悬架和油气弹簧悬架
汽车主动悬架—液压和空气式解读

汽车主动悬架—液压和空气式从控制力的角度划分,悬架可分为被动悬架,半主动悬架和主动悬架。
目前,大多数汽车的悬架系统装有弹簧和减振器,悬架系统内无能源供给装置,其弹性和阻尼不能随外部工况变化,因此称这种悬架是被动悬架。
主动悬架有作为直接力发生器的动作器,可以根据输入与输出进行最优的反馈控制,使悬架有最好的减震特性,以提高汽车的平顺性和操纵稳定性。
它由弹性元件C和一个力发生器Fe组成。
半主动悬架可看作由可变特性的弹簧和减振器组成的悬架系统,虽然它不能随外界的输入进行最优的控制和调节,但它可按存储在计算机的各种条件下最优弹簧和减振器的优化参数指令来调节弹簧的刚度和减振器的阻尼状态。
它由弹性元件C和一个一个阻尼系数能在较大范围内调节的阻尼器组成。
电子技术控制汽车悬架系统主要由(车高、转向角、加速度、路况预测)传感器、电子控制ECU、悬架控制的执行器等组成。
系统的控制功能通常有以下三个:1车高调整当汽车在起伏不平的路面行驶时,可以使车身抬高,以便于通过;在良好路面高速行驶时,可以降低车身,以减少空气助力,提高操纵稳定性。
2阻尼力控制用来提高汽车的操纵稳定性,在急转弯、急加速和紧急制动情况下,可以抑制车身姿态的变化。
3弹簧刚度控制改变弹簧刚度,使悬架满足运动或舒适的要求。
采用主动式悬架后,汽车对侧倾、俯仰、横摆跳动和车身的控制都能更加迅速、精确,汽车高速行驶和转弯的稳定性提高,车身侧倾减少。
制动时车身前俯小,启动和急加速可减少后仰。
即使在坏路面,车身的跳动也较少,轮胎对地面的附着力提高。
一.主动式液压悬架电子控制的主动式液压悬架能根据悬架的质量和加速度等,利用液压部件主动地控制汽车的振动。
主动式液压悬架在轿车上的布置如图所示,在汽车重心附近安装有纵向、横向加速度和横摆陀螺仪传感器,用来采集车身振动、车轮跳动、车身高度和倾斜状态等信号,这些信号被输入到控制单元ECU,ECU根据输入信号和预先设定的程序发出控制指令,控制伺服电机并操纵前后四个执行油缸工作。
汽车悬架知识

独立悬架中多采用螺旋弹簧和扭杆弹簧作为弹性元件。
1、横臂式独立悬架:
单横臂式独立悬架(不用于转向桥)
双横臂式独立悬架: 两摆臂等长悬架
(用于转向桥)
两摆臂不等长悬架
用于转向桥
单横臂式独立悬架: (少用)
优点:结构简单、紧凑,布置方便。用于后桥。 缺点:1、当悬架变形时车轮平面将产生倾斜,从
而改变两侧车轮的轮距, 使车轮侧向滑移、磨损严 重。2、该悬架用于转向轮时,会使主销内倾角、车 轮外倾角发生较大变化,对转向操纵有一定影响。
一、纵置板簧式非独立悬架(有如下几种安装方式)
1、一端固定,一端可摆动:
保证弹簧变形时,两卷耳中心线间的距离有改变的 可能,从而减小弹簧的变形量。
空 载
满 载
钢板弹簧工作过程演示
2、滑板式结构:弹簧长度可随变形的增加而增加。弹簧第二片后端带
有直角弯边,弹簧下落时借此直角弯边支靠于支架下端的限位螺栓上,以 防止钢板弹簧从支架中脱出而发生事故。
三、 减振器的分类: 按其作用方式不同分为:
弹性元件 车桥
1:双向作用减振器:在压缩、伸张两行程中均起减振作用。
2:单向作用减振器:仅在伸张行程中起减振作用。
1、双向作用筒式减振器
结构:
