高一数学上学期期中试题(1)

合集下载

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

广东深圳中学2023-2024学年高一上学期期中考试数学试题(解析版)

深圳中学2023-2024学年度第一学期期中考试试题年级:高一科目:数学考试用时:120分钟 卷面总分:150分注意事项:答案写在答题卡指定的位置上,写在试题卷上无效.选择题作答必须用2B 铅笔. 参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以e(e 2.71828)= 为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{3P x x =∈≥N 或0}x ≤,{}2,4Q =,则()P Q =N ()A.{}1 B.{}2 C.{}1,2 D.{}1,2,4【答案】D 【解析】【分析】根据补集的定义和运算可得{}1,2P =N ,结合并集的定义和运算即可求解. 【详解】由题意知,{}1,2P =N ,{}2,4Q =,所以(){}1,2,4P Q =N ,故选:D .2.命题“()()31,,1,x x ∞∞∃∈+∈+”的否定是( )A.()1,x ∀∈+∞,都有()31,x ∞∉+B.()1,x ∀∉+∞,都有()31,x ∞∉+C.()1,x ∀∈+∞,都有()31,x ∞∈+D.()1,x ∀∉+∞,都有()31,x ∞∈+【答案】A 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得命题命题“()()31,,1,x x ∞∞∃∈+∈+ ”的否定是“()1,x ∀∈+∞,都有()31,x ∞∉+.故选:A. 3.函数()f x =的定义域是( ) A. (,1)(1,0)−∞−∪− B. [1,)−+∞ C. [1,0)− D. [1,0)(0,)−+∞【答案】D 【解析】【分析】根据根式与分式的定义域求解即可. 【详解】()f x =的定义域满足1020x x +≥ ≠ ,解得[1,0)(0,)x ∈−+∞ . 故选:D4. ()f x x 1x 2=−+−的值域是 A. ()0,∞+ B. [1,)+∞C. ()2,∞+D. [2,)+∞【答案】B 【解析】【分析】对x 的范围分类,把(f x 的表达式去绝对值分段来表示,转化成各段函数值域的并集求解.【详解】()32,1121,1223,2x x f x x x x x x −≤=−+−=<< −≥,作出函数()f x 的图像如图所以()12f x x x =−+−的值域为[)1,+∞, 故选B.【点睛】本题主要考查了绝对值知识,对x 的范围进行分类,可将含绝对值的函数转化成初等函数类型来解决5. 已知幂函数的图象经过点()8,4P ,则该幂函数在第一象限的大致图象是( )A. B. C. D.【答案】B 【解析】【分析】根据求出幂函数的解析式,再根据幂函数的性质即可得出答案. 【详解】设()af x x =,则328422a a =⇔=,所以32a =,所以23a =,所以()23f x x ==,因为2013<<, 因为函数()f x 在()0,∞+上递增,且增加的速度越来越缓慢, 故该幂函数在第一象限的大致图象是B 选项. 故选:B .6. 函数31()81ln 803x f x x -⎛⎫ ⎪=-- ⎪⎝⎭的零点位于区间( )A. (1,2)B. (2,3)C. (3,4)D. (4,5)【答案】B 【解析】【分析】根据函数的单调性及函数零点的存在性定理选择正确选项即可.【详解】因为函数81ln y x =与31803x y − =−−在()0,∞+上均为增函数,所以()f x 在()0,∞+上为增函数.因为()281ln 2830f =−<,()381ln 3810f =−>, 所以函数()f x 的零点位于区间()2,3内. 故选:B7. 已知不等式220ax bx ++>的解集为{}21x x −<<,则不等式220x bx a −+<的解集为( )A. 11,2 −B. 1,12−C. 1,12D. ()2,1−【答案】A 【解析】【分析】根据不等式解集,求得参数,a b ,再求不含参数的一元二次不等式即可.【详解】根据题意方程220ax bx ++=的两根为2,1−,则221,2b a a−+=−−=,解得1,1a b =−=−, 故220x bx a −+<,即2210x x +−<,()()2110x x −+<,解得11,2x ∈−. 即不等式220x bx a −+<的解集为11,2 −. 故选:A .8. 已知()f x 和()g x 分别是定义在R 上的奇函数和偶函数,且()()e x g x f x −=,则(1)(1)f g =( ) A. 22e 1e 1+− B. 22e 1e 1−+C. 221e 1e −+D. 221e 1e +−【答案】C 【解析】【分析】根据奇函数与偶函数的性质即可代入1x =和=1x −求解.【详解】因为()f x 为奇函数,()g x 为偶函数,所以由()()111e g f −−−−=有()()111e g f −+=, 又()()11e g f −=,所以()121e e g −=+,()121e ef −=−, 所以()()12121e e 1e 1e e 1e f g −−−−==++.故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列各组函数中,两个函数是同一函数的有( )A. ()1f x x =+与21()1x g x x −=−B. ()1f t t =−与()1g x x =−C. ()ln e x f x =与()g x =D. ln ()e x f x =与()g x =【答案】BC 【解析】【分析】根据题意,由同一函数的定义,对选项逐一判断,即可得到结果.【详解】对于A ,()f x 定义域为R ,()g x 定义域为{}|1x x ≠,定义域不相同,不是同一函数,A 错误; 对于B ,函数()f x 与()g x 的定义域相同,对应关系也相同,所以是同一函数,故正确;对于C ,函数()()f x x x =∈R ,函数()()g x x x =∈R ,两函数的定义域与对应关系都一致,所以是同一函数,故正确;对于D ,()()0f x x x =>,()g x x =,所以对应关系不相同,定义域也不同,不是同一函数,D 错误. 故选:BC10. 下列说法正确的是( ) A. 函数1y x x=+的最小值为2 B. 若a ,b ∈R ,则“220a b +≠”是“0a b +≠”充要条件 C. 若a ,b ,m 为正实数,a b >,则a m ab m b+<+ D. “11a b>”是“a b <”的充分不必要条件 【答案】BC 【解析】【详解】根据基本不等式满足的前提条件即可判定A ,根据绝对值和平方的性质可判定B ,根据不等式的性质可判断CD.【分析】对于A ,当x 取负值时显然不成立,故A 错误, 对于B ,若,a b ∈R ,由220a b +≠,可知a ,b 不同时为0, 由0a b +≠,可知a ,b 不同时为0,所以“220a b +≠”是“0a b +≠”的充要条件,故B 正确;对于C ,()()()()()0b a m a b m m b a a m a b m b b b m b b m +−+−+−==<+++,所以a m ab m b+<+,故C 正确, 对于D ,①若11a b>,则当0a >,0b >时,则0a b <<, 当0a <,0b <时,则0a b <<, 当a ,b 异号时,0a b >>.的②若a b <,则当a ,b 同号时,则11a b >, 当a ,b 异号时,0a b <<,则11a b<, 所以“11a b>”是“a b <”的既非充分也非必要条件,D 选项错误.故选:BC11. 下列命题正确的是( )A. 函数212log (23)y x x =−−在区间(1,)+∞上单调递减 B. 函数e 1e 1x xy −=+在R 上单调递增C. 函数lg y x =在区间(,0)−∞上单调递减D. 函数13xy =与3log y x =−的图像关于直线y x =对称【答案】BCD 【解析】【分析】A 项,由复合函数的定义域可知错误;B 项分离常数转化为()21e 1x f x =−+,逐层分析单调性可得;C 项由偶函数对称性可知;D 项,两函数互为反函数可知图象关于直线y x =对称.【详解】对于A ,由2230x x −−>,解得1x <−,或3x >, 故函数定义域为(,1)(3,)−∞−∪+∞,由复合函数的单调性可知该函数的减区间为()3,+∞,故A 错; 对于B ,()21e 1x f x =−+, 由于e 1x y =+在x ∈R 单调递增,且e 10x +>, 所以1e 1x y =+在R 上单调递减,2e 1xy =−+在R 上单调递增, 因此()f x 在R 上单调递增,B 正确;对于C ,当0x >时,lg y x =(即lg y x =)在区间()0,∞+上单调递增, 又因为lg y x =为偶函数,其图象关于y 轴对称, 所以在区间(),0∞−上单调递减,C 正确;对于D ,由于函数13xy =与13log y x =(即3log y x =−)互为反函数.所以两函数图象关于y x =对称,D 正确. 故选:BCD.12. 德国数学家狄里克雷在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵:只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图像、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是( ) A. ()D x 的解析式为()R 1,,0,.x Q D x x Q ∈ = ∈B. ()D x 的值域为[]0,1C. ()D x 的图像关于直线1x =对称D. (())1D D x = 【答案】ACD 【解析】【分析】根据题意,由狄里克雷函数的定义,对选项逐一判断,即可得到结果. 【详解】对于A ,用分段函数的形式表示狄里克雷函数,故A 正确. 对于B ,由解析式得()D x 的值域为{}0,1,故B 错误;过于C ,若x 为有理数,则2x −为有理数,则()()21D x D x =−=;若x 为无理数,则2x −为无理数.则()()20D x D x =−=;所以()D x 的图像关于直线1x =对称,即C 正确;对于D ,当x 为有理数,可得()1D x =,则()()1D D x =,当x 为无理数,可得()0D x =,则()()1D D x =,所以()()1D D x =,所以D 正确. 故选:ACD三、填空题:本题共4小题,每小题5分,共20分.13.110.752356416(4)−−−++++=________.【答案】414##1104【解析】【分析】根据题意,结合指数幂的运算法则和运算性质,准确化简、运算,即可求解. 【详解】根据指数幂的运算法则和运算性质,可得:11111430.752364353355426416(4)[()](2)(2)22233−−−−+=+−+++⋅ 221141821033444=−+++==. 故答案:414. 14. 已知a ,b 是方程22(ln )3ln 10x x −+=的两个实数根,则log log a b b a +=________. 【答案】52##2.5 【解析】【分析】方法一:利用韦达定理结合换底公式求解;方法二:解方程可得e a =,b =,代入运算求解即可.【详解】方法一:因为a ,b 是方程()22ln 3ln 10x x −+=的两个实数根, 由韦达定理得1ln ln 2a b ⋅=,3ln ln 2a b +=, 则()()()()2222ln ln ln ln 2ln ln ln ln ln ln 5log log 2ln ln ln ln ln ln ln ln 2a b a b a b a ba b b a b a a ba ba ba b++−⋅++=+===−=⋅⋅⋅,即5log log 2a b b a +=;方法二:因为22310t t −+=的根为1t =或12t =, 不妨设ln 1a =,1ln 2b =,则e a =,b =,所以e 15log log log 222e a b b a +==+=.故答案为:52.15. 已知0,0x y >>且2x y xy +=,则2x y +的最小值是__________. 【答案】8 【解析】【分析】运用“1”的代换及基本不等式即可求得结果.为【详解】因为2x y xy +=,所以211x y+=,所以()214222248x y x y x y x y y x +=++=+++≥+=,当且仅当4x y y x =,即4,2x y ==时取等号.所以2x y +的最小值为8. 故答案为:8.16. 记(12)(12)T x y =−−,其中221x y +=,则T 的取值范围是________.【答案】3,32 −+ . 【解析】【分析】根据基本不等式,结合换元法,将问题转化为213222T t =−− ,t ≤≤上的范围,由二次函数的性质即可求解.【详解】()124T x y xy =−++,设x y t +=,则212t xy −=, 所以221124212t T t t t −=−+⋅=−.因为22x y xy + ≤,所以22124t t −≤.所以t ≤≤又213222T t =−− ,所以当12t =时,T 有最小值32−,当t =T 有最大值3+.故答案为:3,32 −+ 四、解答题:本题共6小题,共20分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合{}(,)|1Ax y y x ==−,{}2(,)|B x y y mx ax m ==++.(1)若1a =−,0m =,求A B ∩;(2)若1a =,且A B ∩≠∅,求实数m 的取值范围.【答案】(1)11,22A B=−(2)[]2,1−. 【解析】【分析】(1)联立两方程,求出交点坐标,得到交集;(2)联立后得到210mx m +++=,分0m =与0m ≠两种情况,,结合根的判别式得到不等式,求出答案. 【小问1详解】 若1a =,0m =,则(){},|Bx y y x ==. 由1y x y x =−=− ,得1212x y= =− . 所以11,22A B =−. 【小问2详解】由()211x y y mx x m −==+++消去y,得210mx m +++=①. 因为A B ∩≠∅,所以方程①有解.当0m =时,方程①可化为1=−,解得x =,所以1y , 所以0m =符合要求.当0m ≠时,要使方程①有解,必须(()2Δ410m m =−+≥,即220m m +−≤,解得21m −≤≤, 所以21m −≤≤,且0m ≠. 综上所述,m 的取值范围是[]2,1−. 18. 设不等式2514x x −≤−的解集为A ,关于x 的不等式2(2)20x a x a −++≤的解集为B . (1)求集合A ;(2)若“x A ∈”是“x B ∈”的必要不充分条件,求实数a 的取值范围.【答案】(1)[)1,4(2)[)1,4.【解析】【分析】(1)根据题意,结合分式不等式的解法,即可求解;(2)根据题意,转化为B A ,再结合一元二次不等式的解法,分类讨论,求得集合B ,进而求得a 取值范围.【小问1详解】 解:由不等式2514x x −≤−,可得2511044x x x x −−−=≤−−, 即()()140x x −−≤,且4x ≠,所以14x ≤<,所以[)1,4A =.【小问2详解】解:因为“x A ∈”是“x B ∈”的必要不充分条件,所以集合B 是A 的真子集,由不等式()2220x a x a −++≤,可得()()20x x a −−≤, 当2a <时,不等式的解集为2a x ≤≤,即[],2B a =,因为B A ,则12a ≤<;当2a =时,不等式为2(2)0x −≤,解得2x =,即{}2B =;B A 成立;当2a >时,不等式的解集为2x a ≤≤,即[]2,B a =,因为B A ,则24a <<,综上所述14≤<a ,即a 的取值范围是[)1,4.19. 已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()2f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示.(1)请将函数()f x 的图象补充完整,并求出()()f x x ∈R 的解析式;(2)求()f x 在区间[],0a 上的最大值.【答案】(1)作图见解析,()222,02,0x x x f x x x x +≤= −+>(2)答案见解析【解析】【分析】(1)根据函数奇函数的对称性,即可根据对称作出函数图象,进而可利用奇函数的定义求解解析式,(2)根据二次函数的性质,结合函数图象即可求解.【小问1详解】作出函数()f x 的图象,如图所示,当0x >时,0x −<,则()()22()22f x x x x x −=−+−=−, 因为()f x 为奇函数,所以()()22f x f x x x =−−=−+, 所以()222,02,0x x x f x x x x +≤= −+>. 【小问2详解】易如()()200f f −==,当2a <−时,()f x 在x a =处有最大值()22f a a a =+; 当20a −≤<时,()f x 在0x =处有最大值()00f =.20. 为了减少能源损耗,某建筑物在屋顶和外墙建造了隔热层,该建筑物每年节省的能源费用h (万元)与的隔热层厚度(cm)x 满足关系式:()()3232020h x x x k=−≤≤+.当隔热层厚度为1cm 时,每年节省费用为16万元,但是隔热层自身需要消耗能源,每年隔热层自身消耗的能源费用g (万元)与隔热层厚度(cm)x 满足关系:()2g x x =.(1)求k 的值;(2)在建造厚度为(cm)x 的隔热层后,每年建筑物真正节省的能源费用为()()()=−f x h x g x ,求每年该建筑物真正节省的能源费用的最大值.【答案】(1)1k =(2)18万元.【解析】【分析】(1)根据()116h =求解出k 值即可;(2)根据条件先表示出()f x ,然后利用基本不等式求解出最大值,注意取等条件.【小问1详解】由题知()116h =,所以3232161k −=+, 解得1k =;【小问2详解】由(1)知,()()32320201h x x x =−≤≤+, 所以()()323220201f x x x x =−−≤≤+, 所以()()()323232212342111f x x x x x −−++=−++= ++, 因为()3221161x x ++≥=+,当且仅当()32211x x =++,即3x =时取等号, 所以()341618f x ≤−=, 所以每年该建筑物真正节省的能源费用的最大值为18万元.21. 已知23()21x x a f x −−=+, (1)若定义在R 上的函数()ln ()g x f x =是奇函数,求a 的值;(2)若函数()()h x f x a =+在(1,)−+∞上有两个零点,求a 的取值范围.的【答案】(1)13− (2)41,3【解析】【分析】(1)根据题意,结合()()0g x g x −+=,得出方程,进而求得实数a 的值; (2)令()0h x =,得到()23210x x a a −−++=,得到()222210x x a a −⋅+=,令2x t =,转化方程可化为2210at at −+=1,2 +∞上有两个不相等的根, 方法一:设()221p t at at =−+,结合二次函数的性质,列出不等式组,即可求解;方法二:把方程化为()211a t a −−=,求得1t =±,结合11,2 +∞,即可求解. 【小问1详解】 解:因为()g x 是奇函数,所以()()2323ln ln 02121x x x x a a g x g x −−−−−+=+=++, 可得232312121x x x x a a −−−−⋅=++,即()()2312291x x a a −++=−恒成立, 因为220x x −+≠,所以310a +=且2910a −=,所以13a =−. 【小问2详解】 解:由232()()1x x h a x f a a x −=+−=++,令()0h x =,可得23021x x a a −−+=+, 所以()23210x x a a −−++=, 两边同乘以2x 并整理,得()222210x x a a −⋅+=. 令2x t =,因为1x >−,所以12t >, 于是方程可化为2210at at −+=,(*) 问题转化为关于t 的方程(*)在1,2 +∞上有两个不相等的根,显然0a ≠, 方法一:设()221p t at at =−+,抛物线的对称轴为1t =,()01p =.若a<0,由()00p >知,()p t 必有一个零点为负数,不合题意; 若0a >,要使()p t 在1,2 +∞ 上有两个零点,由于对数轴112t =>, 故只需2102Δ440p a a > =−> ,即31044(1)0a a a −> −> ,解得413a <<. 综上可得,实数a 的取值范围是41,3. 方法二:方程(*)可化为()211a t a −=−,若0a =,则01=−,矛盾,故0a ≠,故()211a t a −−=, 所以10a a−>,即a<0或1a >,①此时,1t −=,即1t =±,其中11,2 +∞ ,则112−>12<,即114a a −<,可得340a a −<,解得403a << ② 由①②得a 的取值范围是41,3. 22. 定义在R 上函数()f x 满足如下条件:①()()()4f x y f x f y +=+−;②(2)6f =;③当0x >时,()4f x >.(1)求(0)f ,判断函数()f x 的单调性,并证明你的结论; (2)当[)0,x ∈+∞时,不等式()()()ln 3e 122ln 310x f a f x a −++−−≤ 恒成立,求实数a 的取值范围.【答案】(1)()04f =,函数()f x 在R 上为增函数,证明见解析 (2)[]1,3【解析】的【分析】(1)令2,0x y ==,求得()04f =,再根据函数单调性的定义和判定方法,证得函数()f x 在R 上为增函数;(2)根据题意,转化为不等式()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立,由对数函数的性质,求得03a <≤,再由不等式()23e 3e 10x x a a +−−≥成立,转化为max 1e x a ≥ 对于任意[)0,x ∈+∞成立,求得1a ≥,即可求得实数a 的取值范围.【小问1详解】解:令2x =,0y =,可得()04f =.函数()f x 在R 上为增函数,证明如下:设12x x <,因为()()()4f x y f x f y +−=−,令1x y x +=,2x x =,则21y x x =−,可得()()()21214f x f x f x x −=−−, 因为210x x −>,所以()214f x x −>,所以()2140f x x −−>, 所以()()210f x f x −>,即()()21f x f x >, 所以函数()f x 在R【小问2详解】解:由条件有()()()4f x f y f x y +=++,则不等式可化为()()ln 3e 122ln 3410x f a x a −++−−+≤ ,即()()ln 3e 122ln 36x f a x a −++−−≤ , 又由()26f =,所以()()()ln 3e 122ln 32xf a x a f −++−−≤ , 因为函数()f x 在R 上为增函数,可得()ln 3e 122ln 32x a x a −++−−≤即()ln 3e 12ln 30x a x a −+−−≤ (*)对于任意[)0,x ∈+∞成立, 根据对数函数的性质,可得()3e 10x a −+>,30a >对于任意[)0,x ∈+∞成立,则13e 0x a a <+ >,因为0x ≥,则e 1x ≥,所以101e x <≤, 可得1334ex <+≤,所以03a <≤ ①, 又由(*)式可化为()()2ln 3e 12ln 3ln 3e x x a x a a −+≤+= , 即对于任意[)0,x ∈+∞,()23e 13e x xa a −+≤成立,即()23e 3e 10x x a a +−−≥成立, 即对于任意[)0,x ∈+∞,()()3e 1e 10x x a +−≥成立, 因为3e 10x +>,所以e 10x a −≥对于任意[)0,x ∈+∞成立, 即max1e x a ≥ 对于任意[)0,x ∈+∞成立,所以1a ≥ ②. 由①②,可得13a ≤≤,所以实数a 的取值范围为[]1,3.。

