【3套试卷】人教版七年级第二学期下册期中模拟数学试卷【含答案】

合集下载

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。

【多套试卷】人教版七年级第二学期下册期中模拟数学试卷(答案)

【多套试卷】人教版七年级第二学期下册期中模拟数学试卷(答案)

人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形A七年级(下)期中考试数学试题(答案)一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.16的平方根是A.4B.4-C.1616-或D.44-或 2.在平面直角坐标系中,下列各点在第二象限的是A.(1,2)B.(-1,-2)C.(-1,2)D.(1,-2) 3.如图,直线AB 与CD 相交于点O ,OE 平分∠AOC ,且∠AOC=80°,则∠BOE 的度数为 A.140° B.100° C.150° D.40° 4.若x 使()412=-x 成立,则x 的值是A.3B.1-C.13-或D.2±5.在平面直角坐标系内,把点P(-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是A.(-3,2)B.(-7,-6)C.(-7,2)D.(-3,-6) 6.若,437-=x 则x 的取值范围是A.32<<xB.43<<xC.54<<xD.65<<x 7.下列方程中,是二元一次方程的是 A.12=-y x B.12=-y x C.11=+y xD.01=-xy 8.下列4组数值,哪个是二元一次方程532=+y x 的解? A.⎪⎩⎪⎨⎧==530y x B.⎩⎨⎧==11y x C.⎩⎨⎧-==32y x D.⎩⎨⎧==14y x 9.下列现象属于平移的是 ①打气筒活塞的轮复运动; ②电梯的上下运动;③钟摆的摆动;④转动的门;⑤汽车在一条 直的马路上行走。

新人教版七年级数学下册期中考试卷及答案【完整版】

新人教版七年级数学下册期中考试卷及答案【完整版】

新人教版七年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12 B .7+7 C .12或7+7 D .以上都不对2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°5.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC于点E ,则下列结论一定正确的是( )A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE6.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+17.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .5 9.若a <b ,则下列结论不一定成立的是( ) A .11a b -<- B .22a b < C .33a b ->- D .22a b <10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a-,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.已知120153a m =+,120163b m =+,120173c m =+,求222a b c ab bc ac ++---的值.3.如图①,已知AD ∥BC ,∠B=∠D=120°.(1)请问:AB 与CD 平行吗?为什么?(2)若点E 、F 在线段CD 上,且满足AC 平分∠BAE ,AF 平分∠DAE ,如图②,求∠FAC 的度数.(3)若点E 在直线CD 上,且满足∠EAC=12∠BAC ,求∠ACD :∠AED 的值(请自己画出正确图形,并解答).4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=444-+-+.a a(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、C6、C7、A8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、-1或33、44、45、±46、a>1三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、33、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、A型粽子40千克,B型粽子60千克.。

最新人教版七年级第二学期下册期中模拟数学试卷(含答案)

最新人教版七年级第二学期下册期中模拟数学试卷(含答案)

