成过程可分为四个主要阶段a岛状阶段在透射电子显微镜观察过的薄膜形成过程照片中能观测到最小核的尺寸约为23nm左右。
在核进一步长大变成小岛过程中平行于基体表面方向的生长速度大于垂直方向的生长速度。
这是因为核的长大主要是由于基体表面上吸附原子的扩散迁移碰撞结合而不是入射蒸发气相原子碰撞结合决定的。
例如以MoS2为基片在400℃下成膜时Ag或Au膜的起始核密度约为5×1014m-2最小扩散距离约为50nm。
这些不断捕获吸附原子生长的核逐渐从球帽形、圆形变成多面体小岛。
对于岛的形成可用热力学宏观物理量如表面自由能也可用微观物理量如结合能来判别。
利用宏观物理量预测三维岛成长的条件基体与薄膜的自由能之差小于基体与薄膜的界面自由能。
例如基体和薄膜不能形成合金的情况下因为薄膜自由能0如果基体自由能界面自由能那么上述关系当然会被满足。
如果清楚地知道薄膜和基体不能形成化合物即使薄膜自由能的大小不清楚可以预想它还是按照三维岛的方式成长。
当核与吸附原子间的结合能大于吸附原子与基体的吸附能时就可形成三维的小岛。
是用微观物理量判别岛成长的条件。
b联并阶段随着岛不断长大岛间距离逐渐减小最后相邻小岛可互相联结合并为一个大岛。
这就是岛的联并。
联并过程小岛的变化如图所示。
小岛联并长大后基体表面上占据面积减小表面能降低基体表面上空出的地方可再次成核。
岛的联并与固相烧结相类似。
基体温度对岛的联并起着重要作用。
在联并时传质的可能机理是体扩散和表面扩散其中主要的是表面扩散核越小时越是如此。
因为已经观察到在短至0.06s时间以内就可在岛间形成相当线度的颈部岛间结合部这可用表面扩散给以满意的解释。
虽然小岛联并的初始阶段很快但在长时间内新岛继续改变它的形状。
所以在联并时和联并后岛的面积不断发生着改变。
半导体薄膜生长术语-概念解析以及定义

半导体薄膜生长术语半导体薄膜生长,作为现代微电子科技与光电子科技领域的关键技术之一,其过程涉及众多专业术语和工艺步骤。
以下是对半导体薄膜生长过程中一些核心术语的阐述:1. 『分子束外延』(Molecular Beam Epitaxy, MBE):一种高精密薄膜生长技术,通过精确控制原子或分子束的能量和方向,在超真空环境下实现单晶半导体薄膜的逐层精确生长。
2. 『化学气相沉积』(Chemical Vapor Deposition, CVD):利用气态物质在固态基底上反应生成所需固体薄膜的一种方法,常见于制备高质量、大面积的半导体薄膜。
3. 『原子层沉积』(Atomic Layer Deposition, ALD):基于自限制表面反应机制,以单原子层为单位进行薄膜生长的技术,尤其适用于复杂三维结构的均匀薄膜沉积。
4. 『液相外延』(Liquid Phase Epitaxy, LPE):将基片浸入含有过饱和组分的溶液中,利用溶质在固-液界面处的定向结晶形成薄膜。
5. 『溅射沉积』(Sputter Deposition):利用离子束轰击靶材,使靶材原子溅射出来并在衬底上凝结成膜的过程。
6. 『热氧化』(Thermal Oxidation):在高温下,硅片表面与氧气反应生成二氧化硅(SiO₂)薄膜,是制造MOS 结构的关键步骤。
7. 『掺杂』(Doping):在半导体薄膜生长过程中引入杂质元素,改变材料导电类型,如n型掺杂(磷、砷等)、p型掺杂(硼、镓等)。
8. 『二维生长模式』与『三维生长模式』:前者指薄膜原子严格沿基底平面排列生长;后者则允许薄膜原子在垂直和平行于基底的方向上同时生长。
9. 『台阶流』(Step Flow Growth):在具有原子级平整度的衬底表面,薄膜沿着台阶边缘连续生长的现象。
10. 『表面重构』(Surface Reconstruction):薄膜生长初期,由于表面应力、能态等因素影响,实际表面结构与理想晶体结构发生偏离的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
二、自发形核的热力学分析:
4、临界核心的面密度:
4)分析与讨论: 要想获得平整、均匀的薄膜沉积,需要提高新相的形核率 n*,即:降低 G* 和 r*: 实现方法:
□ 在薄膜的形核阶段: P Sg r*、G* 形成大量核心 均匀平整的薄膜 热力学考虑! □ 在薄膜的生长阶段:T、采用离子轰击抑制岛状核心合并 抑制扩散防止过度生长 动力学考虑!