河南省郑州市第一中学2022-2023学年高一上学期期中考试数学试题

河南省郑州市第一中学2022-2023学年高一上学期期中考试数学试题

郑州一中2022~2023学年上学期期中考试高一(数学)试题说明: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分150分。

2.考试时间:120分钟。

3.将第Ⅰ卷的答案代表字母填(涂)在答题卡上。

第Ⅰ卷 (选择题,共60分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合,,则( )A .B . C .D .2.已知非空数集A ,B ,命题p :对于,都有,则p 的否定是( )A .对于,都有B .对于,都有C .,使得D .,使得3.函数f (x )=2x +13-x-(x +3)0的定义域是( )A .(-∞,-3)∪(3,+∞) B. (-∞,-3)∪(-3,3)C .(-∞,-3)D .(-∞,3)4.祖暅原理也称祖氏原理,一个涉及几何求积的著名命题.内容为:“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高.意思是两个等高的几何体,如果在等高处的截面积相等,则体积相等.设A ,B 为两个等高的几何体,p :A ,B 的体积相等,q :A ,B 在同一高处的截面积相等.根据祖暅原理可知,p 是q 的( )A.充分必要条件 B .充分不必要条件C.必要不充分条件 D .既不充分也不必要条件5.关于的不等式的解集为,则关于的不等式 的解集为 ( )A .B .C .D .6.定义在上的偶函数满足:对任意的,有{}0,1,2,3,4,5A ={}15B x x =∈-<<N A B = {}2,3,4{}1,2,3,4{}0,1,2,3,4{}0,1,2,3,4,5x A ∀∈x B ∈x A ∀∈x B ∉x A ∀∉x B ∉0x A ∃∈0x B ∈0x A ∃∈0x B∉x 220ax bx ++>(1,2)-x 220bx ax -->(2,1)-(,2)(1,)-∞-+∞ (,1)(2,)-∞-+∞ (1,2)-R ()f x [)()12120,,x x x x ∈+∞≠,则,,的大小关系为( )A .B .C .D .7.函数的图象大致为( )A . B . C . D .8.中国宋代数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个边长分别为的三角形,其面积可由公式求得,其中,这个公式也被称为海伦-秦九韶公式,现有一个三角形的三边长满足,则此三角形面积的最大值为( )A .6B .610C .12D .1210二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分).9.下列叙述正确的是( )A.若P ={(1,2)},则B.{x |x >1}⊆{y |y ≥1}C.M ={(x ,y )|x +y =1},N ={y |x +y =1},则M =ND.{2,4}有3个非空子集10.若 则( )A .B .C .D.11.若,则下列关系正确的是( )A .B .CD .12.已知,都是定义在上的函数,其中是奇函数,是()()21210f x f x x x -<-()2f -()2.7f()3f -()()()2.732f f f <-<-()()()2 2.73f f f -<<-()()()32 2.7f f f -<-<()()()3 2.72f f f -<<-()112x f x ⎛⎫=- ⎪⎝⎭a b c ,,S S =1=)2p a b c ++(146a b c +==,P ∅∈0a b >>22ac bc >a c b c ->-22a b>11a b <4455x y x y ---<-x y <33y x -->>133y x-⎛⎫< ⎪⎝⎭()f x ()g x R ()f x ()g x偶函数,且,则下列说法正确的是( )A .为偶函数B .C .为定值D .第Ⅱ卷 ( 非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合A ={﹣1,0,1},B ={a 2,1},若B ⊆A,则实数a 的值是 .14.若,则的取值范围是 .15.已知函数(且)在区间上是减函数,则实数的取值范围是________.16.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x 的最大整数.例如:,.已知函数,,若,则________;不等式的解集为________.四、解答题(本题共6小题,17题10分其它题均为12分,共70分.) 17.(本小题10分)(1)求值:;(2)已知,求值:.18.(本小题12分)设集合,集合.(1)若,求和(2)设命题,命题,若是成立的必要条件,求实数的取值范围.19.(本小题12分)在①,②这两个条件中任选一个,补()()2x f x g x +=()()f g x ()00g =()()22g x f x -()()2,02,0x x x f x g x x -⎧≥+=⎨<⎩33(1)(32)a a +<-a y =0a >1a ≠[1,2]a []y x =[]x [ 2.1]3-=-[3.1]3=()()|1|3[]f x x x =--[)0,2x ∈5()2f x =x =()f x x ≤()31211203320.2521624------⨯⨯+⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭11223(0)a a a -+=>22111a a a a --++++{|13}A x x =-<<{|22}B x a x a =-<<+2a =A B A B:p x A ∈:q x B ∈p q a []2,2x ∀∈-[]1,3x ∃∈充到下面问题的横线中,并求解该问题.已知函数.(1)当时,求函数在区间上的值域;(2)若______,,求实数a 的取值范围.20.(本小题12分)某公司生产某种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,设月产量为台,当不超过400台时总收入为元,当超过400台时总收入为80000元.(1)将利润(单位:元)表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收入=总成本+利润)21.(本小题12分)已知不等式的解集为.(1)求的值,(2)若,,,求的最大值.22.(本小题12分)已知函数,.(1)证明:函数在上单调递增;(2)若存在且,使得的定义域和值域都是,求的取值范围.0m n <<()24f x x ax =++2a =-()f x []22-,()0f x ≥x x 214002x x -x P x 5111133x +≤≤(()[],a b a b ,0m >0n >0bm n a ++=mn m n+()2211a f x a a x+=-0a >()f x ()0,+∞,m n ()f x [,]m n a。