最新人教版七年级第二学期下册期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题考试时间: 120分钟 试卷总分:120分一、选择题(每小题3分,共30分)1. 在平面直角坐标系中,点P (32-,3)所在的象限是( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限 2. 下列图形中,∠1和∠2不是..同位角的是( )3. 在实数-2.5,13,3,327,3π,0.15,31中,有理数的个数为B ,无理数的个数为A ,则A-B 的值为( )A 、3B 、-3C 、-1D 、14. 12-a 和5-a 是某个正数的两个平方根,则实数a 的值为( )A 、21B 、-21C 、2D 、-25. 如图,有以下四个条件:①︒=∠+∠180BCD B ;②21∠=∠;③43∠=∠;④5∠=∠B .其中能判定AB ∥CD 的条件有( )A 、1个B 、2个C 、3个D 、4个6. 若点M 关于x 轴的对称点为M 1(2x+y ,3),关于y 轴的对称点为M 2(9,y+2),则点M 的坐标是( )A 、)3,9(B 、)3,9(-C 、)3,9(--D 、)3,9(-7. 将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是( )A 、105°B 、100°C 、110°D 、115°8. 下列四个命题中:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线平行;④两个无理数的和一定是无理数.真命题的个数是( )A 、4个B 、3个C 、1个D 、2个9. 在平面直角坐标系中,把点)2,5(-P 先向左平移3个单位,再向上平移5个单位后得到的点的坐标是( )A 、)6,8(-B 、)7,8(-C 、)7,2(-D 、)3,2(--10. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A 、第一次右拐40°,第二次右拐140°B 、第一次左拐40°,第二次右拐40°C 、第一次左拐40°,第二次左拐140°D 、第一次右拐40°,第二次右拐40°二、填空题(每空3分,共18分)11. 9的平方根是12. 如图,AB ∥CD ∥EF ,若∠ABC=45°,∠CEF=155°,则∠BCE=13. 如图,已知FD ∥BE ,则∠1+∠2-∠3 =14. 已知数轴上有A 、B 两个点,且这两个点之间的距离为25,若点A 表示的数为22,则点B 表示的数为15. 已知∠AOB = 90°,OC 为一条射线,OE 、OF 分别平分∠AOC 和∠BOC ,那么∠EOF =16. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2019个点的坐标为三、解答题(共72分)17. 计算(每题5分,共10分)(1)362594827-3++ (2)321632)12(3+---18. 解方程(每题5分,共10分)(1)64)3(42=-x (2)81)1(33=-x19. 已知:如图,EF ∥AD ,∠1 =∠2.求证:∠BAC =∠DGC (6分)20. 已知04)21(16222=--+-a b a a ,求实数a 、b 的平方和的倒数.(7分)21. 如图,已知∠1 =∠BDC ,∠2 +∠3 =180°(8分)(1) 请你判断DA 与CE 的位置关系,并说明理由;(4分)(2) 若DA 平分∠BDC ,CE ⊥AE 于点E ,∠1 = 70°,试求∠FAB 的度数.(4分)22. 如图,已知在平面直角坐标系中,△ABO 的面积为8,OA = OB ,BC = 12, 点P 的坐标是(a ,6)(9分)(1) △ABC 三个顶点的坐标分别为A ( , )B ( , )、C ( , );(3分)(2) 是否存在点P ,使得ABC PAB S S △△ ?若存在,求出满足条件的所有点P 的坐标.(6分)23. 如图,已知两条射线OM ∥CN ,动线段AB 的两个端点A 、B 分别在射线OM 、CN 上,且∠C =∠OAB =108°,F 点在线段CB 上,OB 平分∠AOF ,OE 平分∠COF.(10分)(1) 请在图中找出与∠AOC 相等的角,并说明理由;(4分)(2) 若平移AB ,那么∠OBC 与∠OFC 的度数比是否随着AB 位置变化而变化?若变化,找出变化规律;若不变,求出这个比值.(6分)最新人教版七年级第二学期下册期中模拟数学试卷(含答案)人教版七年级下学期期中考试数学试题考试时间: 120分钟 试卷总分:120分四、选择题(每小题3分,共30分)24. 在平面直角坐标系中,点P (32-,3)所在的象限是( ) B 、第一象限 B 、第二象限C 、第三象限D 、第四象限 25. 下列图形中,∠1和∠2不是..同位角的是( )26. 在实数-2.5,13,3,327,3π,0.15,31中,有理数的个数为B ,无理数的个数为A ,则A-B 的值为( )A 、3B 、-3C 、-1D 、127. 12-a 和5-a 是某个正数的两个平方根,则实数a 的值为( )B 、21 B 、-21C 、2D 、-228. 如图,有以下四个条件:①︒=∠+∠180BCD B ;②21∠=∠;③43∠=∠;④5∠=∠B .其中能判定AB ∥CD 的条件有( )A 、1个B 、2个C 、3个D 、4个29. 若点M 关于x 轴的对称点为M 1(2x+y ,3),关于y 轴的对称点为M 2(9,y+2),则点M 的坐标是( )B 、)3,9( B 、)3,9(-C 、)3,9(--D 、)3,9(-30. 将一张宽度相等的长方形纸条按如图所示的方式折叠一下,如果∠1=130°,那么∠2的度数是( )A 、105°B 、100°C 、110°D 、115°31. 下列四个命题中:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线平行;④两个无理数的和一定是无理数.真命题的个数是( )A 、4个B 、3个C 、1个D 、2个32. 