活塞杆 储油钢桶
防尘罩
伸张阀
流通阀
导向座
活塞
压缩阀
补偿阀
工作原理
压缩行程:当汽车滚上凸起或滚出凹坑时,车轮靠近车架。
2、一端固定,一端滑板
3、两端直接插入固定于车架上的橡胶支承垫块中:
靠橡胶变形来保证弹簧变形时两端的相对移动。主片不易损坏,无须 润滑,有良好的消除噪声能力,但钢板弹簧的纵向移动量受到限制,该结 构只能在比较长而且刚度较大的钢板上才采用。一般用于前悬。 两端直接插入固定于车架的橡胶支承垫块中
油气悬架有多种形式

油气悬架有多种形式。
按单缸蓄能器形式,分为成单气室、双气室、两级气压式等;按车桥各悬架缸是否相连可分为独立式和连通式;按车辆行驶过程中悬架控制是否需要外部能量输人分为被动油气悬架、半主动悬架和主动悬架。
目前,国外油气悬架系统已商品化,应用于各类特殊底盘的结构中,如自卸汽车、全地面起重机等,采用的形式也各有不同。
自卸汽车多采用独立式油气悬架,利勃海尔全地面起重机系列在路况好的情况下采用独立式悬架,而在路况恶劣的情况下采用互连式悬架,极大地增强了车辆的行驶平顺性和操作平稳性。
特征a非线性刚度。
被动悬架因弹性元件的刚度大多为线性的而使其刚度基本保持不变,因此车架的自然振动频率f就会随着车架的质量M变化而变化;而在油气悬架中,弹性元件的刚度具有非线性、渐增(减)的特点,这就有可能通过参数优化设计来保持车体的振动频率不随车体质量的变化而变化或变化很小。
b 单位储能比大。
在氮气充气压力为6Mpa的条件下,油气弹簧的单位重量储能是钢板弹簧的单位重量储能的3500倍,这有利于减轻悬架的质量和结构尺寸。
c 车身高度自由调节。
通过悬架缸的同时或单独调节,车架高度可上下升降、前后升降或左右升降,这对改善车辆的通过性能和行驶性能十分重要。
d 刚性闭锁。
通过切断油缸与蓄能器及其它液压元件的连接油路,利用油液压缩性较小特点,可使油气悬架处于刚性状态,在这种条件下车辆可承受较大载荷并能缓慢移动。
e 非线性阻尼。
可迅速抑制车架的振动,具有很好的减震性。
构件是由蓄能器和悬架缸为主要的构件,将传统悬架的弹性组件和减振器结合。
优点1、非线性变刚度特性2、非线性阻尼特性3、易于实现车身高度调节4、油气弹簧的单位储能比其他弹簧较大5、因减振器置于悬架缸内,故不需制造专用减振器6、油气悬架拥有刚性闭锁,可使车辆承受较大负荷7、通用性好,易于产品系列化缺点1、加工不易2、维修困难3、制造成本高4、需要额外配置液压、电子、电气等诸多控制组件来辅助油气悬架系统采用悬架油缸与导向推力杆连接车架与车轴,悬架油缸将垂直轴荷转换为油缸内油液的压力,压力通过管路传递至液压控制单元与蓄能器,蓄能器内以有一定初始压力的惰性气体(通常为氮气)为弹性介质,悬架油缸内部油路上具有数个节流孔与单向阀,能起到减振的作用。
17-4.5空气悬架、油气弹簧设计

17-4.5空⽓悬架、油⽓弹簧设计4.5空⽓悬架、油⽓弹簧设计4.5.1空⽓悬架的设计空⽓悬架多应⽤于各类⼤型客车和⽆轨电车上,在⾼级轿车、长途运输重型载货汽车和挂车上也有所采⽤。
其弹性元件是由夹有帘线的橡胶囊或膜和冲⼊其内腔的压缩空⽓所组成。
这种悬架除弹性元件、减振器和导向机构外,⼀般还装有车⾝⾼度调节装置。