2022-2023学年山东省济南市高一年级上册学期期中数学试题【含答案】

2022-2023学年山东省济南市高一年级上册学期期中数学试题【含答案】

2022-2023学年山东省济南市高一上学期期中数学试题一、单选题1.已知集合{12}M x x =-<<∣,{N x y ==∣,则M N ⋃=( )A .{1}xx >-∣ B .{02}x x ≤<∣ C .{12}x x -<<∣ D .{0}xx ≥∣ A【分析】求出y =.【详解】{{}0N xy x x ==≥∣,所以{}1M N x x ⋃=>-. 故选:A2.已知命题:p x ∀∈R ,12x x+≥,则p ⌝为( ) A .x ∃∈R ,12x x +≥ B .x ∃∈R ,12x x +< C .x ∃∈R ,12x x+≤ D .x ∀∈R ,12x x+< B【分析】根据全称量词命题的否定为特称量词命题判断即可. 【详解】解:命题:p x ∀∈R ,12x x+≥为全称量词命题, 其否定为:x ∃∈R ,12x x+<. 故选:B3.下列函数中, 既是奇函数又是增函数的是( ) A .21y x =+ B .1y x=-C .3y x =D .2y xC【分析】根据基本初等函数的单调性与奇偶性判断即可.【详解】解:对于A :()21y f x x ==+,则()21f x x -=-+,故21y x =+为非奇非偶函数,故A 错误;对于B :1y x=-为奇函数,函数在(),0∞-,()0,∞+上单调递增,在定义域上不具有单调性,故B错误;对于C :3y x =为奇函数,且在定义域R 上单调递增,故C 正确;对于D :2y x 为偶函数,故D 错误;故选:C4.平板电脑屏幕面积与整机面积的比值叫电脑的“屏占比”,它是平板电脑外观设计中的一个重要参数,其值在(0,1)间,设计师将某平板电脑的屏幕面积与整机面积同时减少相同的数量,升级为一款“迷你”新电脑的外观,则该新电脑“屏占比”和升级前比( ) A .“屏占比”不变 B .“屏占比”变小 C .“屏占比”变大 D .“屏占比”变化不确定B【分析】设法列出升级前后的屏占比表达式,由作差法可比较大小. 【详解】设升级前屏幕面积为a ,整机面积为b ,则屏占比为()10a w a b b=<<,设减小面积为m ()0m a <<,则升级后屏占比为:2a mw b m-=-,则()()120m b a a a m w w b b m b b m ---=-=>--,即12w w >,屏占比变小.故选:B5.已知a ,b ∈R ,若0ab <,0a b +>,a b >,则下列不等式正确的是( ) A .11a b <B .0b aa b +>C .22a b >D .||a b <C【分析】由0ab <,0a b +>,a b >,可得0,0a b ><,再结合不等式的性质逐一判断即可. 【详解】解:因为0ab <,0a b +>,a b >, 所以0,0a b ><, 所以110a b>>,故A 错误; 则0,0b aa b <<,所以0b a a b+<,故B 错误; 由0a b +>得a b >-,即a b >,所以22a b >,故C 正确,D 错误. 故选:C.6.不等式()()2233131x x ->+的解为( ) A .1,13⎛⎫- ⎪⎝⎭B .()1,0-C .()0,1D .()(),01,-∞⋃+∞B22(1)(31)x x >-+,再根据二次不等式的解法即可得答案.【详解】解:()()2233131x x ->+∴22(1)(31)x x >-+,即:20x x +<,解得.10x -<< 所以不等式()()2233131x x ->+的解为()1,0- 故选:B .7.已知函数()f x 是定义在(,0)(0,)-∞+∞上的奇函数,且(1)0f -=,若对于任意两个实数1x ,2(0,)x ∈+∞且12x x ≠,不等式()()12120f x f x x x ->-恒成立,则不等式()0xf x >的解集为( ) A .(,1)(0,1)-∞-⋃ B .,1(),)1(-∞-⋃+∞ C .(1,0)(1,)-⋃+∞ D .(1,0)(0,1)-B【分析】由题意可得()f x 在()0,∞+上单调递增,再由函数为奇函数,可得()f x 在(),0∞-上单调递增,(1)0f -=且()()110f f =--=,由此可求出()0f x >和()0f x <的解集,从而可求得结果. 【详解】因为对于任意两个实数()12,0,x x ∈+∞且12x x ≠时,不等式()()12120f x f x x x ->-恒成立,所以()f x 在()0,∞+上单调递增,因为()f x 是定义在()(),00,∞-+∞上的奇函数,所以()f x 在(),0∞-上单调递增,因为()10f -=,所以()()110f f =--=,所以当10x -<<或1x >时,()0f x >;当01x <<或1x <-时,()0f x <, 所以当1x >或1x <-时,()0xf x >,所以不等式()0xf x >的解集为()(),11,-∞-⋃+∞. 故选:B .8.已知[]x 表示不超过实数x 的最大整数,若函数()[]f x x x =-,则下列说法正确的是( ) A .()f x 是奇函数B .()f x 是偶函数C .()f x 在[0,1]上单调递增D .()f x 的值域为[0,1)D【分析】由定义可作出函数图象,直接判断选项即可.【详解】因为()[]f x x x =-,故函数图象如图所示,易知选项ABC 错误,选项D 正确.故选:D二、多选题9.已知集合}{1,1,24M =-,,}{1,2,416N =,,请根据函数定义,下列四个对应法则能构成从M 到N 的函数的是( ) A .2y x = B .y x = C .2y x =+ D .2y xBD【分析】根据函数的概念逐一判断即可.【详解】A ,集合M 中1-在集合N 中没有对应元素,故A 不选.B ,由函数的定义集合M 中的每一个元素在集合N 中都有唯一元素与之对应,故B 可选;C ,集合M 中1、4在集合N 中没有对应元素,故C 不选.D ,由函数的定义集合M 中的每一个元素在集合N 中都有唯一元素与之对应,故D 可选; 故选:BD10.已知函数()1=+xf x x ,则下列说法正确的是( ) A .()f x 的对称中心为()1,1- B .()f x 的值域为RC .()f x 在区间()1,-+∞上单调递增D .111(1)(2)(3)(2022)232022f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值为40432 ACD【分析】选项A ,利用函数的对称性定义验证即可;选项B ,计算值域即可;选项C ,根据函数的单调性运算判断单调性即可;选项D :找到()11111x f x f x x x ⎛⎫+=+= ⎪++⎝⎭,计算即可. 【详解】由题可知()1x f x x =+111x x +-=+111x =-+ 选项A :由题可知()222211x x f x x x --+--==--++,所以得()()22211x xf x f x x x +--+=+=++,故()f x 的对称中心为()1,1-,选项A 正确;选项B :因为()111f x x =-+,显然101x ≠+,所以()f x 的值域为{}1y y ≠,选项B 错误; 选项C :当1x >-时,11y x =+单调递减,所以11y x =-+单调递增,所以()111f x x =-+单调递增,选项C 正确;选项D :111111x f x x x ⎛⎫== ⎪+⎝⎭+,所以()11111x f x f x x x ⎛⎫+=+= ⎪++⎝⎭,所以有111(1)(2)(3)(2022)232022f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232022232022f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦202111112=++++40432=,选项D 正确. 故选:ACD11.若正实数a ,b 满足1a b +=,则下列说法正确的是( ) A B .22a b +最小值为12C .ab 最小值为14D .1122a b a b +++最小值为43ABD【分析】对A ,B ,C 选项,结合基本不等式进行求最值即可;D 选项将等式构造变形为()()()1133[22]133a b a b a b+=+++=与1122a b a b +++相乘化成能用基本不等式的形式即可. 【详解】对A 选项:由0,0ab >> ,1a b +=≥当且仅当12a b ==时等号成立,故A 正确;对B 选项;2222221()2()2()()222a b a b a b ab ab a b ++=+-≥+-⨯==+, 当且仅当12a b ==时等号成立,故B 正确; 对C 选项;因为0,0a b >>,1a b =+≥1124ab ⇒≤ 当且仅当12a b ==时等号成立,故C 不正确; 对D 选项;因为0,0a b >>,1a b +=,所以111111(33)[(2)(2)]322322a b a ba b a b a b a b a b ⎛⎫⎛⎫++=++++ ⎪ ⎪++++⎝⎭⎝⎭1221411232233a b a b a b a b ⎛++⎛⎫=+++≥⨯+= ⎪ ++⎝⎭⎝当且仅当12a b ==时等号成立,故D 正确; 故选:ABD.12.已知函数21,2()43,2x x f x x x x ⎧-≤=⎨-+->⎩,则下列说法正确的是( )A .()f x 的单调减区间为(,1][2,)-∞⋃+∞B .若()f x k =有三个不同实数根123,,x x x ,则12345x x x <++<C .若()()f x a f x +>恒成立,则实数a 的取值范围是9,4⎛⎫-∞- ⎪⎝⎭D .对任意的1234,,(,,2)x x x x ∈+∞,不等式()()()()12341234144x x x x f f x f x f x f x +++⎛⎫⎡⎤≥+++ ⎪⎣⎦⎝⎭恒成立 BCD【分析】对A :利用分段函数图象判断单调性;对B :根据题意结合图象、对称性分析运算;对C :根据图象结合图象平移分析运算;对D :先证()()22f m f n m n f ++⎛⎫≥⎪⎝⎭,再根据题意分析证明. 【详解】对A :作出()f x 的图象,如图1所示, 则()f x 的单调递减区间为(,1],[2,)-∞+∞,A 错误; 对B :不妨设123x x x <<,则12,x x 关于直线1x =对称, ∴()123,22,3x x x +=∈,则12345x x x <++<,B 正确;对C : 当0a =时,()()f x f x >显然不成立,0a =不合题意,舍去;当0a >时,()f x a +可以通过()f x 向左平移a 个单位得到,如图2,显然不成立,舍去;当0a <时,()f x a +可以通过()f x 向右平移a 个单位得到,如图3,以射线1y x a =-+-与2=+43y x x --相切为临界,即2143x a x x -+-=-+-,则2540x x a -+-=, ∴()()25440a ∆=--⨯-=,解得94a =-,则94a <-;综上所述:实数a 的取值范围是9,4⎛⎫-∞- ⎪⎝⎭,C 正确;对D :对任意的,(2,)m n ∈+∞,则(2,)2m n+∈+∞ ()()()()22243434322222m m n n f m f n m n m n m n f -+-+-+-⎡⎤++++⎛⎫⎛⎫⎛⎫-=--+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()204m n -=-≤,当且仅当m n =时等号成立,即()()022f m f n m n f ++⎛⎫-≤ ⎪⎝⎭,则()()22f m f n m n f ++⎛⎫≥ ⎪⎝⎭, ∴()()()()12343412,2222f x f x f x f x x x x x f f ++++⎛⎫⎛⎫≥≥⎪ ⎪⎝⎭⎝⎭, 又∵3412,(2,)22x x x x ++∈+∞,则()()()()341212343412222222222x x x x f x f x f x f x x x x x f f f ++⎛⎫⎛⎫++++⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭≥≥⎪⎪⎝⎭,∴()()()()12341234144x x x x f f x f x f x f x +++⎛⎫⎡⎤≥+++ ⎪⎣⎦⎝⎭,D 正确; 故选:BCD.三、填空题13.2038π+______. 7【分析】根据指数幂的运算法则求解即可.【详解】2203338(2)127π++=++= 故714.若“x k >”是“32x -≤<”的必要不充分条件,则实数k 的取值范围是______.(),3-∞-【分析】根据集合之间的包含关系,列出不等式,即可求得结果.【详解】根据题意,[)3,2-是(),k +∞的真子集,故可得3k <-,即(),3k ∈-∞-. 故答案为.(),3-∞-15.已知0a >,0b >,且3ab a b =++,则a b +的最小值为______. 6【分析】利用不等式()214ab a b ≤+,结合已知条件,即可求得a b +的最小值. 【详解】因为()2134ab a b a b =++≤+, 故可得:()()24120a b a b +-+-≥, 即()()620a b a b +-++≥, 解得:6a b +≥或2a b +≤-.因为0,0a b >>,故6a b +≥(当且仅当3a b ==时取得最小值) 故答案为.6四、双空题16.已知函数22,2(),2a ax x f x x ax x ⎧-<=⎨-≥⎩.①若[()]1f f a =,则a 的值为______.②若不等式()(2)f x f ≥对任意x ∈R 都成立,则实数a 的取值范围是______. 1± []2,4【分析】对①:根据题意,分类讨论当2a <和2a ≥时,代入分段函数,分别解方程即可;对②:根据题意可得函数()f x 的最小值为(2)f ,结合分段函数单调性分析运算.【详解】对①:当2a <时,则()2[()]01f f a f a ===,则1a =±;当2a ≥时,则()2[()]01f f a f a ===,则1a =±(舍去);综上所述:1a =±;对②:∵不等式()(2)f x f ≥对任意x ∈R 都成立,则函数()f x 的最小值为(2)f , ∴2022242a a a a a-≤⎧⎪⎪≤⎨⎪-≥-⎪⎩,解得24a ≤≤,故实数a 的取值范围是[]2,4; 故①1±;②[]2,4.五、解答题17.已知集合{}2230A xx x =+->∣,{50}B x x =-≤<∣,R 为实数集. (1)求A B ⋂; (2)求()()R RA B .(1)[)5,3-- (2)[]0,1【分析】(1)化简集合,A B ,由交集运算即可求解; (2)先求,A B 的补集,再求交集即可.【详解】(1){}{22303A xx x x x =+->=<-∣或}1x >,则[)5,3A B =--; (2)[]3,1R A =-,()[),50,R B =-∞-+∞,则()()[]0,1R RA B =.18.已知函数2()2f x x x a =++.(1)当5a =,[2,3]x ∈-时,求()f x 的值域;(2)若不等式()0f x <的解集中的整数解恰好有三个,求实数a 的取值范围. (1)[]4,20 (2)[)3,0-【分析】(1)当5a =时,由函数的单调性,求出函数在区间[]2,3-上的最值,得函数值域; (2)由2()2f x x x a =++的单调性及函数图象的对称性可知,若()0f x <的解集中整数解恰有三个,必为-2,-1,0,列出不等式组,解得a 的取值范围.【详解】(1)当5a =时,2()25f x x x =++在[]2,1--上单调递减,在[]1,3-上单调递增,所以()f x 的最小值为(1)4f -=,又因为(2)5f -=,(3)20f =,所以()f x 的最大值为20,函数值域为[]4,20. (2)2()2f x x x a =++在(),1-∞-上单调递减,在()1,-+∞ 上单调递增,根据图象的对称轴性,若()0f x <的解集中整数解恰有三个,这三个整数必为-2,-1,0,则(0)0(1)30f a f a =<⎧⎨=+≥⎩,解得[)3,0a ∈-.19.已知函数()y f x =是定义在(0,)+∞上的增函数,满足(2)1f =,且对任意的12,x x 都有()()()1212f x x f x f x =+.(1)求(4)f 的值;(2)求不等式()(2)2f x f x ++≤的解集. (1)2(2)(1⎤⎦【分析】(1)令122x x ==可直接求解;(2)易得()()()22f x f x f x x ++=+⎡⎤⎣⎦,结合定义域与增函数性质去“f ”建立不等式即可求解. 【详解】(1)令122x x ==,则()()()22222f f f ⨯=+=,即()42f =;(2)因为()()()22f x f x f x x ++=+⎡⎤⎣⎦,所以()(2)2f x f x ++≤等价于()()24f x x f +≤⎡⎤⎣⎦,因为()y f x =是定义在(0,)+∞上的增函数,所以()024020x x x x ⎧<+≤⎪>⎨⎪+>⎩,解得(1x ⎤∈⎦,故不等式()(2)2f x f x ++≤的解集为(1⎤⎦.20.济南高新区一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地租赁费为1y 万元,仓库到车站的距离为()0x x >km ,每月库存管理费为2y 万元,其中1y 与1x +成反比,2y 与x 成正比,若在距离车站9km 处建仓库,则120y =,272y =.(1)分别求出1y ,2y 关于x 的函数解析式;(2)该公司把仓库建在距离车站多远处,能使这两项费用之和最少,并求出最少费用(万元). (1)()12200(0),801y x y x x x =>=>+ (2)该公司把仓库建在距离车站4k m 处,能使这两项费用之和最少,为72万元【分析】(1)设12,1a y y kx x ==+,利用待定系数法求解即可; (2)根据两项费用之和为12y y +结合基本不等式即可得解.【详解】(1)解:设12,1a y y kx x ==+, 则20,97210a k ==,所以200,8a k ==, 所以()12200(0),801y x y x x x =>=>+; (2)解:两项费用之和()()12200200881811f x y y x x x x =+=+=++-++872≥=, 当且仅当()200811x x =++,即4x =时,取等号, 所以该公司把仓库建在距离车站4k m 处,能使这两项费用之和最少,为72万元. 21.定义两种新的运算:a b ⊕=a b ⊗=2()2(2)x f x x ⊕=-⊗. (1)求(1)f 的值;(2)求函数()f x 的定义域;(3)判断函数()f x的奇偶性,并用函数奇偶性的定义证明.(2)[)(]2,00,2-(3)()f x 为奇函数,证明见解析【分析】(1)根据所给定义求出()f x 的解析式,再代入计算可得;(2)根据分母不为零及偶次方根的被开方数大于等于0得到不等式组,解得即可;(3)根据函数的定义域将函数解析式化简,再根据奇偶性的定义判断即可.【详解】(1)解:因为2x ⊕22x x ⊗==-,所以()f x ==所以(1)f ==(2)解:因为()f x =240x -≥且220x --≠, 解得22x -≤≤且0x ≠,则函数()f x 的定义域为[)(]2,00,2-.(3)解:函数()f x 为奇函数,证明:由(2)可知函数的定义域为[)(]2,00,2-,定义域关于原点对称,当[)(]2,00,2x ∈-时,222(2)x x x --=--=,所以()f x =,又()()f x f x -===-,所以函数()f x 为奇函数. 22.若函数()y f x =自变量的取值区间为[,]a b 时,函数值的取值区间恰为33,b a ⎡⎤⎢⎥⎣⎦,就称区间[,]a b 为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当,()0x ∈+∞时,()4g x x =-+.(1)当(,0)x ∈-∞时,求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图象作为函数()y h x =的图像,是否存在实数t ,使集合21{(,)()}(,)2x y y h x x y y x t ⎧⎫=⋂=-+⎨⎬⎩⎭∣∣恰含有2个元素.若存在,求出满足条件的所有实数t 所构成的集合;若不存在,说明理由.(1)()4g x x =--(2)[]1,3 (3)72⎧⎫⎨⎬⎩⎭【分析】(1)结合奇函数定义直接求解;(2)由“和谐区间”定义解方程直接求解;(3)由“和谐区间”定义可求另一区间为[]3,1--,求出()h x ,令()()22x m x h x t =+-,分类讨论[]3,1x ∈--和[]1,3x ∈时()m x 与0的关系,即可求解.【详解】(1)当(,0)x ∈-∞时,()0,x -∈+∞,()()44g x x x -=--+=+,又()()g x g x -=-, 即()4g x x =--,所以当(,0)x ∈-∞时,()4g x x =--;(2)当,()0x ∈+∞时,()4g x x =-+,函数为单减函数,[],x a b ∈,()()3434g a a a g b b b ⎧=-+=⎪⎪⎨⎪=-+=⎪⎩, 解得1,3a b ==,所以()g x 在(0,)+∞内的“和谐区间”为[]1,3;(3)由“和谐区间”定义可知,当[,]x a b ∈,()33,g x b a ⎡⎤∈⎢⎥⎣⎦,则,a b 同号, 当0a b <<时,()()3434g a a a g b b b ⎧=--=⎪⎪⎨⎪=--=⎪⎩,解得3,1a b =-=-,故()4,314,13x x h x x x ---≤≤-⎧=⎨-+≤≤⎩, 若两交点全落在[]1,3x ∈对应图像上,必满足()2402x m x x t =-+-=在[]1,3x ∈有两解, ()m x 的对称轴为1x =,故不可能有两解,要使()h x 与212y x t =-+恰有两交点,则一交点必落在[]3,1x ∈--对应图象上, 另一交点必落在[]1,3x ∈对应图像上,令()()22x m x h x t =+-, 当[]3,1x ∈--时,()224422x x m x x t x t =--+-=---, 必满足()()933402111402m t m t ⎧-=+--≥⎪⎪⎨⎪-=+--≤⎪⎩,解得57,22t ⎡⎤∈-⎢⎥⎣⎦; 当[]1,3x ∈时,()224422x x m x x t x t =-++-=-+-,必满足()()111402933402m t m t ⎧=-+-≤⎪⎪⎨⎪=-+-≥⎪⎩,解得711,22t⎡⎤∈⎢⎥⎣⎦;综上,则只有一个实数72t=满足,故实数t构成的集合为72⎧⎫⎨⎬⎩⎭.。