在平面直角坐标系中,把点)2,5(-P 先向左平移3个单位,再向上平移5个单位后得到的点的坐标是( )B 、)6,8(- B 、)7,8(-C 、)7,2(-D 、)3,2(--33. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A 、第一次右拐40°,第二次右拐140°B 、第一次左拐40°,第二次右拐40°C 、第一次左拐40°,第二次左拐140°D 、第一次右拐40°,第二次右拐40°五、填空题(每空3分,共18分)34. 9的平方根是35. 如图,AB ∥CD ∥EF ,若∠ABC=45°,∠CEF=155°,则∠BCE=36. 如图,已知FD ∥BE ,则∠1+∠2-∠3 =37. 已知数轴上有A 、B 两个点,且这两个点之间的距离为25,若点A 表示的数为22,则点B 表示的数为38. 已知∠AOB = 90°,OC 为一条射线,OE 、OF 分别平分∠AOC 和∠BOC ,那么∠EOF =39. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2019个点的坐标为六、解答题(共72分)40. 计算(每题5分,共10分)(2)362594827-3++ (2)321632)12(3+---41. 解方程(每题5分,共10分)(2)64)3(42=-x (2)81)1(33=-x42. 已知:如图,EF ∥AD ,∠1 =∠2.求证:∠BAC =∠DGC (6分)43. 已知04)21(16222=--+-ab a a ,求实数a 、b 的平方和的倒数.(7分)44. 如图,已知∠1 =∠BDC ,∠2 +∠3 =180°(8分)(3) 请你判断DA 与CE 的位置关系,并说明理由;(4分)(4) 若DA 平分∠BDC ,CE ⊥AE 于点E ,∠1 = 70°,试求∠FAB 的度数.(4分)45. 如图,已知在平面直角坐标系中,△ABO 的面积为8,OA = OB ,BC = 12, 点P 的坐标是(a ,6)(9分)(3) △ABC 三个顶点的坐标分别为A ( , )B ( , )、C ( , );(3分)(4) 是否存在点P ,使得ABC PAB S S △△=?若存在,求出满足条件的所有点P 的坐标.(6分)46.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C =∠OAB =108°,F点在线段CB上,OB平分∠AOF,OE平分∠COF.(10分)(3)请在图中找出与∠AOC相等的角,并说明理由;(4分)(4)若平移AB,那么∠OBC与∠OFC的度数比是否随着AB位置变化而变化?若变化,找出变化规律;若不变,求出这个比值.(6分)最新七年级下册数学期末考试试题【答案】一、选择题(每题3分,共10题,共30分)1.气温由-2℃上升3℃后是()A.-5℃B.1℃C.5℃D.3℃2.下列各式运算正确的是()A.2(a-1)=2a-1 B.a2b-ab2=0C.2a3-3a3=a3D.a2+a2=2a23.下列调查中,适宜采用全面调查方式的是()A.对我国中学生体重的调查B.对我国市场上某一品牌食品质量的调查C.了解一批电池的使用寿命D.了解某班学生的身高情况4.点C在线段AB上,下列条件不能确定点C为线段AB中点的是()A.AB=2AC B.AC=2BC C.AC=BC D.BC=12AB5.如图,点A位于点O的()A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上6.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字()A.的B.中C.国D.梦7.式子2285,,2,,5nm xxπ+--中,单项式有()A.1个B.2个C.3个D.4个8.有理数a、b在数轴上对应的位置如图所示,则下列关系正确的是()A.-a<-b B.a<-b C.b<-a D.-b<a9.代数式m3+n的值为5,则代数式-m3-n+2的值为()A.-3 B.3 C.-7 D.710.下列说法:①两点之间,线段最短;②正数和负数统称为有理数;③多项式3x2-5x2y2-6y4-2是四次四项式;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成7组;⑤一个锐角的补角与这个角的余角的差是直角,其中正确的有( ) A .2个B .3个C .4个D .5个二、填空题(每题3分,共10题,共30分)11.四川航空一航班在近万米高空遭遇驾驶舱挡风玻璃破裂脱落,随后安全备降成都双流国际机场.航班事发时距离地面32000英尺,请用科学记数法表示32000为 . 12.计算:18°26′+20°46′=13.多项式5x+2y 与多项式6x-3y 的差是14.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频率是15.写出一个x 的值,使|x-1|=-x+1成立,你写出的x 的值是 16.多项式321232m m m -+-的各项系数之积为 17.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB=18.如图,以图中的A 、B 、C 、D 为端点的线段共有 条.19.观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图形共有 个点.20.已知点B 、C 为线段AD 上的两点,AB=12BC=13CD ,点E 为线段CD 的中点,点F 为线段AD 的三等分点,若BE=14,则线段EF=三、解答题(共7题,共60分)21.计算:(1)215132824⎛⎫-+-÷ ⎪⎝⎭ (2)2241233⎛⎫-÷⨯- ⎪⎝⎭22.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 23.按要求解答 (1)①画直线AB ; ②画射线CD③连接AD 、BC 相交于点P④连接BD 并延长至点Q ,使DQ=BD(2)已知一个角的补角比这个角的余角的3倍少50°,求这个角是多少度24.