由于空⽓弹簧可以设计得⽐较柔软,因⽽空⽓悬架可以得到较低得固有振动频率,同时空⽓弹簧的变刚度特性使得这⼀频率在较⼤的载荷变化范围内保持不变,从⽽提⾼了汽车的⾏驶平顺性。
空⽓悬架的另⼀个优点在于通过调节车⾝⾼度使⼤客车的地板⾼度和载货汽车的货箱⾼度随载荷的变化基本保持不变。
此外,空⽓悬架还具有空⽓弹簧寿命长、质量⼩以及噪声低等⼀些优点。
空⽓悬架的不⾜之处在于:结构复杂,与传统的钢制弹性元件相⽐,需要增加压⽓机、车⾝⾼度调节器以及⽓阀等零部件;价格昂贵;空⽓弹簧尺⼨较⼤,不便于布置;需要专门的导向机构传递侧向⼒、纵向⼒及制动、驱动⼒矩。
正是由于这些原因,普通轿车上很少采⽤空⽓悬架。
戴姆勒—奔驰公司仅在其最⾼档的600系列轿车上才装有空⽓悬架。
按照结构特点,空⽓弹簧可以分为囊式和膜式两⼤类。
囊式空⽓弹簧结构相对简单,制造⽅便,但刚度较⾼,因⽽常⽤于⼤型客车、⽆轨电车和载货汽车,并且常配有辅助⽓室以降低弹簧刚度。
膜式空⽓弹簧刚度⼩,适合于⽤作轿车悬架,但同等空⽓压⼒和尺⼨下其承载能⼒⼩,并且动刚度会增⼤。
图4-17如图4—17所⽰,当在充满⽓体的空⽓弹簧上作⽤外⼒P 后,会引起弹簧的微⼩变形df ,相应的⽓体容积变化量为dV 。
由于囊壁变形所做的功与外⼒所作的功相⽐可以忽略,因⽽外⼒作的功Pdf 等于⽓体受压作的功dV p p a )(-dV p p Pdf a )(-= (4-39)式中p ——弹簧内空⽓的绝对压强;a p ——⼤⽓压强。
k ——⽓体常数,当汽车载荷缓慢变化时,弹簧内空⽓状态的变化接近于等温过程,可取k =1;当汽车在⾏驶过程振动时,弹簧内空⽓状态的变化接近于绝热过程,可取k =1.4;实际计算时,通常取k =1.2~1.4。
油气悬挂的工作原理

油气悬挂的工作原理油气悬挂系统是汽车中常见的减震系统,它采用了油气混合胶囊的原理,通过调整悬挂系统中的压力来降低车辆的震动,提高车辆的行驶平稳性和舒适性。
油气悬挂系统有着多样化的类型,下面将按类别介绍其工作原理。
氮气悬挂国内较早推出的悬挂系统,该系统采用氮气充填杆缸,杆缸的外部则用油填充。
气体的压力可以通过单调弹簧支撑提高。
当车辆受到外力作用时,气体与油级配合起来减少车辆的震动。
氮气悬挂系统因为其可调性,所以也常被用于赛车中。
气体弹簧悬挂气体弹簧悬挂系统是采用了气体弹簧的形式,通过气压来进行弹簧的调节和减震。
其内部采用了液压杆缸制成,其工作原理与氮气悬挂类似。
升力通过气压来提供,而转向特性来自于其调整的悬挂减震。
因此气体弹簧悬挂系统在近年来的汽车中采用量越来越多。
液压悬挂液压悬挂系统是现代汽车中最常见的悬挂系统之一,其采用了液体来对汽车进行减震。
该系统中的压力以及流量均已经得到了改善,所以其在车辆稳定性方面非常的优秀,因此在高速公路、长途旅行等领域应用广泛。
其调节的范围也相当大,因此深受消费者的喜爱。
空气悬挂空气悬挂系统是将气体和液体相结合起来进行减震的技术。
该技术的优点在于既可满足高速公路的行驶,又可满足崎岖的山路行驶,因此在越野车等车型中应用广泛。
空气悬挂系统采用的气压调节稳定性较好,对车身高度的调整范围也较大。
总结油气悬挂的工作原理可以归纳为:通过调整液体与气体的比例以及压力实现车辆减震,提高车辆行驶的平稳性和舒适性。