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试试题及详细答案解析全文

人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。

1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题+答案解析(附后)

2023-2024学年四川省绵阳市高一上学期期中数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,则( )A. B. C. D.2.若,则下列选项正确的是( )A. B. C. D.3.命题:“”为真命题,则实数a的取值范围为( )A. B. C. D.4.下列幂函数中,在定义域内是偶函数且在上是单调递减的是( )A. B. C. D.5.已知集合,若,则实数a的取值范围是( )A. B. C. D.6.函数的图象大致形状是( )A. B.C. D.7.红星幼儿园要建一个长方形露天活动区,活动区的一面利用房屋边墙墙长,其它三面用某种环保材料围建,但要开一扇宽的进出口不需材料,共用该种环保材料12m,则可围成该活动区的最大面积为( )A. B. C. D.8.若对任意恒成立,其中是整数,则的可能取值为( )A. B. C. D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. B. 若,则或C. 函数在上单调递减D. 函数在上的值域为10.下列叙述中正确的是( )A.设,则“且”是“”的必要不充分条件B. “”是“关于x的一元二次方程有两个不等实数根”的充分不必要条件C. 命题“”的否定是:“”D. 函数的定义域A为R的子集,值域,则满足条件的有3个11.关于函数的相关性质,下列正确的是( )A. 函数的图象关于y轴对称B. 函数在上单调递减C. 函数在上单调递减D. 函数的最小值为0,无最大值12.已知函数,若存在实数m,使得对于任意的,都有,则称函数有下界,m为其一个下界;类似的,若存在实数M,使得对于任意的,都有,则称函数有上界,M为其一个上界.若函数既有上界,又有下界,则称该函数为有界函数.以下四个选项中正确的是( )A. “函数有下界”是“函数有最小值”的必要不充分条件B. 若定义在R上的奇函数有上界,则该函数是有界函数C. 若函数的定义域为闭区间,则该函数是有界函数D. 若函数且在区间上为有界函数,且一个上界为2,则三、填空题:本题共4小题,每小题5分,共20分。

四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)

四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)

绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。

山东省潍坊市2020-2021学年高一上学期期中数学试题 (1)

山东省潍坊市2020-2021学年高一上学期期中数学试题 (1)