哈市要对2.8万名初中生“学段人数分布情况”进行调查,采取随机抽样的方法从四个学年中抽取了若干名学生,并将调查结果绘制成了如下两幅不完整的条形统计图和扇形统计图,请根据图中提供的信息解答下列问题:(1)在这次随机抽样中,一共调查了多少名学生?(2)请通过计算补全条形统计图,并求出六年级所对应扇形的圆心角的度数; (3)全市共有2.8万名学生,请你估计全市六、七年级的学生一共有多少万人?25.已知,点O 是直线AB 上一点,OC 、OD 为从点O 引出的两条射线,∠BOD=30°,∠COD=87∠AOC.(1)如图①,求∠AOC的度数;(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系;(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.26.在汶川地震十周年纪念日,某教育集团进行了主题捐书活动,同学们热情高涨,仅仅五天就捐赠图书m万册,其中m与514互为倒数.此时教育集团决定把所捐图书分批次运往市区周边的“希望学校”,而捐书活动将再持续一周.下表为活动结束前一周所捐图书存量的增减变化情况(单位:万册):(1)m的值为.(2)求活动结束时,该教育集团所捐图书存量为多少万册;(3)活动结束后,该教育集团决定在6天内把所捐图书全部运往“希望学校”,现有A、B 两个运输公司,B运输公司每天的运输数量是A运输公司的1.5倍,学校首先聘请A运输公司进行运输,工作两天后,由于某些原因,A运输公司每天运输的数量比原来降低了25%,学校决定又聘请B运输公司加入,与A运输公司共同运输,恰好按时完成任务,求A运输公司每天运输多少万册图书?27.如图,O为原点,数轴上两点A、B所对应的数分别为m、n,且m、n满足关于x、y 的整式x41+myn+60与2xy3n之和是单项式,动点P以每秒4个单位长度的速度从点A向终点B运动.(1)求m、n的值;(2)当PB-(PA+PO)=10时,求点P的运动时间t的值;(3)当点P开始运动时,点Q也同时以每秒2个单位长度的速度从点B向终点A运动,若PQ=12AB,求AP的长.2018-2019学年黑龙江省哈尔滨市香坊区七年级(下)期末数学试卷参考答案与解析一、选择题(每题3分,共10题,共30分)1.【分析】根据有理数的加法,即可解答.【解答】解:-2+3=1(℃),故选:B.【点评】本题考查了有理数的加法,解决本题的关键是熟记有理数的加法.2.【分析】直接利用合并同类项法则判断得出答案.【解答】解:A、2(a-1)=2a-2,故此选项错误;B、a2b-ab2,无法合并,故此选项错误;C、2a3-3a3=-a3,故此选项错误;D、a2+a2=2a2,正确.故选:D.【点评】此题主要考查了合并同类项,正确掌握合并同类项法则是解题关键.3.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:对我国中学生体重的调查适宜采用抽样调查方式;对我国市场上某一品牌食品质量的调查适宜采用抽样调查方式;了解一批电池的使用寿命适宜采用抽样调查方式;了解某班学生的身高情况适宜采用全面调查方式;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【解答】解:A:若点C在线段AB上,AB=2AC,则点C为线段AB的中点;B:若点C在线段AB上,AC=2BC,则点C不是线段AB的中点;C:若点C在线段AB上,AC=BC,则点C为线段AB的中点;D:若点C在线段AB上,BC=12AB,则点C为线段AB的中点..故选:B.【点评】本题考查了两点间的距离,掌握线段中点的定义是本题的关键.5.【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断.【解答】解:由图可得,点A位于点O的北偏西65°的方向上.故选:B.【点评】本题主要考查了方向角,结合图形,正确认识方位角是解决此类问题的关键.方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.6.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”字一面的相对面上的字是“梦”.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.【分析】根据单项式定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式可得答案.【解答】解:式子22,2,5nxπ-是单项式,共3个,故选:C.【点评】此题主要考查了单项式,关键是掌握单项式定义.8.【分析】观察数轴,可知:-1<a<0,b>1,进而可得出-b<-1<a,此题得解.【解答】解:观察数轴,可知:-1<a<0,b>1,∴-b<-1<a<0<-a<1<b.故选:D.【点评】本题考查了数轴,观察数轴,找出a、b、-a、-b之间的关系是解题的关键.9.【分析】观察题中的两个代数式m3+m和-m3-m,可以发现,-(m3+m)=-m3-m,因此可整体代入求值.【解答】解:∵代数式m3+n的值为5,∴m3+n=5∴-m3-n+2=-(m3+n)+2=-5+2=-3故选:A.【点评】本题主要考查代数式的求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题目中获取代数式m3+m与-m3-m的关系,然后利用“整体代入法”求代数式的值.10.【分析】根据线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质逐一判断可得.【解答】解:①两点之间,线段最短,此结论正确;②正有理数、负有理数和0统称为有理数,此结论错误;③多项式3x2-5x2y2-6y4-2是四次四项式,此结论正确;④一个容量为80的样本最大值是123,最小值是50,取组距为10,则可以分成8组,此结论错误;⑤一个锐角的补角与这个角的余角的差是直角,此结论正确;故选:B.【点评】本题主要考查频数(率)分布表,解题的关键是掌握线段的基本事实、有理数的分类、多项式概念、频数分布直方图中组数的确定及补余角的性质.