G*
*
0
温度 T 的影响: □ T 相变过冷度 Gv G* ! □ T 表面原子热振动加剧 吸附原子脱附几率 n1 n0 ! 规律:T n0、G*、exp(-G*/kT) n* 不利于获得高的薄膜形核率 低温有利于形核 (热力学有利!)、但不利于长大 (扩散不易进行、动力学不利!)
2、形核自由能及表面张力作用分析:
形成这样一个原子团时,系统的自由能变化可写作:
G a1Gv r 3 [a2 ( fs sv ) a3 vf ] r 2
(4 - 11)
式中:Gv — 单位体积相变能 (形核驱动力); — 表面张力 (下标 v、s、f 分别表示气相、、基本规律:
湿润性很差时: 薄膜以岛状模式生长! (同时要求沉积温度足够高、沉积原子具有一定扩散能力) ■ 错配度影响较小,沉积原子倾向相互键合形成三维岛,而避免与基片原子键合! ■ 在非金属基片上沉积金属材料时,薄膜往往以这种模式生长!
薄膜的形核与生长
薄膜生长的过程与模式
基于实验观察划分的薄膜生长模式
外延生长薄膜时,需要抑制新相核心的形成,同时促进扩散长大 Sg、T n* !
薄膜的形核与生长
薄膜形核理论简介
薄膜的非自发形核理论
薄膜实际形核过程:多为非自发形核!
新相核心出现在能量有利位臵!
一、非自发形核的热力学分析:
1、基本假设 (如右图所示) :
1)新相核心为球冠状,其球冠半径为 r; 2)形核过程中,基片表面原子可充分扩散,即:扩散距离 >> 原子间距 3)沉积物质原子的直径为 a0,且表面已吸附原子只能通过高度为 a0 的环状面积进入核心; 4)核心尺寸很小,既可能吸收外来原子而长大,也可能失去已拥有的原子而消失。 5)新相 (薄膜) – 基片 – 气相 三者界面上不但作用着 “气相–凝聚相”间的表面张力 vf ,还存在 “气相–基片” 间 表面张力 sv 和 “新相–基片”间表面张力 fs ,且三个表面张力处于平衡状态; 6)球冠状核心最外侧边缘处切向与膜基界面间的夹角为 。
16 3 16πγ3 16πγ3 2 □ 改变 P 可改变 Gv,进而改变 [参见式 (4-6)]:G 2 2 2 2 2 3 G 3k T ln P / Pe kT P v P G* ! 3 ln P * * * e 规律:P n 、G 、exp(-G /kT) n !
16 3 16πγ 3 Ω 2 G 3Gv2 3[kT ln( S g 1)]2
分析:
此处:r* — 临界核心半径; G* — 形核势垒。 如右图曲线 2 和 曲线 1的比较所示:气相过饱和度 Sg (曲线2) 需克服的形核势垒 G* ; 如右图曲线 2 和 曲线 1的比较所示:气相过饱和度 Sg 新相的临界核心半径 r*; 新相尺寸 r < r*时,新相核心缩小 系统自由能 倾向于自发消失 (不稳定); r > r*时,新相核心长大 系统自由能 倾向于继续长大 (稳定化)!