山东省潍坊市2020-2021学年高一上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集{}1,0,1,2U =-,{} 1,1A =-,则集合UA( )A .{0,2}B .{1,0}-C .{0,1}D .{1,2}2.命题“(0,)x ∃∈+∞,13x x+≥”的否定是( ) A .(0,)x ∃∈+∞,13x x +≤ B .(0,)x ∃∈+∞,13x x +< C .(0,)x ∀∈+∞,13x x+<D .(0,)x ∀∈+∞,13x x+≤3.设x ∈R ,则“|3|1x -<”是“2x >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各式运算正确的是( ) A .245(1)(5)a a a a ++=++ B .222249(23)a ab b a b ++=+ C .()3322()a b a b a ab b+=+-+ D .()3322()a b a b a ab b-=--+5.已知()f x 是定义在R 上的偶函数,且在(0,)+∞是增函数,设(3)a f =-,()b f π=,(1)c f =-,则a ,b ,c 的大小关系是( )A .a c b <<B .c b a <<C .b a c <<D .c a b <<6.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m )与时间t (单位:s )之间的关系为2() 4.914.717h t t t =-++,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则实数m 的取值范围是( ) A .[2,6]B .[2,6){2}⋃-C .(,2)[2,6)-∞-⋃D .[2,6)8.读书能陶冶我们的情操,给我们知识和智慧.我国古代数学名著《算法统宗》中有以下问题:毛诗春秋周易书,九十四册共无余,毛诗一册三人读,春秋一册四人呼,周易五人读一本,要分每样几多书,就见学生多少数,请君布算莫踌躇.由此可推算,学生人数为( ) A .120B .130C .150D .1809.已知a ,b 为正实数,则下列判断中正确的个数是( )①若11a b <> ②若1a b +=,则14a b+的最小值是10; ③114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭; ④函数11y a a =++的最小值为1. A .1B .2C .3D .410.定义在R 上的奇函数()f x 在[0,)+∞是减函数,且(2)1f -=,则满足1(1)1f x -≤-≤的x 的取值范围是( )A .[2,2]-B .[2,1]-C .[1,3]-D .[0,2]11.关于x 的方程225(9)20x a x a a -++--=的两根分别在区间(0,1)和(1,2)内,则实数a 的取值范围是( )A .(3,1)--B .(11)(3,1--⋃+C .(2,1)(2,3)--⋃D .(2,6)12.已知函数()f x 满足(2)(2)6f x f x -++=,31()2x g x x -=-,且()f x 与()g x 的图像交点为()11,x y ,()22,x y ,…,()88,x y ,则128128x x x y y y +++++++的值为( ) A .20 B .24 C .36 D .40二、填空题13.函数(11)f x x -的定义域是_______. 14.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()(1)f x x x =-,则(2)f -=________.15.已知不等式20ax bx c ++>的解集为{|26}x x <<,则不等式20cx bx a ++<的解集为________.16.在平面直角坐标系xOy 中,对于点(,)A a b ,若函数()y f x =满足:[1,1]x a a ∀∈-+,都有[1,1]y b b ∈-+,则称这个函数是点A 的“界函数”.已知点(,)B m n 在函数212y x =-的图像上,若函数212y x =-是点B 的“界函数”,则m 的取值范围是________.三、解答题17.已知集合{|26}A x x =-≤≤,{|35}B x x =-≤≤. (1)求AB ,A B ;(2)若{|121}C x m x m =+≤≤-,()C A B ⊆,求实数m 的取值范围.18.已知函数2()(0)1x af x a x -=>+,若不等式()1f x ≥-的解集为(,1)[0,)-∞-+∞. (1)求实数a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.19.已知函数223,(02)()43,(2)x x f x x x x -+≤<⎧=⎨-+≥⎩,()(||)F x f x =.(1)判断()F x 的奇偶性,在给定的平面直角坐标系中,画出函数()F x 的大致图像;并写出该函数的单调区间;(2)若函数()()H x F x t =-有两个零点,求t 的取值范围. 20.已知函数2()(1)()f x x a x a a R =+--∈. (1)解关于x 的不等式()0f x <;(2)若[1,1]a ∀∈-,()0f x ≥恒成立,求实数x 的取值范围.21.第二届中国国际进口博览会于2021年11月5日至10日在上海国家会展中心举行,来自151个国家和地区的3617家企业参展,规模和品质均超过首届.更多新产品、新技术、新服务“全球首发,中国首展”,专(业)精(品)尖(端)特(色)产品精华荟萃.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2021年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,每生产x 千台空调,需另投入资金()R x 万元,且2210,040()901945010000,40x ax x R x x x x x ⎧+<<⎪=⎨-+≥⎪⎩.经测算生产10千台空调需另投入的资金为4000万元.由调研知,每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.(1)求2021年的企业年利润()W x (万元)关于年产量x (千台)的函数关系式; (2)2021年产量为多少(千台)时,企业所获年利润最大?最大年利润是多少?注:利润=销售额–成本22.已知二次函数()y f x =满足:①x R ∀∈,有(1)(1)f x f x --=-+;②(0)3f =-;③()y f x =的图像与x 轴两交点间距离为4. (1)求()y f x =的解析式;(2)记()()5g x f x kx =++,[1,2]x ∈-. ①若()g x 为单调函数,求k 的取值范围;②记()g x 的最小值为()h k ,讨论()24h t λ-=的零点个数.参考答案1.A 【分析】利用集合补集的性质直接求解即可 【详解】由于{}1,0,1,2U =-,{} 1,1A =-,所以,UA {0,2}故选A 2.C 【分析】根据特称命题的否定是全称命题的知识,选出正确选项. 【详解】原命题是特称命题,其否定是全称命题,注意到要否定结论,故C 选项正确. 故选C. 【点睛】本小题主要考查特称命题的否定是全称命题,属于基础题. 3.A 【分析】求得不等式|3|1x -<的解集,由此判断出充分、必要条件. 【详解】由|3|1x -<得131x -<-<,即24x <<,所以“|3|1x -<”是“2x >” 充分不必要条件. 故选A. 【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题. 4.C 【分析】利用乘法分配律和立方和、立方差公式,判断出正确选项. 【详解】对于A 选项,右边265a a =++≠左边,故A 选项错误.对于B 选项,右边224129a ab b =++≠左边,故B 选项错误. 对于C 选项,根据立方和公式可知,C 选项正确.对于D 选项,根据立方差公式可知,正确的运算是()3322()a b a b a ab b -=-++,故D选项错误. 故选:C. 【点睛】本小题主要考查乘法分配律,立方和、立方差公式,考查因式分解,属于基础题. 5.D 【分析】利用函数的奇偶性化简,a c ,再根据单调性比较出三者的大小关系. 【详解】由于()f x 是偶函数,故()()()()33,11a f f c f f =-==-=.由于()f x 在(0,)+∞是增函数,所以()()()13πf f f <<,即c a b <<. 故选:D. 【点睛】本小题主要考查利用函数的奇偶性、单调性比较大小,属于基础题. 6.B 【分析】利用配方法求得()h t 的最大值,也即烟花冲出后在爆裂的最佳时刻距地面高度. 【详解】依题意2() 4.914.717h t t t =-++234.928.0252t ⎛⎫=--+ ⎪⎝⎭,故当32t =时,()max 28.02528m h t =≈.故选B. 【点睛】本小题主要考查二次函数最大值的求法,考查函数在生活中的应用,属于基础题. 7.D 【分析】对m 分成2m =和2m ≠且2m ≠-两种情况,结合一元二次不等式恒成立,求得的m 的取值范围. 【详解】当2m =时,原不等式化为104>恒成立. 当2m ≠且2m ≠-时,要使对x R ∀∈,不等式()2214(2)02m x m x m -+-+>+恒成立,则需()()22240124402m m m m ⎧->⎪⎨∆=---⋅<⎪+⎩即()()()()220260m m m m ⎧+->⎪⎨--<⎪⎩,解得26m <<. 综上所述,m 的取值范围是[2,6). 故选:D. 【点睛】本小题主要考查一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题. 8.A 【分析】设出3种书每本的数量,设出学生人数,根据已知条件列方程组,解方程组求得学生人数. 【详解】设毛诗x 本,春秋y 本,周易z 本,学生人数为m ,则94345x y z mxm y mz++=⎧⎪⎪=⎪⎪⎨=⎪⎪⎪=⎪⎩, 解得120403024m x y z =⎧⎪=⎪⎨=⎪⎪=⎩. 故选A. 【点睛】本小题主要考查中国古代数学文化,考查方程的思想,属于基础题. 9.B 【分析】对四个判断逐一分析,由此确定判断正确的个数.对于①,由于0,0a b >>,由11a b <,得110b a a b ab--=<,即0a b >>>以①正确.对于②,由于0,0a b >>,()14144559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当42,23b a b a a b ===时等号成立,故②错误. 对于③,由于0,0a b >>,所以112,2a b a b+≥+≥,根据不等式的性质,有114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,故③正确.对于④,由于0,0a b >>,所以1111121111y a a a a =+=++-≥=-=++,但是由于111a a +=+时,0a =或2a =-,不符合题意,故等号不成立.所以④错误.综上所述,正确的判断个数为2个. 故选B. 【点睛】本小题主要考查不等式的性质,考查基本不等式的运用,属于基础题. 10.C 【分析】根据奇函数的性质,求得不等式1(1)1f x -≤-≤的解集. 【详解】由于()f x 是奇函数,故()()221f f =--=-.由于奇函数()f x 在[0,)+∞是减函数,所以()f x 在R 上是减函数.由1(1)1f x -≤-≤得()()()212f f x f ≤-≤-,所以212x ≥-≥-,解得13x -≤≤.故选C. 【点睛】本小题主要考查利用函数的奇偶性和单调性解不等式,属于基础题.【分析】构造函数()225(9)2f x x a x a a =-++--,根据()f x 零点分布列不等式组,解不等式组求得a 的取值范围. 【详解】构造二次函数()225(9)2f x x a x a a =-++--,其开口向上.依题意,()f x 的零点分别在区间(0,1)和(1,2)内,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()()222205920202920a a a a a a a a ⎧-->⎪-++--<⎨⎪-++-->⎩,解得(11)(3,1a ∈-⋃+. 故选:B. 【点睛】本小题主要考查根据一元二次方程根的分布求参数的取值范围,考查一元二次不等式的解法,属于基础题. 12.D 【分析】根据已知条件判断()f x 和()g x 都关于()2,3中心对称,由此求得128128x x x y y y +++++++的值.【详解】由于()f x 满足(2)(2)6f x f x -++=,当0x =时,()23f =,所以()f x 关于()2,3中心对称.由于()325315()3222x x g x x x x -+-===+---,所以()g x 关于()2,3中心对称.故()f x 和()g x 都关于()2,3中心对称.