二、填空题(每题3分,共10题,共30分)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示32000为3.2×104.故答案为:3.2×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【分析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【解答】解:18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点评】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.13.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(5x+2y)-(6x-3y)=5x+2y-6x+3y=-x+5y,故答案为:-x+5y【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.14.【分析】首先计算出第四项组的频数,然后再利用频数除以总数可得第四组的频率.【解答】解:第四组的频数为:50-2-8-15-5=20,第四组的频率是:2050=0.4,故答案为:0.4.【点评】此题主要考查了频数与频率,关键是掌握频率=频数总数.15.【分析】根据绝对值的非负性,求出x的范围,即可得出结论.【解答】解:∵|x-1|=-x+1且|x-1|≥0,∴-x+1≥0,∴x≤1,故答案为:0(答案不唯一)【点评】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.16. 【分析】根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解. 【解答】解:多项式-2m 3+3m 2-12m 的各项系数之积为: -2×3×(-12)=3. 故答案为:3.【点评】此题主要考查了多项式的相关定义,解题 的关键是熟练掌握多项式的各项系数和次数的定义即可求解.17【分析】因为本题中∠AOC 始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 【解答】解:设∠AOD=a ,∠AOC=90°+a ,∠BOD=90°-a , 所以∠AOC+∠BOD=90°+a+90°-a=180°. 故答案为:180°.【点评】本题考查了角度的计算问题,在本题中要注意∠AOC 始终在变化,因此可以采用“设而不求”的解题技巧进行求解.18. 【分析】设AB=x ,则BC=2x ,CD=3x ,CE=DE=12CD=32x ,由BE=14可求出x 的值,由点F 为线段AD 的三等分点,可得出AF=2x 或DF=2x ,分AF=2x 、DF=2x 两种情况找出EF 的长度,此题得解.【解答】解:设AB=x ,则BC=2x ,CD=3x ,CE=DE=12CD=32x ,∵BE=BC+CE=2x+32x=14, ∴x=4.∵点F 为线段AD 的三等分点, ∴AF=13AD=2x 或DF=13AD=2x . 当AF=2x 时,如图1所示,EF=AB+BC+CE-AF=52x=10; 当DF=2x 时,如图2所示,EF=DF-DE=2x=2. 综上,线段EF 的长为2或10.故答案为:2或10.【点评】本题考查了两点间的距离,分AF=2x 、DF=2x 两种情况找出EF 的长度是解题的关键.19. 【分析】由已知图形中点的个数知点的个数是2的序数倍与6的和,据此可得. 【解答】解:∵第1个图形中点的个数8=2×1+6, 第2个图形中点的个数10=2×2+6, 第3个图形中点的个数12=2×3+6, 第4个图形中点的个数14=2×4+6, ……∴第n 个图形中点的个数为2n+6, 故答案为:2n+6.【点评】此题考查了图形的变化类,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.20. 【分析】按顺序分别写出各线段即可得出答案. 【解答】解:图中的线段有:线段AB ,线段AC ,线段AD ,线段BC ,线段BD ,线段CD ,共6条. 故答案为:6.【点评】本题考查了直线上点与线段的数量关系,线段是直线的一部分,用一个小写字母表示,如线段a ;用两个表示端点的字母表示,如:线段AB (或线段BA ).三、解答题(共7题,共60分)21. 【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可求出值; (2)原式先计算乘方运算,再计算乘除运算即可求出值. 【解答】解:(1)原式=215328⎛⎫-+- ⎪⎝⎭×24=-16+12-15=-19; (2)原式=3114493-⨯⨯=-. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 22. 【分析】根据整式的运算法则即可求出答案. 【解答】解:原式22123122323x x y x y =-+-+ =-3x+y 2当x=-1,y=23时,原式=-3×(-1)+4 9=31 9【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.23.【分析】(1)①画直线AB;②画射线CD;③连接线段AD、BC相交于点P;④连接BD并延长至点Q,使DQ=BD.(2)设这个角是x度,依据一个角的补角比这个角的余角的3倍少50°,即可得到方程180-x=3(90-x)-50,进而得出结论.【解答】解:(1)如图所示:(2)设这个角是x度,则180-x=3(90-x)-50,解得:x=20.答:这个角是20度.【点评】本题主要考查了直线,线段和射线以及余角、补角,决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.【分析】(1)由九年级学生人数及其所占百分比可得被调查的学生人数;(2)总人数乘以八年级对应百分比求得其人数,根据各年级人数之和等于总人数求得六年级人数,据此补全条形图,再用360°乘以六年级人数所占百分比可得;(3)总人数乘以样本中六、七年级人数对应的比例可得.