现代汽车中悬挂系统的种类多样,其原理各具特色,应用场景也不同,我们可以在选车时根据需求进行选择。
最后我们要提醒消费者,不论选择哪种悬挂系统都需要定期检查和保养,以确保悬挂系统的减震效果达到最优状态。
油气弹簧特性分析与仿真

油气弹簧特性分析与仿真汽车悬架系统一般由缓和冲击的弹性元件、衰减振动的阻尼元件和导向机构三部分组成。
悬架将车架与车桥或直接与车轮弹性的连接起来。
它将车架上的力及车架所受的力传给车桥,缓和与吸收车轮在不平道路行驶时因车轮跳动所给车架的撞击和振动,并传递力和力矩。
悬挂系统应有的功能是支持车身,改善乘坐的感觉,不同的悬挂设置会使驾驶者有不同的驾驶感受,提高乘坐的舒适性和操纵的稳定性。
理想悬架装置当车辆在路况良好的的路面行驶时,承重的车轮振动行程较小,而且具有很低的悬架刚性,此时车辆行驶时稳定性舒适性都会大大提高。
车辆在高低不平的路面行驶时承重车轮上下波动会很大,车架刚性较大,则对冲击力吸收的能力较强,可以进行高速行驶。
这种车辆的悬架系统其悬架刚性应该是可变的,车架特性是非线性的,油气弹簧悬架系统就具以上的特性。
还有就是,油气弹簧悬挂系统可以通过以下方式自动调节车身的高度,使车身保持在一定高度,例如:对悬挂缸补油或排油;油气弹簧悬挂在加速度、速度、动行程、地面对车轮的冲击力地面、信号的频率方面具有极大的降低效果,特别对地面的高频振动信号,油气弹簧悬挂表现出极大的衰减率,说明油气弹簧悬挂适用于车辆在高低不平的路面上高速行驶。
1/ 91 油气弹簧的实际应用和研究状况目前国内油气弹簧的在车辆上现有技术的应用和发展。
由于油气弹簧结构相对于普通弹簧要复杂,生产成本和设计成本都比较高,对于普通车辆还不能广泛应用。
但是,油气弹簧的诸多优良特性却满足了一部分特种车辆(工程类机械、军工方面特种车辆等)高性能的要求。
目前在国内,除在坦克(轮式坦克、两栖坦克)、装甲车(轮式装甲车、履带式装甲车)轮式输送车、以及导弹发射车等军用车辆上有较广泛的应用外,在一些工程车辆(矿山自卸车、轮式挖掘机、铲运机械、大型平板车),特别是全地面起重机等民用机动车上的应用也得到了迅速的发展。
目前国内对油气悬架的研究和应用存在以下几个问题:(1)结构设计方面的研究还是空白,而且车辆生产商不掌握技术。
第九章--悬架

三、分类:
1、非独立悬架:
弹性元件
两侧车轮安装于一
整体式车桥上,车轮连同 车桥一起通过弹性元件悬 挂在车架或车桥上。
2、独立悬架:
两侧车轮独立地与车 断开式车桥
架或车身弹性连接,当一 侧车身受到冲击时,其运 动不会直接影响到另一侧 车轮。 。
车架 车桥
四、汽车性能对悬架的要求:
由于人体所习惯的垂直振动频率约为 1~1.6Hz, 所以 车身振动的固有频率应接近或 处于人体所适应的范围。
4、应用:
桑塔纳轿车的前悬架
麦弗逊式独立弹簧悬架 刚度可变的锥形弹簧
当车轮转向跳动时, 车轮沿主销转动。
三、气体弹簧
1、 气体弹簧定义 以空气做弹性介质,即在一个密闭
的容器内装入压缩空气(气压为0.5~ 1MPa),利用气体的可压缩性实现弹 簧的作用。 2、分类: 1)气体弹簧主要有空气弹簧和油气弹 簧两种。 2)空气弹簧分为囊式和膜式空气弹簧。 3、气体弹簧的结构
由于伸张阀弹簧刚度比压缩 阀的大,而且伸张阀上的常通孔 隙的直径也比压缩阀的小,就保 证了减振器在伸张行程内产生的 阻尼力比在压缩行程内产生的大。