所以()f x 与()g x 的图像交点()11,x y ,()22,x y ,…,()88,x y ,两两关于()2,3对称.所以128128x x x y y y +++++++828340=⨯+⨯=.故选:D. 【点睛】本小题主要考查函数图像的对称性,考查化归与转化的数学思想方法,属于基础题.13.[2,1)(1,)-+∞【分析】要使函数()f x 有意义,只需2010x x +⎧⎨-≠⎩,解此不等式组即可.【详解】解:要使函数()f x 有意义,须有2010x x +⎧⎨-≠⎩,解得2x -,且1x ≠,故函数()f x 的定义域为:{|2x x -,且1}x ≠, 故答案为:[2,1)(1,)x ∈-+∞.【点睛】本题考查函数定义域的求解,属基础题,若函数为偶次根式,被开放数须大于等于0;若函数为分式,分母必不为0. 14.2 【分析】根据函数的奇偶性求得()2f -的值.【详解】由于()f x 是奇函数,故()()()222122f f -=-=--=⎡⎤⎣⎦. 故答案为:2. 【点睛】本小题主要考查利用函数的奇偶性求函数值,属于基础题. 15.{1|6x x <或12x ⎫>⎬⎭.【分析】根据20ax bx c ++>的解集写出根与系数关系,由此求得不等式20cx bx a ++<的解集. 【详解】由于不等式20ax bx c ++>的解集为{|26}x x <<,所以0a <,2682612b a c a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,即812b a c a=-⎧⎨=⎩,所以不等式20cx bx a ++<可化为21280ax ax a -+<,由于0a <,所以21280ax ax a -+<可化为212810x x -+>,即()()21610x x -->,解得16x <或12x >. 故答案为{1|6x x <或12x ⎫>⎬⎭. 【点睛】本小题主要考查一元二次不等式的解法,考查化归与转化的数学思想方法,考查运算求解能力,属于基础题.16.11,22⎡⎤-⎢⎥⎣⎦ 【分析】对m 分成1,11,1m m m ≤--<<≥三种情况,结合[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+进行分类讨论,由此求得m 的取值范围.【详解】 函数212y x =-开口向下,对称轴为y 轴.由于B 在函数212y x =-的图像上,所以212n m =-.依题意[1,1]x m m ∀∈-+,都有[1,1]y n n ∈-+,即:[1,1]x m m ∀∈-+,都有22[11122,1]y m m --∈-+. 当10m +≤,即1m ≤-时,函数212y x =-在[1,1]m m -+上递增,最小值为()2112m --,最大值为()2112m -+,所以()()2222111111211222m m m m ---<-+≤--≤+,此不等式在1m ≤-时无解.当101m m -<<+,即11m -<<时,函数212y x =-在[1,1]m m -+上,最大值为0,最小值在区间[1,1]m m -+的端点取得,故()()222222221110122111111222111111222m m m m m m m m ⎧--≤≤-+⎪⎪⎪--≤--≤-+⎨⎪⎪--≤-+≤-+⎪⎩,解得1122m -≤≤. 点10m -≥,即m 1≥时,函数212y x =-在[1,1]m m -+上递减,最小值为()2112m -+,最大值为()2112m --,所以()()2222111111211222m m m m --+<--≤--≤+,此不等式在m 1≥时无解.综上所述,m 的取值范围是11,22⎡⎤-⎢⎥⎣⎦. 故答案为11,22⎡⎤-⎢⎥⎣⎦ 【点睛】本小题主要考查新定义函数的理解,考查分类讨论的数学思想方法,考查不等式的解法,属于中档题.17.(1){|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤(2)3m ≤【分析】(1)根据交集、并集的知识,求得A B ,A B . (2)根据(1)得到A B ,对C 分成C =∅和C ≠∅两种情况,结合()C A B ⊆进行分类讨论,由此求得m 的取值范围.【详解】(1)由已知可得{|25}A B x x ⋂=-≤≤,{|36}A B x x ⋃=-≤≤.(2)由(1)知{|25}A B x x ⋂=-≤≤.由于()C AB ⊆,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,解得23m ≤≤,综上可得3m ≤.【点睛】本小题主要考查集合交集和并集的概念和运算,考查根据集合的包含关系求参数,属于基础题.18.(1)1a =;(2)证明见解析.【分析】(1)化简不等式()1f x ≥-为整式形式,根据不等式()1f x ≥-的解集,求得a 的值.(2)利用函数单调性的定义,计算()()210f x f x ->,由此证得函数()f x 在[0,)+∞上是增函数.【详解】(1)由题意211x a x -≥-+, 变形2311011x a x a x x --++=≥++, 等价于(31)(1)0x a x -++≥且10x +≠,解得1x <-或13a x -≥, 所以103a -=,解得1a =. (2)由(1)得21()1x f x x -=+, 任取12,[0,)x x ∈+∞,且12x x <,则210x x ->,那么()()()()()2121212112321211111x x x x f x f x x x x x ----=-=++++, ∵210x x ->,()()12110x x ++>,∴()()210f x f x ->,∴函数()f x 在[0,)+∞上是增函数.【点睛】本小题主要考查分式不等式的解法,考查利用函数单调性的定义证明函数单调性,属于基础题.19.(1)()F x 在R 上是偶函数,增区间为(2,0)-,(2,)+∞,递减区间为:(,2)-∞-,(0,2),图像见解析;(2)3t >或1t =-【分析】(1)利用奇偶性的定义,判断出()F x 为偶函数,根据函数()f x 的解析式以及()F x 图像的对称性,画出()F x 的图像,根据图像写出()F x 的单调区间.(2)令()()0H x F x t =-=,()F x t =,结合()F x 图像与y t =的图像有两个交点,求得t 的取值范围.【详解】(1)由题意知()F x 定义域为R ,关于原点对称,又()(||)(||)()F x f x f x F x -=-==,∴()F x 在R 上是偶函数.函数()F x 的大致图像如下图:观察图像可得:函数()F x 的单调递增区间为:(2,0)-,(2,)+∞,单调递减区间为:(,2)-∞-,(0,2).(2)当()()H x F x t =-有两个零点时,即()F x 的图像与直线y t =图像有两个交点,观察函数图像可得3t >或1t =-.【点睛】本小题主要考查函数奇偶性,考查函数图像的对称性,考查函数零点问题的求解策略,考查20.(1)当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,) a -;(2){|1x x ≤-或}1x ≥.【分析】(1)将不等式()0f x <左边因式分解,将a 分成1,1,1a a a <-=->-三种情况分类讨论,结合一元二次不等式的解法,求得不等式()0f x <的解集.(2)变换主参变量,将“[1,1]a ∀∈-,()0f x ≥恒成立”转化为一次函数在区间[]1,1-上恒大于零,列不等式组来求解得x 的取值范围.【详解】(1)不等式2(1)0x a x a +--<等价于 ()(1)0x a x -+<,当1a <-时,不等式的解集为(,1)a -;当1a =-时,不等式的解集为∅;当1a >-时,不等式的解集为(1,)a -.(2)22(1)(1)x a x a a x x x +--=-+++,设2()(1),[1,1]g a a x x x a =-+++∈-,要使()0g a ≥在[1,1]a ∈-上恒成立, 只需(1)0(1)0g g -≥⎧⎨≥⎩, 即22210,10,x x x ⎧++≥⎨-≥⎩解得1x ≥或1x ≤-,所以x 的取值范围为{|1x x ≤-或}1x ≥.【点睛】本小题主要考查一元二次不等式的解法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于中档题.21.(1)2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩(2)2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元【分析】(1)利用()104000R =求得a 的值.利用销售额减去固定成本和()R x ,求得利润()W x 的函数关系式.(2)结合二次函数的性质、基本不等式,求得当x 为何值时,()W x 取得最大值.【详解】(1)由题意2(10)1010104000R a =⨯+=,所以300a =,当040x <<时,()22()9001030026010600260W x x x x x x =-+-=-+-; 当40x ≥时, 22901945010000919010000()900260x x x x W x x x x-+-+-=--=, 所以2210600260,040()919010000,40x x x W x x x x x ⎧-+-<<⎪=⎨-+-≥⎪⎩. (2)当040x <<,2()10(30)8740W x x =--+当30x =时,max ()8740W x = 当40x ≥,29190100001000010000()91909190x x W x x x x x x -+-⎛⎫==--+=-++ ⎪⎝⎭, 因为0x >,所以10000200x x +≥=, 当且仅当10000x x=时,即100x =时等号成立, 此时()20091908990W x ≤-+=,所以max ()8990W x =万元,因为87408990<,所以2021年产量为100(千台)时,企业所获利润最大,最大利润是8990万元.【点睛】本小题主要考查分段函数在实际生活中的应用,考查分段函数求最值的方法,属于中档题.22.(1)2()23f x x x =+-(2)①0k ≥或6k ≤-;②2λ>时无零点;12λ<<时,有4个零点,1λ=时,有3个零点,2λ=或1λ<时,有2个零点【分析】(1)设出二次函数解析式,根据已知条件得到二次函数对称轴、与y 轴交点、根与系数关系,由此列方程组,解方程组求得二次函数解析式(2)①求得()g x 解析式,根据其对称轴与区间[1,2]-的位置关系,求得k 的取值范围. ②将k 分成0k ≥,60k -<<,6k ≤-三种情况,结合()g x 的单调性,求得()h k 的表达式,利用换元法:令244m t =-≥-,即()(4)h m m λ=≥-,结合()h m 的图像对λ进行分类讨论,由此求得()24h t λ-=的零点个数.【详解】(1)设2()(0)f x ax bx c a =++≠,由题意知对称轴12b x a=-=-;① (0)3f c ==-;②设()0f x =的两个根为1x ,2x ,则12b x x a +=-,12c x x a=,124x x -===;③ 由①②③解得1a =,2b =,3c =-,∴2()23f x x x =+-.(2)①2()(2)2g x x k x =+++,其对称轴22k x +=-. 由题意知:212k +-≤-或222k +-≥, ∴0k ≥或6k ≤-.② 1)当0k ≥时,对称轴212k x +=-≤-,()g x 在[1,2]-上单调递增,()(1)1h k g k =-=-+,2)当60k -<<时,对称轴2(1,2)2k x +=-∈-,2244()24k k k h k g +--+⎛⎫=-= ⎪⎝⎭, 3)当6k ≤-时,对称轴222k x +=-≥,()g x 在[1,2]-单调递减, ()(2)210h k g k ==+, ∴21,0,44(),604210, 6.k k k k h k k k k -+≥⎧⎪--+⎪=-<<⎨⎪+≤-⎪⎩, 令244m t =-≥-,即()(4)h m m λ=≥-,画出()h m 简图,i )当1λ=时,()1h m =,4m =-或0,∴244t -=-时,解得0t =,240t -=时,解得2t =±,有3个零点.ii )当1λ<时,()h m λ=有唯一解10m >,2140t m -=>,t =2个零点.iii )当12λ<<时,()h m λ=有两个不同的零点2m ,3m ,且23,(4,2)(2,0)m m ∈--⋃-,2340,40m m +>+>,∴224t m -=时,解得t =234t m -=时,解得t =4个不同的零点.iv )当2λ=时,()2h m =,224m t =-=-,∴t =有2个零点.v )当2λ>时,()h m λ=无解.综上所得:2λ>时无零点;12λ<<时,有4个零点;1λ=时,有3个零点;2λ=或1λ<时,有2个零点.【点睛】本小题主要考查根据二次函数的性质求得二次函数解析式,考查含有参数的二次函数在给定区间上的单调性讨论问题,考查函数零点问题的求解策略,考查数形结合的数学思想方法,属于中档题.。