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
二、自发形核的热力学分析 :
2、形成新相的系统自由能变化分析 :
1)形成此新相核心时,系统的自由能变化满足:
4 G V Gv S r 3 Gv 4r 2 3
(4 1)
式中:Gv — 单位体积相变自由能差,Gv = (Gg - Gs); — 新相核心单位面积表面能。 2)Gv 还满足:Gv
薄膜的形核与生长
薄膜形核理论简介
薄膜的非自发形核理论
一、非自发形核的热力学分析:
2、形核自由能及表面张力作用分析:
核心为图示球冠状时,成立:
a1 (2 3 cos cos 3 ) / 3 [球冠体积 / r 3 ] 3 2 a2 sin [球冠底面积 / r ] 2 a3 2 (1 cos ) [球冠顶面积 / r ]
G G j jG1
则该可逆反应的平衡常数可表示为:K n j
(4 - 8)
此处:Gj — 新相核心的自由能; G1 — 单个气相原子的自由能。
n
m 1
j
1, m
n j n1j exp G kT
(4 - 9)
此处:nj — 新相核心的面密度; n1 — 基片表面上单个气相原子的面密度。 3)临界核心面密度:当核心半径 r r*时,j j*,G G*,且 nj n* (临界核心面密度):
二、自发形核的热力学分析 :
3、形核势垒及临界核心半径 :
对式 (4-1) 中的 G 求极值,可得:
2 d (G ) 4 r * Gv 8r * 0 dr r r *
r*
*
2 2 Gv kT ln( S g 1)
(4 - 5) (4 - 6)
二、主要控制因素及规律:
1、主要控制因素:
薄膜生长模式的划分及主要控制因素
晶格错配度 |as- af |/as :薄膜与基片材料的晶格错配度越小,则 |as- af |/as 越趋近于 0; 膜基湿润性 (s- f )/s :湿润性好 基材表面能s > 薄膜表面能f 形成新相表面可 系统界面能; 湿润性差 s < f 暴露更多基片表面可 系统界面能!
n* n j
j j*
n1j
j j*
exp G * kT n0 exp G * kT
(4 - 10)
此处:n0 = f (n1),是一个依赖于 n1 的常数,取决于每摩尔气相原子输运到基片表面并被吸附的数目!
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
薄膜的形核与生长
薄膜生长的过程与模式
初期成膜过程的实验现象
新相形核 薄膜的沉积形成过程可分为两个不同阶段: 与整体材料相变过程类似! 后期生长
一、实验现象:(以 Ag 在 NaCl (111) 晶面上的蒸发沉积为例,所有照片均为电镜原位观察获得)
二、基本规律:
薄膜形成的最初阶段,一些气态原子/分子开始凝聚到基片表面,开始形核; 在气态 Ag 原子到达基片表面的最初阶段,先是在基片上附着并凝聚,形成一些均匀细小、而且可以运动的 原子团,这些原子团被形象地称为“岛”;
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
二、自发形核的热力学分析 :
4、临界核心的面密度:
1)可逆反应假设:r < r* 时,新相核心不稳定 (不断形成的同时、也在不断消失),可认为这些不稳定核心 与气相/表面吸附原子间存在可逆反应:
jA N j
(4 - 7)
式中:Nj — 含有 j个原子的不稳定核心; A — 单个气相原子。 2)可逆反应的自由能差及平衡常数:式 (4-7) 所示反应向右进行产生的系统自由能变化满足:
kT P kT J ln ln Pe Jv
( 4 2)
此处:P — 气相的实际压力; Pe — 固相 (凝结相) 的平衡蒸气压; — 原子体积。 由 (4-2) 式可知:P > Pe 或 J > Jv 时 Gv < 0 开始出现推动自发形核的相变自由能差! 3)气相的过饱和度 (Sg) 定义为:S g
P Pe P 1 Pe Pe
Gv
kT P kT ln ln S g 1 Pe
(4 - 3)
可见:气相过饱和度 Sg > 0 时,Gv < 0,新相才具有自发形核的驱动力; 而 Sg < 0 时,新相不可能形核!
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
二、自发形核的热力学分析:
4、临界核心的面密度:
4)分析与讨论:
* * * 总体规律:由式 (4-10) n n0 exp G kT f ( n1 ) exp G kT 可知:
临界核心面密度 n* 取决于基片表面吸附的气相原子的面密度 n1、形核势垒G* 和 温度 T ! 气相压力 P 的作用: □ 改变 P 可改变 n1,进而改变 n0:n1 J(气相原子的沉积通量) n1 P n0 P P n0 !
注意:小岛的合并过程一般要进行到薄膜厚度达到数十纳米时才会结束,随后开始最终的薄膜生长过程。
薄膜的形核与生长
薄膜生长的过程与模式
基于实验观察划分的薄膜生长模式
一、生长模式的划分:如右图所示,可分为:
岛状生长模式 (Island Growth) Volmer - Weber Mode 层状生长模式 (Layer by Layer Growth) Frank - Van der Merwe Mode 层状 - 岛状生长模式 (Layer Plus Island Growth) Stranski - KrastanovMode
薄膜的形核与生长
薄膜生长的过程与模式
初期成膜过程的实验现象
二、基本规律:
这些液珠一样的小岛不断接受新的沉积原子,并与其它小岛合并而逐渐长大,岛的数目很快达到饱和;