减振器短片
§9-4横向稳定器
现代轿车悬架很软,即固有频率很低,为提高悬架的侧 倾角刚度,减小横向倾斜,常在悬架中添设横向稳定器(杆) 以保证良好操纵稳定性。
由于各阀门的节流作 用,便造成对悬架伸 张运动的阻力,使振 动能量衰减。
由于活塞杆占去 一定空间,所以 自上腔流入的油 液不足以充满下 腔容积的增加。 储油缸中油液推 开补偿阀流入下 腔补充。
压缩阀和伸张阀上有常通小 孔隙。当振动速度较小时,只靠 这些小孔工作。当振动速度较大 时,才打开阀门工作。阻尼力随 振动速度变化。
汽车底盘构造 第11章 悬架

二、螺旋弹簧 (弹簧钢棒卷制而成)
多用于独立悬架
☺无需润滑,不忌泥污 ☺所需纵向安装空间不大,弹簧本身质量小 必须另装减振器 只能承受垂直载荷,须装设导向机构
三、 扭杆弹簧
扭杆弹簧:由弹簧钢制成的扭杆,通过沿轴向扭转变形来 缓和冲击。
四、气体弹簧
利用气体的可压缩性实现弹簧作用,刚度可变
分类:
二、横臂式独立悬架 1. 单横臂式
目前在前悬架中很少采用
2. 双横臂式
主销内倾角不变,轮距变
主销角度和轮距变化不大
三、纵臂式独立悬架
1. 单纵臂式独立悬架
螺旋弹簧单纵臂式后独立悬架
2. 双纵臂式独立悬架
图示为矩形断面叠片式扭杆弹簧
等长纵摆臂,主销后倾角不变,适用于转向轮
四.车轮沿主销移动的悬架
前滑板式 支座
后滑板式 支座
前支架 总成
吊耳总成
渐变刚度钢板弹簧后悬架
二、螺旋弹簧式非独立悬架 常用作轿车后悬架
三、空气弹簧非独立悬架
四、油气弹簧非独立悬架 • 油气弹簧、上、下纵向推力杆,横向推力杆 • 平顺性好,可变刚度
第五节 独立悬架
一、概述
1.优点
➢ 两侧车轮单独运动互不干涉 ➢ 可减少车身振动,有助于消除车轮偏摆; ➢ 降低非簧载质量,冲击载荷小,平均车速提高; ➢ 降低汽车重心,提高行驶稳定性; ➢ 车轮跳动空间大,可减小悬架刚度,提高平顺性。
节的悬架。 半主动悬架:只有悬架阻尼可以自动调节的悬架。
按汽车悬架的结构特点分为: 非独立悬架:两侧车轮由整体式车桥刚性的连接在一起,只能共
同运动的悬架。广泛应用于货车、客车和轿车后悬架。 独立悬架:两侧车轮由断开式车桥连接,车轮单独通过悬架与车
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读书笔记之汽车悬架概述悬架定义:车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称。
悬架功能:把路面作用于车轮上的垂直反力(支承力)、纵向反力(驱动力和制动力)和侧向反力以及这些反力所造成的力矩传递到车架或(或承载式车身)上,以保证汽车的正常行驶。
悬架组成:弹性元件、减振器和导向机构,辅设缓冲块和横向稳定器。
汽车悬架可以分两大类:非独立悬架和独立悬架1. 非独立悬架架结构简单,工作可靠,被广泛用于货车的前后悬架。
在轿车中,非独立悬架一般仅用于后悬架。
常见的非独立悬架有四种(按照弹性元件的不同分类),即纵置钢板弹簧非独立悬架、螺旋弹簧非独立悬架、空气弹簧非独立悬架和油气弹簧非独立悬架 1.1 纵置钢板弹簧非独立悬架。