【解答】解:(1)本次调查的学生人数为25÷25%=100(名);(2)八年级的人数为100×20%=20人,则六年级的人数为100-(25+20+25)=30,补全图形如下:六年级所对应扇形的圆心角的度数为360°×30100=108°;(3)估计全市六、七年级的学生一共有2.8×30+25100=1.54(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【分析】(1)由题意可知:∠AOD=∠AOC+∠COD,即∠AOC+87∠AOC=150°,即可求解;(2)由图可见:∠AON+20°=∠COM;(3)OM是∠BOC的角平分线,可以求出∠CON=∠MON-∠COM=35°,而∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【解答】解:(1)由题意可知:∠AOB=180°,∠BOD=30°,∠AOD=∠AOB-∠BOD=150°,∵∠AOD=∠AOC+∠COD,∠COD=87∠AOC,∴∠AOC+87∠AOC=150°,∴∠AOC=70°;(2)由图可见:∠AON+20°=∠COM,故:答案为:∠AON+20°=∠COM;(3)证明:∵∠AOC=70°,∠AOB=180°,∴∠BOC=∠AOB-∠AOC=110°,∵OM是∠BOC的角平分线∴∠COM=12∠BOC=55°,∵∠MON=90°,∴∠CON=∠MON-∠COM=35°,∵∠AOC=70°,∴∠AON=∠AOC-∠CON=35°,∴∠AON=∠CON.【点评】本题主要考查的是角的计算,角平分线的定义,根据OD的位置进行分类讨论是解题的关键.26.【分析】(1)根据倒数的定义可求出m的值;(2)由(1)的结论结合所捐图书存量的增减变化情况统计表,即可求出活动结束时该教育集团所捐图书的存量;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5x万册图书,根据6天内要运输完成3.3万册图书,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)∵m与514互为倒数,∴m=145=2.8.故答案为:2.8;(2)2.8+0.2+0.1-0.1-0.4+0.3+0.5-0.1=3.3(万册).答:活动结束时,该教育集团所捐图书存量为3.3万册;(3)设A运输公司每天运输x万册图书,则B运输公司每天运输1.5新人教版七年级(下)期末模拟数学试卷(含答案)一.选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求.)1.已知实数a,b满足a+1>b+1,则下列选项错误的为()A.a>b B.a+2>b+2 C.-a<-b D.2a>3b2.如图,图中∠1与∠2的内错角是()A .a 和bB .b 和cC .c 和dD .b 和dAB .面积为12CD4.二元一次方程组632x y x y +-⎩-⎧⎨==的解是( )A .51x y ⎧⎨⎩== B .42x y ⎧⎨⎩== C .51x y -⎩-⎧⎨==D .42x y -⎩-⎧⎨==5.在平面直角坐标系中,点P (m-3,4-2m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.下面调查方式中,合适的是( )A .调查你所在班级同学的身高,采用抽样调查方式B .调查大汶河的水质情况,采用抽样调查的方式C .调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用普查的方式D .要了解全市初中学生的业余爱好,采用普查的方式A.B.C.D-2A.x+5<0 B.2x>10 C.3x-15<0 D.-x-5>09.某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A.46人B.38人C.9人D.7人10.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二.填空题(本大题共5个小题,每小题3分,共15分)11.16的算术平方根是12.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为13.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.17.解方程组:22 2412 x yx y-+⎧⎨⎩==18.在如图所示的正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,5)、(-1,3).(1)请在如图所示的网格平面内画出平面直角坐标系;(2)请把三角形ABC先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′;(3)求三角形ABC的面积.19.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:32(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A、B两种饮料共200瓶,问A、B两种饮料各生产了多少瓶?21.某公交公司有A,B型两种客车,它们的载客量和租金如下表:某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值.22.已知:ABC中,点D为射线CB上一点,且不与点B,点C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.(1)画出符合题意的图;(2)猜想∠EDF与∠BAC的数量关系,并证明你的结论.23.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)(1)求∠CBD的度数.(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.。