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023-2024学年高一上学期期中考试 数学含解析

山东省2023~2024学年第一学期期中高一数学试题(答案在最后)2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}- D.{1,0,1,2,3,4}-2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.28.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c->- D.b c ba c a+>+10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12D.有最大值11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减D.函数()41y f x =+为偶函数第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.14.函数()f x =的定义域为______.15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.山东省2023~2024学年第一学期期中高一数学试题2023.11说明:本试卷满分150分,分为第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1为第1页至第2页,第II 卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.第Ⅰ卷(共60分)一、单选题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.集合{1,0,1,2,3}A =-,{0,2,4}B =,则图中阴影部分所表示的集合为()A.{0,2}B.{1,1,3,4}-C.{1,0,2,4}-D.{1,0,1,2,3,4}-【答案】B 【解析】【分析】求()()A B A B ð得解.【详解】解:图中阴影部分所表示的集合为()(){1,1,3,4}A B A B =- ð.故选:B2.命题“x ∀∈R 都有210x x ++>”的否定是()A.不存在2,10x R x x ∈++>B.存在2000,10x R x x ∈++≤C.存在2000,10x R x x ∈++>D.对任意的2,10x R x x ∈++≤【答案】B 【解析】【分析】由全称命题的否定:将任意改为存在并否定原结论,即可写出原命题的否定.【详解】由全称命题的否定为特称命题,∴原命题的否定为:存在2000,10x R x x ∈++≤.故选:B3.下列图象中,以{}01M x x =≤≤为定义域,{}01N x x =≤≤为值域的函数是()A. B.C. D.【答案】C 【解析】【分析】根据函数的定义,依次分析选项中的图象,结合定义域值域的范围即可得答案.【详解】对于A ,其对应函数的值域不是{}01N y y =≤≤,A 错误;对于B ,图象中存在一部分与x 轴垂直,即此时x 对应的y 值不唯一,该图象不是函数的图象,B 错误;对于C ,其对应函数的定义域为{|01}M x x = ,值域是{|01}N y y = ,C 正确;对于D ,图象不满足一个x 对应唯一的y ,该图象不是函数的图象,D 错误;故选:C .4.“12x >”是“12x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【分析】根据充分必要条件的定义判断.【详解】12x >时12x <成立,12x <时如112x =-<,则=1x -12<,因此只能是充分不必要条件,故选:A .5.已知函数()22132f x x +=+,则()3f 的值等于()A.11B.2C.5D.1-【答案】C 【解析】【分析】根据给定条件,令213x +=求出x 即可计算作答.【详解】函数()22132f x x +=+,令213x +=,得1x =,所以()233125f =⨯+=.故选:C6.函数()f x =的单调递增区间是()A.(]-1∞, B.[)1+∞,C.[]1,3 D.[]1,1-【答案】D 【解析】【分析】先求出()f x 定义域,在利用二次函数单调性判断出结果.【详解】函数()f x =的定义域需要满足2320x x +-≥,解得()f x 定义域为[]13,-,因为232y x x =+-在[]11-,上单调递增,所以()f x =在[]11-,上单调递增,故选:D .7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()112f a f a -=+,则a 的值为()A.1B.12-C.-1D.2【答案】B 【解析】【分析】对a 进行分类讨论,分别确定1a -与12a +的范围,代入相应的函数解析式,再利用()()112f a f a -=+即可求解.【详解】当0a >时,有11a -<,121a +>,又因为()()112f a f a -=+,所以()()21122a a a a -+=-+-,解得:1a =-,又0a >,所以1a =-舍去;当a<0时,有11a ->,121a +<,又因为()()112f a f a -=+,所以()()21212a a a a ++=---,解得:12a =-.故选:B.8.已知函数y =的定义域与值域均为[]0,1,则实数a 的取值为()A.-4B.-2C.1D.1【答案】A 【解析】【分析】依题意知2y ax bx c =++的值域为[]0,1,则方程20ax bx c ++=的两根为0x =或1,可得0c =,a b =-,从而确定当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,进而解得4a =-.【详解】依题意,2y ax bx c =++的值域为[]0,1,且20ax bx c ++≥的解集为[]0,1,故函数的开口向下,a<0,则方程20ax bx c ++=的两根为0x =或1,则0c =,0122b a +-=,即a b =-,则222124a y ax bx c ax ax a x ⎛⎫=++=-=-- ⎪⎝⎭,当12x =时,2124a y a x ⎛⎫=-- ⎪⎝⎭取得最大值为1,即14a-=,解得:4a =-.故选:A.二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.)9.若0a b c >>>则以下结论正确的是()A.c c a b> B.22ac bc >C.a b b c ->- D.b c ba c a+>+【答案】AB 【解析】【分析】对于AB ,可利用不等式的性质直接判断;对于CD ,可赋值判断.【详解】对于A ,因为0a b >>,所以11a b <,又因为0c >,所以c c a b>,故A 正确;对于B ,因为0a b c >>>,则有20c >,所以22ac bc >,故B 正确;对于C ,因为0a b c >>>,若2a =,1b =,1c =-,则211a b -=-=,()112b c -=--=,此时a b b c -<-,故C 错误;对于D ,因为0a b c >>>,若2a =,1b =,1c =-,则11021b c a c +-==+-,12b a =,此时b c b a c a +<+,故D 错误.故选:AB.10.设正实数a 、b 满足1a b +=,则()A.有最大值12B.1122a b a b +++有最小值3C.22a b +有最小值12 D.有最大值【答案】ACD 【解析】【分析】利用基本不等式求出各选项中代数式的最值,由此可判断各选项的正误.【详解】设正实数a 、b 满足1a b +=.对于A 122a b +=,当且仅当12a b ==时,等号成立,A 选项正确;对于B 选项,由基本不等式可得()111113322322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭()()111122=222322322a b a b a b a b a b a b a b a b ++⎛⎫⎛⎫++++=+⎡⎤ ⎪ ⎪⎣⎦++++⎝⎭⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,B 选项错误;对于C 选项,()()()222222122222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,C 选项正确;对于D 选项,()222a b a b =+++=≤,当且仅当22a b ==时,等号成立,D 选项正确.故选:ACD.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.11.若定义域为R 的函数()f x 满足()2f x +为奇函数,且对任意[)12,2,x x ∈+∞,12x x ≠,已知()()()1212[]0f x f x x x -->恒成立,则下列正确的是()A.()f x 的图象关于点()2,0-对称B.()f x 在R 上是增函数C.()()44f x f x +-=D.关于x 的不等式()0f x <的解集为(),2-∞【答案】BD 【解析】【分析】根据给定条件,探讨函数的对称性及单调性,再逐项判断即得答案.【详解】由()2f x +为奇函数,得()2(2)f x f x -+=-+,即(4)()0f x f x -+=,因此()f x 的图象关于点()2,0对称,由任意[)12,2,x x ∈+∞,12x x ≠,()()()1212[]0f x f x x x -->恒成立,得函数()f x 在[)2,+∞上单调递增,于是()f x 在R 上单调递增,B 正确;显然(2)(2)0f f -<=,即()f x 的图象关于点()2,0-不对称,A 错误;对C ,由(4)()0f x f x -+=,得()()44f x f x +-≠,C 错误;对D ,由于()f x 在R 上单调递增,()()0(2)f x f x f <⇔<,则2x <,即不等式()0f x <的解集为(),2-∞,D 正确.故选:BD12.设函数()y f x =的定义域为R ,对于任意给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数2()21f x x x =-+,则下列结论正确的是()A.()424f = B.()4f x 的值域为[]0,4C.()4f x 在[]1,1-上单调递减 D.函数()41y f x =+为偶函数【答案】BCD 【解析】【分析】令2214x x -+≤求出不等式的解,即可求出()4f x 的解析式,即可判断A 、B 、C ,再求出()41y f x =+的解析式,画出图象,即可判断D.【详解】根据题意,由2214x x -+≤,解得13x -≤≤,∴()2421,134,14,3x x x f x x x ⎧-+-≤≤⎪=<-⎨⎪>⎩,所以()24222211f =-⨯+=,故A 错误;当13x -≤≤时()()224211f x x x x =-+=-,且()4f x 在[]1,1-上单调递减,在[]1,3上单调递增,()401f =,()()44431f f -==,所以()404f x ≤≤,即()4f x 的值域为[]0,4,故B 、C 正确;因为()24,2214,24,2x x y f x x x ⎧-≤≤⎪=+=<-⎨⎪>⎩,则()41y f x =+的图象如下所示:由图可知()41y f x =+的图象关于y 轴对称,所以函数()41y f x =+为偶函数,故D 正确;故选:BCD第II 卷(非选择题,共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合{}21,2,4m M m +=+,且5M ∈,则m 的值为________.【答案】1或3##3或1【解析】【分析】根据题意得到25m +=,245m +=,解方程再验证得到答案.【详解】{}21,2,4m M m +=+,5M ∈,当25m +=时,3m =,此时{}1,9,13M =,满足条件;当245m +=时,1m =±,1m =-时,不满足互异性,排除;1m=时,{}1,3,5M =,满足条件.综上所述:1m =或3m =.故答案为:1或3.14.函数()f x =的定义域为______.【答案】1,12⎛⎤- ⎥⎝⎦【解析】【分析】根据偶次方根的被开方数非负且分母不为零得到不等式组,解得即可.【详解】对于函数()f x =,则1021210xx x -⎧≥⎪+⎨⎪+≠⎩等价于()()1210210x x x ⎧-+≥⎨+≠⎩,解得112x -<≤,所以函数()f x =的定义域为1,12⎛⎤- ⎥⎝⎦.故答案为:1,12⎛⎤-⎥⎝⎦15.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则实数a 的取值范围为__________.【答案】[]1,4【解析】【分析】根据分段函数单调性的定义,解不等式求实数a 的取值范围.【详解】函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩是R 上的单调减函数,则44(1)32(5)21250a a a a a -++≥--⎧⎪+≥⎨⎪-<⎩,解得14a ≤≤,所以实数a 的取值范围为[]1,4.故答案为:[]1,4.16.设()f x 是定义在R 上的奇函数,对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()1122120x f x x f x x x ->-,若()24f =,则不等式8()0f x x->的解集为___________.