由于钢板弹簧本身可以兼起导向机构的作用,并有一定的减振作用,使得悬架结构大为简化,几乎不需要额外的导向结构,对于要求较低的车辆甚至可以不安装减振器。
如图1所示。
1.2 螺旋弹簧非独立悬架螺旋弹簧非独立悬架一般只用作轿车的后悬架。
其纵横向推力杆是悬架的导向机构,用来承受和传递车轴和车身之间的纵向和横向作用力和力矩,加强杆式的作用是加强横向推力杆的安装强度,并可使车身受力均匀。
如图2所示。
a b 图1 纵置钢板弹簧非独立悬架 a)货车的后悬架 b)轿车的后悬架 图2 螺旋弹簧非独立悬架1.3 空气弹簧非独立悬架空气弹簧和螺旋弹簧一样只能传递垂直力,其纵向力和横向力及其力矩也是由纵向推力杆和横向推力杆来传递。
这种悬架也需要安装减振器。
1.4 油气弹簧非独立悬架油气弹簧是以气体(一般式惰性气体-氮)作为弹性介质,而油液作为传力介质。
它是油气体弹簧和和作为液力减振器液压缸组成,所以使用油气弹簧通常无需再安装减振器,但仍然需要导向机构来承受力和力矩。
如图4所示。
图3 空气弹簧非独立悬架 A b 图4 油气弹簧非独立悬架 a )某矿用自卸车前轮油气悬架示意图 b )某货车从动桥油气悬架如表1所示,综合对比了各种非独立悬架的结构特点和优缺点2. 独立悬架独立悬架的结构特点是两侧的车轮各自独立地与车架或车身弹性连接,因而具有以下优点:1)在悬架弹性元件一定的弹性范围内,两侧车轮可以单独运动,而不互相影响,这样在不平道路上可以减少车架和车身的振动,而且有助于消除转向轮不断偏摆的不良现象。
2)减少了汽车非簧载质量。
3)采用断开式车桥,发动机总成的位置可以降低和前移,使汽车质心下降,提高了行驶稳定性。
同时能给予车轮较大的跳动空间,因而可以将悬架的刚度设计得较小,使车身振动频率降低,改善行驶平顺性。
以上优点是独立悬架广泛的用于现在汽车上,特别是轿车,转向轮普遍采用了独立悬架。
但是独立悬架结构复杂,制造和维修成本高。
在独立悬架设计不合理的时,车轮跳动造成较大车轮外倾和轮距的变化,使轮胎磨损较快。
2.1车轮在汽车横向平面内摆动的悬架2.1.1单横臂式独立悬架单横臂独立悬架的特点是党悬架变形时,车轮平面将产生倾斜而改变两侧车轮与路面接触点间的距离—轮距致使轮胎相对于地面侧向滑移,破坏轮胎和地面的附着,且轮胎磨损较严重。
此外这种悬架用于转向轮时,会使主销内倾和车轮外倾角发生较大的变化,对于转向操纵有一定的影响,故目前在前悬架中很少采用。
但是由于结构简单、紧凑、布置方便,在车速不高的重型越野汽车上也有采用。
图5所示极为单横臂式独立悬架,图6为采用单横臂式独立悬架的越野车。
2.1.2双横臂独立悬架双横臂独立悬架的长度可以相等,也可以不相等。
在两摆臂等长的悬架中,当车轮上下跳动时,车轮平面没有倾斜,但轮距却发生了较大的变化,这将增加车轮侧向滑移的可能性。
在两摆臂不等长的悬架中,如果两摆臂长度适当,可以是车轮和主销的角度以及轮距的变化都不太大,如图7所示。
不太大的轮距变化在轮胎较软时可以由轮胎变形来适应,目前轿车的轮胎可以容许轮距在每个车轮上达到4~5mm 的而不致沿路面滑移。
因此,不等长双横臂式独立悬架在轿车前轮上应用广泛。
图5 单横臂独立悬架图6 单横臂独立悬架越野车a b图7 双横臂式独立悬架示意图a )两摆臂等长的悬架b )两摆臂不等长的悬架有时出于布置和空间的考虑,也有使用扭转的弹簧的双横臂悬架,如图9所示。