2022-2023年人教版七年级数学下册期中试卷【加答案】

2022-2023年人教版七年级数学下册期中试卷【加答案】

2022-2023年人教版七年级数学下册期中试卷【加答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.下列说法正确的是()A.一个数前面加上“-”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则a-不一定是负数D.零既不是正数也不是负数5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.观察下列图形,是中心对称图形的是( )A .B .C .D .7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.64的立方根是( )A .4B .±4C .8D .±89.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC '=________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程(1)3x -7(x -1)=3-2(x +3) (2)12x -=413x --12.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a = (2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.如图,已知在△ABC 中,EF ⊥AB,CD ⊥AB,G 在AC 边上,∠AGD=∠ACB ,求证:∠1=∠2.4.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、D6、D7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、53、43 32a≤≤4、78°5、0.6、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)x=1.2、(1)4a,4;(2)ab3、略。

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库

完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根是()A .81B .3C .3-D .42.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.在平面直角坐标系中,点P (5,﹣1)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列六个命题①有理数与数轴上的点一一对应②两条直线被第三条直线所截,内错角相等③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .2个B .3个C .4个D .5个5.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 6.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D 327-37.在同一个平面内,A ∠为50°,B 的两边分别与A ∠的两边平行,则B 的度数为( ).A .50°B .40°或130°C .50°或130°D .40°8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2)..根据这个规律,第2021个点的坐标为( )A .(45,4)B .(45,9)C .(45,21)D .(45,0)二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____. 10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,在△ABC 中,CD 是它的角平分线,DE ⊥AC 于点 E .若BC =6cm ,DE =2cm ,则△BCD 的面积为_____cm 212.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.如图1是//AD BC 的一张纸条,按图示方式把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中21CFE ∠=︒,则图2中AEF ∠的度数为______.14.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______. 15.P (2m -4,1-2m )在y 轴上,则m =__________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算:(1)()4129-⨯- (2)()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-. 19.补全下面的证明过程和理由:如图,AB 和CD 相交于点O ,EF ∥AB ,∠C =∠COA ,∠D =∠BOD .求证:∠A =∠F .证明:∵∠C =∠COA ,∠D =∠BOD ,( )又∵∠COA =∠BOD ,( )∴∠C = .( )∴AC ∥DF ( ).∴∠A = ( ).∵EF ∥AB ,∴∠F=().∴∠A=∠F().20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.21.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分.请解答下列问题:(1)10的整数部分是,小数部分是.(2)如果5的小数部分为a,13的整数部分为b,求a+b-5的值;(3)已知10+3=x+y,其中x是整数,且0<y<1,求x-y的相反数.22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.23.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.【参考答案】一、选择题1.B解析:B【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a a 【详解】9,故选:B.【点睛】本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是正数,纵坐标是负数,∴点P(5,-1)在第四象限,故选:D.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【详解】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.5.A【分析】过G作GM//AB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GM//AB,∴∠2=∠5,∵AB//CD,∴MG//CD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=12∠EFG,∠3=∠4=12∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵AB//CD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、327=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.C【分析】如图,分两种情况进行讨论求解即可.【详解】解:①如图所示,AC∥BF,AD∥BE,∴∠A=∠FOD,∠B=∠FOD,∴∠B=∠A=50°;②如图所示,AC∥BF,AD∥BE,∴∠A=∠BOD,∠B+∠BOD=180°,∴∠B+∠A=180°,∴∠B=130°,故选C.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个解析:A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,【详解】解:观察图形可知,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,∴横坐标以n结束的有n2个点,第2025个点是(45,0),∴2021个点的坐标是(45,4);故选:A.【点睛】本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.6【分析】根据角平分线的性质计算即可;【详解】作,∵CD 是角平分线,DE ⊥AC ,∴,又∵BC =6cm ,∴;故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作DF BC ⊥,∵CD 是角平分线,DE ⊥AC ,∴=2DE DF cm =,又∵BC =6cm , ∴212662BCD S cm =⨯⨯=△; 故答案是6.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a ∥b ,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定解析:113°【分析】如图,设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−21°,再由第2次折叠得到∠C′FB=∠BFC=x−21°,于是利用平角定义可计算出x=67°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=113°,所以∠AEF=113°.【详解】解:如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE﹣∠CFE=x﹣21°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x﹣21°,而∠B′FE+∠BFE+∠C′FE=180°,∴x +x+x ﹣21°=180°,解得x =67°,∵A′D′∥B′C′,∴∠A′EF =180°﹣∠B′FE =180°﹣67°=113°,∴∠AEF =113°.故答案为113°.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形. 14..【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3 -3-++ 解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3=-3-14+43+313 12 .故答案为:13 12.【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.15.2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值.【详解】∵点P(2m-4,1-2m)在y轴上,∴2m-4=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记y解析:2【分析】根据y轴上的点的横坐标是0列式计算即可得到m的值.【详解】∵点P(2m-4,1-2m)在y轴上,∴2m-4=0,解得m=2.故答案为:2.【点睛】此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A (1,1), B (-1,1),C (-1,-2), D(1,-2)∴AB = CD = 2,AD = BC = 3,∴四边形ABCD 的周长= AB + AD +BC +CD = 10∵P 点的运动是绕矩形ABCD 的周长的循环运动,且速度为每秒一个单位长度∴P 点运动一周需要的时间为10秒∵2021=202×10+1∴当t =2021秒时P 的位置相当于t =1秒时P 的位置∵t =1秒时P 的位置是从A 点向B 移动一个单位∴此时P 点的坐标为(0,1)∴t =2021秒时P 点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P 点一个循环运动需要花费的时间.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键. 19.见解析【分析】根据对顶角相等结合已知得出∠C=∠D ,从而得出AC ∥DF ,由平行线的性质得出∠A=∠ABD ,∠F=∠ABD ,即可得出结论.【详解】解:∵∠C=∠COA ,∠D=∠BOD (已知),解析:见解析【分析】根据对顶角相等结合已知得出∠C =∠D ,从而得出AC ∥DF ,由平行线的性质得出∠A =∠ABD ,∠F =∠ABD ,即可得出结论.【详解】解:∵∠C =∠COA ,∠D =∠BOD (已知),又∵∠COA =∠BOD (对顶角相等),∴∠C =∠D (等量代换).∴AC ∥DF (内错角相等,两直线平行).∴∠A =∠ABD (两直线平行,内错角相等).∵EF ∥AB ,∴∠F =∠ABD (两直线平行,内错角相等).∴∠A =∠F (等量代换).故答案为:已知,对顶角相等;∠D ,等量代换;内错角相等,两直线平行;∠ABD ,两直线平行,内错角相等;∠ABD ,两直线平行,同位角相等,等量代换.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键. 20.(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P 的坐标为(1,2);线段PC 扫过的面积为3.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,⨯=.∴线段PC扫过的面积为313【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a,的整数部分为b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a13b,即可确定出a+b的值;(3)根据题意确定出x与y的值,求出x-y的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,∴=,52a<<,3134133,∴=,b3231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10;(21;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD(2)∵B 表示的数为-1,∴∴点E 1;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

人教版七年级数学下册期中考试卷及参考答案

人教版七年级数学下册期中考试卷及参考答案

人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A .厉B .害C .了D .我7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图是一个计算程序,若输入a 的值为﹣1,则输出的结果应为( )A .7B .﹣5C .1D .5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.若单项式32m x y 与3m n xy +2m n +的值是_______________.5102.0110.1= 1.0201.6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、A5、C6、D7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、20°.3、<4、25、±1.016、-1或5三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、(1)3a2-ab+7;(2)12.3、(1)35°;(2)36°.4、∠EDC=40°5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1) A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.。