【答案】(2,0)(2,)-+∞ 【解析】【分析】令()()F x xf x =,可得函数利()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数且在(0,)+∞上单调递增,原不等式等价于()80F x x->,分析可得答案.【详解】令()()F x xf x =,由()f x 是定义在(,0)(0,)-∞+∞ 上的奇函数,可得()F x 是定义在(,0)(0,)-∞+∞ 上的偶函数,由对任意的1x ,2(0,)x ∈+∞,12x x ≠,满足:()()2211210x f x x f x x x ->-,可得()()F x xf x =在(0,)+∞上单调递增,由(2)4f =,可得(2)8F =,所以()F x 在(,0)-∞上单调递减,且(2)8F -=,不等式8()0f x x ->,即为()80xf x x ->,即()80F x x->,可得0()8x F x >⎧⎨>⎩或0()8x F x <⎧⎨<⎩,即02x x >⎧⎨>⎩或020x x <⎧⎨-<<⎩解得2x >或20x -<<.故答案为:(2,0)(2,)-+∞ .四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}27,{121}A xx B x m x m =-≤≤=+<<-∣∣,(1)3m =时,求A B ⋂;(2)若A B B = ,求实数m 的取值范围.【答案】(1){}|45A B x x =<<I (2)(]4∞-,【解析】【分析】(1)代入m 求集合B ,根据交集的定义即可得解;(2)A B B = ,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.【小问1详解】解:若3m =,则{}45B x x =<<,又{}27A xx =-≤≤∣,所以{}|45A B x x =<<I ;【小问2详解】解:因为A B B = ,所以B A ⊆,当B =∅时,则211m m -≤+,解得2m ≤,此时B A ⊆,符合题意,当B ≠∅时,则12112217m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得24m <≤,综上所述4m ≤,所以若A B B = ,m 的取值范围为(]4∞-,.18.已知幂函数()()215m f x m m x+=--,且函数在()0,∞+上单增(1)函数()f x 的解析式;(2)若()()122f a f -<,求实数a 的取值范围.【答案】(1)()4f x x =(2)13,22⎛⎫-⎪⎝⎭【解析】【分析】(1)幂函数()()215m f x m m x+=--,有251m m --=,再由函数在()0,∞+上单调递增,解出m 的值,得函数()f x 的解析式;(2)由函数的奇偶性和单调性解不等式.【小问1详解】()()215m f x m m x +=--为幂函数,则有251m m --=,解得3m =或2m =-,3m =时,()4f x x =,在()0,∞+上单调递增,符合题意;2m =-时,()1f x x -=,在()0,∞+上单调递减,不合题意;所以()4f x x =.【小问2详解】()4f x x =,函数定义域为R ,()()()44f x x x f x -=-==,函数为偶函数,在(),0∞-上单调递减,在()0,∞+上单调递增,若()()122f a f -<,有2122a -<-<,解得1322a -<<,所以实数a 的取值范围为13,22⎛⎫- ⎪⎝⎭.19.已知函数()2bf x ax x=-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+∞的单调性.【答案】(1)()22f x x x=+(2)单调递增,证明见解析.【解析】【分析】(1)依题意可得1a b +=-,3a b -=,解方程即可得函数解析式;(2)利用函数单调性的定义法判断即可.【小问1详解】因为()11f -=-,()13f =,所以1a b +=-,3a b -=,解得:1a =,2b =-,所以函数()f x 解析式为:()22f x x x=+.【小问2详解】函数()f x 在区间()1,+∞上单调递增,证明如下:由(1)知()22f x x x=+,取任意1x 、()21,x ∈+∞,令12x x <,则()()()22121212121212222f x f x x x x x x x x x x x ⎛⎫-=+--=-+- ⎪⋅⎝⎭因为12x x <,所以120x x -<,又211x x >>,则122x x +>,121x x ⋅>,所以12101x x <<⋅,则12202x x <<⋅,所以1222x x ->-⋅,即121220x x x x +->⋅,所以()()120f x f x -<,即函数()f x 在区间()1,+∞上单调递增.20.一家商店使用一架两臂不等长的天平称黄金,其中左臂长和右臂长之比为λ,一位顾客到店里购买10克黄金,售货员先将5g 砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 砝码放在天平右盘中,然后取出一些黄金放在天平左盘中使天平平衡,最后将两次称得的黄金交给顾客(1)试分析顾客购得的黄金是小于10g ,等于10g ,还是大于10g ?为什么?(2)如果售货员又将5g 的砝码放在天平左盘中,然后取出一些黄金放在天平右盘中使天平平衡,请问要使得三次黄金质量总和最小,商家应该将左臂长和右臂长之比λ,设置为多少?请说明理由.【答案】(1)顾客购得的黄金是大于10g ,理由见详解(2)三次黄金质量总和要最小,则左臂长和右臂长之比2λ=,理由见详解【解析】【分析】(1)设天平的左臂长为a ,右臂长b ,则a b ¹,售货员先将5g 的砝码放在左盘,将黄金x g 放在右盘使之平衡;然后又将5g 的砝码放入右盘,将另一黄金y g 放在左盘使之平衡,则顾客实际所得黄金为x y +(g)利用杠杆原理和基本不等式的性质即可得出结论.(2)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,加上前两次利用基本不等式进行分析即可.【小问1详解】由于天平两臂不等长,设天平左臂长为a ,右臂长为b ,且a b ¹,先称得黄金为x g,后称得黄金为y g,则5,5bx a ay b ==,则55,a b x y b a ==,所以555210a b x y b a +=+≥⨯=当且仅当a bb a=,即a b =时取等号,由a b ¹,所以10x y +>顾客购得的黄金是大于10g【小问2详解】由(1)再一次将5g 的砝码放在天平左盘,再取黄金m g 放在右盘使之平衡,则此时有5a bm =,此时有5am b=,所以三次黄金质量总和为:55525()52a b a a b x y m b a b b a ++=++=+≥⨯=当且仅当2a b b a =,即2a b b λ=⇒==所以三次黄金质量总和要最小,则左臂长和右臂长之比22λ=.21.已知命题:“[]1,3x ∀∈-,都有不等式240x x m --<成立”是真命题.(1)求实数m 的取值集合A ;(2)设不等式()223200x ax a a ≥-+≠的解集为B ,若x A ∈是x B ∈的充分条件,求实数a 的取值范围.【答案】(1){}5A m m =>(2)5002a a a ⎧⎫<<≤⎨⎩⎭或【解析】【分析】(1)分析可知24m x x >-在[]13,x ∈-时恒成立,利用二次函数的基本性质可求得实数m 的取值集合A ;(2)分析可知A B ⊆,分a<0、0a >两种情况讨论,求出集合B ,结合A B ⊆可得出关于实数a 的不等式,综合可得出实数a 的取值范围.【小问1详解】解:由[]1,3x ∀∈-,都有不等式240x x m --<成立,得240x x m --<在[]13,x ∈-时恒成立,所以()2max4m x x>-,因为二次函数24y x x =-在[]1,2-上单调递减,在[]2,3上单调递增,且()21145x y=-=-+=,233433x y ==-⨯=-,所以,当[]13,x ∈-时,max 5y =,5m ∴>,所以,{}5A m m =>.【小问2详解】解:由22320x ax a -+≥可得()()20x a x a --≥.①当0a <时,可得{2B x x a =≤或}x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则5a ≤,此时,0a <;②当0a >时,可得{B x x a =≤或}2x a ≥,因为x A ∈是x B ∈的充分条件,则A B ⊆,则25a ≤,解得52a ≤,此时502a <≤.综上所述,实数a 的取值范围是5002a a a ⎧⎫<<≤⎨⎩⎭或.22.已知函数()f x 是定义域在R 上的奇函数,当0x ≥时,()2f x x ax =-+.(1)当1a =时,求函数()f x 的解析式;(2)若函数()f x 为R 上的单调函数.且对任意的[)1,m ∈+∞,()221240tf mt m f m m ⎛⎫-+-> ⎪⎝⎭恒成立,求实数t 的范围.【答案】(1)22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩(2)5,3⎛⎫-∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的定义和0x ≥时()f x 的解析式,即可得出0x <时的解析式,进而得出答案;(2)由()f x 的单调性和奇偶性解不等式,通过参变分离、换元法、构造函数求单调性,求得函数的最值,可求实数t 的范围.【小问1详解】函数()f x 是定义域在R 上的奇函数,1a =,当0x ≥时,2()f x x x =-+.当0x <时,有0x ->,22()()()f x f x x x x x =--=---=+.所以22,(0)(),(0)x x x f x x x x ⎧-+≥=⎨+<⎩.【小问2详解】因奇函数在关于原点对称的区间上有相同的单调性,由2()f x x ax =-+在[)0,∞+上单调递减,故函数()f x 为单调递减函数,由()221240t f mt mf m m⎛⎫-+->⎪⎝⎭,可得()2221124t t f mt mf f m m m m ⎛⎫⎛⎫->--=- ⎪ ⎪⎝⎭⎝⎭,故22124t mt m m m -<-,即221124m t m m m ⎛⎫+<+ ⎪⎝⎭,又注意到22211424m m m m ⎛⎫+=+- ⎪⎝⎭,结合[)1,m ∈+∞,知120m m +>,得:14(21(2)t m m m m<+-+.令1()2=+g x x x,其中[)1,x ∞∈+,任取121x x ≤<,故2112121212121212111()()222()()2x x g x g x x x x x x x x x x x x x ⎛⎫--=+--=-+=-- ⎪⎝⎭,因121x x ≤<,则120x x -<,121x x >,12120->x x ,故12121()20x x x x ⎛⎫--< ⎪⎝⎭,即12()()<g x g x ,所以()g x 在[)1,+∞上单调递增,得()()13g x g ≥=.又令12m n m +=,则14(21(2)t m m m m <+-+转化为4t n n <-,其中3n ≥.要使式子成立,需t 小于4n n-的最小值.又注意到函数y x =与函数4y x=-均在[)3,+∞上单调递增,则函数4y x x=-在[)3,+∞上单调递增.故445333n n -≥-=,得53t <,则t 的范围为5,3⎛⎫-∞ ⎪⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学上学期期中试题(1)
数学试题
考试时间:120分钟 满分:150分
一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的)
1. 函数的定义域为
y =A. B. C. 或 D.
{|1}x x ≤}{|0x x ≥{|1x x ≥0}x ≤}{|01x x ≤≤
2. 下列函数中,既是偶函数又在单调递增的是 ()0,?+∞
A. B. C.
D. 3y x =2x y -=21y x =-+1y x =+
3. 已知则 ()()()
251211x x f x x x +>⎧⎪=⎨+≤⎪⎩()1f f =⎡⎤⎣⎦ A.3 B.13 C.8
D.18
4. 已知函数的定义域为,则函数的定义域为 () f x ()1,0-()21f x +
A. B. C.
D. ()1,1-11,2⎛⎫-- ⎪⎝⎭()1,0-1,12⎛⎫ ⎪⎝⎭
5. 计算()()516log 4log 25⋅=
A. B. C.
D. 211214
6. 在映射中, ,且,则与中的元素对应的中的元素为
:f A B →(),,A B x y x y R ⎡⎤==∈⎣⎦:(,)(,)f x y x y x y →-+A ()1,2-B
A. B. C.
D. ()3,1-()1,3()1,3--()3,1
7.方程的解所在区间为 240x x +-=
A. B. C.
D. ()1,0-()0,1()1,2()2,3
8.设,则1
0.2
3121log 3,(),23
a b c ===
A. B. C. D.
a b c <<c b a <<c a b <<b a c <<
9.函数是上的偶函数,且在上是增函数,若,则实数的取值范围是
()y f x =R (],0-∞()()2f a f ≤a
A. B. C. D.
或2a ≤2a ≥-22a -≤≤2a ≤-2a ≥
10. 已知函数在区间上是单调函数,则实数的取值范围是
2()41f x x kx =+-[]1,2k
A. B.
(][),168,-∞-⋃-+∞[]16,8-- C. D.
(][),84,-∞-⋃-+∞[]8,4--。

相关文档
最新文档