除了汽车的前轮,双臂也广泛的应用于汽车的后轮上,特别是高性能轿车和跑车上,图10所示。
图8 用于轿车前轮双横臂独立悬架图9 使用扭簧的双横臂式悬架 图10 用于轿车后轮的双横臂式悬架双横臂式悬架通过调整其上下摆臂的长度和安装点位置,可以获得各种轮胎定位参数及其变化趋势,通过配合轮胎参数使得汽车获得较好操纵稳定性,所以双横臂悬架几乎成为超级跑车和大多数赛车的首选悬架形式。
图11 前后车轮均使用双横臂式悬架的超级跑车图12 使用双横臂式悬架的房车赛车图 13使用双横臂式悬架的方程式赛车值得注意的是,在大多数超级跑车和几乎所有的方程式赛车上,减振器和螺旋弹簧的并没有直接安装在横臂或者立柱上,而是通过一个推拉杆和换向摇臂将悬架的跳动运动传递到减振器和弹簧,如图14所示,减振器和弹簧则更靠近车身轴线且通常隐藏于车壳内部。
使用这种结构的原因应该有如下几点:1)便于布置,较细的推拉杆更方便布置,以免和传动轴和转向拉杆发生干涉,对于方程式赛车来说其较长的横臂使得小行程的减振器不足以连接横臂和车架,必须通过推拉杆来传递力和运动。
2)减小空气阻力,这一点对方程式赛车特别重要,露在外面的推拉杆显然比粗壮的减振器和弹簧拥有更小的正投影面积,同时能够有效减小乱流。
3)减小非簧载质量,减振器和弹簧的重量有它们两端的支座承受,只有推拉杆的一部分质量贡献给非簧载质量,同时由于不需连接减振器和弹簧,横臂结构也相对简化,进一步减少了非簧载质量。
4)调整悬架参数,通过合理设计推拉杆和换向器结构,可以实现机构传动比的变化,从而实现悬架的线刚度的变化,即实现变刚度。
当然,在普通民用车上,基于成本和使用空间的考虑,并不采用这种结构。
另外,实现双横臂式悬架的结构,两根横摆臂并不是唯一的方式。
前面讲到的单横臂式悬架由于其会导致较大的主销和轮胎倾角的改变不利于稳定的形式,并没有得到广泛的应用。
但设计师巧妙的再原有单横臂的基础上增加了一个连杆,并是半轴与立柱连接处能够活动,是半轴或半轴套管充当了上横臂,构成了一种特殊的双横臂式悬架,有效克服了单横臂式悬架的缺点。
当半轴充当横臂时,由于半轴既要传递扭矩,又要充当横臂承受拉压力,对半轴的要求较高。
图14推拉杆和换向器图15 半轴充当横臂的双横臂悬架2.2车轮在汽车纵向平面内摆动的悬架即纵臂式独立悬架,纵臂式独立悬架有单纵臂式和双纵臂式两种。
由于该悬架的摆臂绕车身的横向轴线摆动,除了螺旋弹簧,横置的扭簧也应用得非常广泛。
2.2.1单纵臂式独立悬架车轮采用单纵臂式独立悬架时,车轮上下跳动将使主销的后倾角产生很大的变化。
因此,单纵臂式独立悬架一般不用与转向轮。
图16为富康轿车后单纵摆臂式悬架。
有的单纵臂式悬架纵臂本身通橡胶衬套直接与车身连接,在承受侧向力时刚度不足,这时需要一个横向推力杆来进行一定的约束,其运动的干涉通过橡胶衬套的弹性来补偿,如图17所示另一种单纵臂式独立悬架,其弹性元件为螺旋弹簧,但是它与上述的单纵臂式独立悬架的结构又有不同。
它有一根整体的V 形断面(或其他形式的断面)横梁,在其两端焊接着管状纵臂,从而形成了一个整体构架——后轴体。
纵臂前端通过橡胶-金属支承与车身作铰接式连接。
纵臂后端与轮毂、减振器相连。
汽车行驶时,车轮连同后轴体相对车身以橡胶-金属支承为支点作上下摆动,相当于单纵臂式独立悬架。
当两侧悬架变形不等时,后轴体的V 形断面横梁发生扭转变形,由于该横梁有较大的弹性,可起横向稳定器的作用。
它不像普通带有整体轴的非独立图16 富康轿车后悬架图17 单纵臂式悬架悬架那样,一侧车轮的跳动会直接影响另一侧车轮。
因此,该悬架又称纵臂扭转梁式独立悬架,如图18所示。
值得一提的是,在一些中高级轿车上还采用了瓦特连杆来配合扭转梁式独立悬架,如图19所示。
瓦特连杆最初是由英国传奇发明家兼工程师詹姆斯-瓦特所发明的。
别克英朗,奔驰A 级,B 级车均采用这种结构用于扭力梁悬架上, 以此来减少后轮侧向力对车轮前束的影响。
使两侧车轮受力始终与路面保持最适宜的接触,达到最佳的附着力。
一方面提高了车辆的驾乘舒适性,也加强了车辆循迹性。
瓦特连杆机构由中央控制臂、横梁和瓦特连杆组成,控制中心固定在横梁上,当控制臂一端被从左边推动,它就向右边拉动,反之亦然。
横梁在中央控制臂与车体之间起到了固定连接的作用。
当汽车在转向的时候,侧向力会作用在车轮上。
瓦特连杆的作用就是平衡两边车轮上的这些侧向力,将这些力反转到另一边。
这样,两边车轮就能始终与路面保持最适宜的接触,而汽车在转向时也就能变得更加稳定。
图18 纵臂扭转梁式独立悬架2.2.2双纵臂式独立悬架双纵臂式独立悬架的两个纵臂长度一般做成相等,形成平行四连杆机构。
车轮上下跳动时,主销的后倾角保持不变,这种形式的悬架适用于转向轮。
图19 装有瓦特连杆机构的纵臂扭转梁式独立悬架图20 双纵臂式独立悬架2.3车轮沿主销移动的悬架 2.3.1 烛式悬架其优点是当悬架变形时,主销的定位角不会发生变化,仅轮距、轴距稍有改变;有利于汽车的转向操纵性和行驶稳定性。
缺点是侧向力全部由套筒和主销承受,二者间的摩擦阻力大,磨损严重。
因此,这种结构形式目前很少采用。
如图21所示2.3.2麦弗逊式悬架麦弗逊式悬架,图22,是目前前置前驱动轿车和某些轻型客车应用比较普遍的悬架结构形式。
筒式减振器为滑动立柱,横摆臂的内端通过铰链与车身相连,外端通过球铰链与转向节相连。
减振器的上端与车身相连,减振器的下端与转向节相连,车轮所受的侧向力大部分由横摆臂承受,其余部分由减振器活塞和活塞杆承受。
筒式减振器上铰链的中心与横摆臂外端球铰链中心的连线为主销轴线,此结构也为无主销结构。
图21 烛式悬架图22麦弗逊悬架尽管麦弗逊悬架在广泛用于前轮,但由于其结构简单,占用空间小,也有一些轿车将其用于后轮上,如图23所示。
2.4 单斜臂式独立悬架单斜臂式独立悬架的结构介于单横臂和单纵臂之间,多用于后轮驱动汽车的后悬架上。
如下图所示,单斜臂与汽车纵轴线行成一定的夹角θ(0°<θ<90°)的轴线摆动。
适当的选择夹角θ,可以调整轮距、车轮倾角、前束等变化最小,从而可获得良好的操纵稳定性。
有的单斜臂式独立悬架,为了控制前束的变化,在单斜臂上安装了一根辅助杆,称为控制前束杆。
图23 用于后轮的麦弗逊悬架图24 单斜臂式独立悬架图 25玛莎拉蒂轿车上的单斜臂式独立悬架2.4多连杆悬架所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的一套悬挂机构。