新人教版七年级数学下册期中试卷及答案【完整版】

新人教版七年级数学下册期中试卷及答案【完整版】

新人教版七年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.下列图形中,不是轴对称图形的是()A.B.C.D.3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a -b的值为()A.-3 B.-9 C.-3或-9 D.3或9 9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解方程组:34(2)521x x yx y--=⎧⎨-=⎩2.若关于x、y的二元一次方程组525744x y ax y a+=⎧⎨+=⎩的解满足不等式组259x yx y+<⎧⎨->-⎩求出整数a的所有值.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、C5、D6、D7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、40°3、2或2 -34、225、2或2.56、76.510⨯三、解答题(本大题共6小题,共72分)1、31 xy=⎧⎨=⎩2、整数a的所有值为-1,0,1,2,3.3、(1)3;(2)18;(3)(0,5)或(0,1).4、(1)详略;(2)70°.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)y=1.6x;(2)50千克;(3)36元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级第二学期下册期中模拟数学试卷【含答案】一.选择题(满分30分,每小题3分)1.的相反数是()A.﹣2B.2C.﹣4D.42.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.下列等式正确的是()A.±=2B.=﹣2C.=﹣2D.=0.1 4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.下列各点中位于第四象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c8.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5二.填空题(满分18分,每小题3分)11.1﹣的绝对值是,的平方根是.12.若点A的坐标(x,y)满足条件(x﹣3)2+|y+2|=0,则点A在第象限.13.a、b分别表示5﹣的整数部分和小数部分,则a+b=.14.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.15.的整数部分为a,则a2﹣3=.16.将直线y=kx﹣2向下平移1个单位后,正好经过点(2,3),则k=.三.解答题17.计算:+﹣+|1﹣|.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.19.如图,EF∥AD,A D∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.20.A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a.b满足b﹣|a|=2.(1)a=;b=;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t >0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.21.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.22.完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE ∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥AB,∴∠FDE=∠()∵DF∥CA,∴∠A=∠()∴∠FDE=∠A()23.已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数.24.已知一个正数的平方根是a+3和2a﹣15.(1)求这个正数.(2)求的平方根.25.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.参考答案一.选择题1.解:∵=﹣2∴的相反数是2.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.6.解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.解:A、∵a∥b,b∥c,∴a∥c,故本选项符合题意;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;D、当a∥b,b∥c时,a∥c,故本选项不符合题意;故选:A.8.解:把点A(﹣2,3)先向右平移4个单位,再向下平移6个单位得到点A′(2,﹣3).故选:D.10.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.二.填空题11.解:|1﹣|=﹣1,=4,4的平方根为±2,故答案为﹣1,±2.12.解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴A点的坐标为(3,﹣2),∴点A在第四象限.故填:四.13.解:∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴a=2,b=5﹣﹣2=3﹣;∴a+b=5﹣,故答案为:5﹣14.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.15.解:∵的整数部分为a,3<<4,∴a=3,∴a2﹣3=9﹣3=6.故答案为:6.16.解:将直线y=kx﹣2向下平移1个单位后所得直接解析式为y=kx﹣3,将点(2,3)代入y=kx﹣3,得:2k﹣3=3,解得:k=3,故答案为:3.三.解答题(共9小题,满分19分)17.解:原式=3+2﹣2+﹣1=4﹣1.18.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.19.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥B C,∴∠FEC=∠ECB,∴∠FEC=20°.20.解:(1)∵点A距离原点6个单位长度,点A在原点左边,∴a=﹣6,∵b﹣|a|=2.∴b=8,故答案为﹣6,8.(2)①∵OP=2PB,观察图象可知点P在点O的右侧:2t﹣6=2(14﹣2t)或2t﹣6=2(2t﹣14),解得t=或11.②(14﹣2t)=6或(2t﹣14)=6解得t=4或10.(3)当点P运动到线段OB上时,AP中点E表示的数是=﹣6+t,OB的中点F表示的数是4,所以EF=4﹣(﹣6+t)=10﹣t,则==2.所以的值为定值2.21.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.22.解:证明:∵DE∥AB,∴∠FDE=∠BFD(两直线平行,内错角相等)∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等)∴∠FDE=∠A(等量代换).故答案为:BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换.23.解:∵∠GQC=120°,∴∠DQG=60°∵MN⊥AB,MN⊥CD,∴AB∥CD,∠BGH=90°,∴∠EGB=∠DQG=60°,∠BGQ=∠GQC=120°,∴∠HGQ=120°﹣90°=30°.24.解:(1)∵一个正数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,∴a=4,a+3=7,这个正数为72=49;(2)a+12=4+12=16,∵=4,∴的平方根是=±225.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).七年级下册数学期中考试试题【含答案】一、填空题(本大题共6小题,共18.0分)1.16的平方根是______.2.命题“两直线平行,内错角相等”的题设是______,结论是______.3.要使有意义,则x的取值范围是______.4.若点M(a-3,a+4)在x轴上,则点M的坐标是______.5.把命题“对顶角相等”改写成“如果…那么…”的形式:______.6.的相反数是______,|-2|=______,=______.二、选择题(本大题共8小题,共24.0分)7.在平面直角坐标系中,点P(-3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个9.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A. B.C. D.10.下列式子中,正确的是()A. B. C. D.11.下列说法正确的是()A. 是的平方根B. 3是的算术平方根C. 的平方根是2D. 8的平方根是12.下列命题中正确的是()A. 有限小数不是有理数B. 无限小数是无理数C. 数轴上的点与有理数一一对应D. 数轴上的点与实数一一对应13.中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”.通过平移,可将图中的吉祥物“海宝”移动到图()A. B. C. D.14.如图,在正方形网格中,A点坐标为(-1,0),B点坐标为(0,-2),则C点坐标为()A.B.C.D.三、计算题(本大题共3小题,共18.0分)15.求x值:(1)(x-1)2=25.(2)125x3=816.如图,直线AB、CD相交于O,OD平分∠AOF,OE⊥CD于点O,∠1=50°,求∠COB、∠BOF的度数.17.已知2a-7的平方根是±3,2a+b-1的算术平方根是4,求a+b的立方根.四、解答题(本大题共6小题,共48.0分)18.计算:---19.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(______)∴∠2=______.(两直线平行,同位角相等)又∵∠1=∠2,(______)∴∠1=∠3.(______)∴AB∥DG.(______)∴∠BAC+______=180°(______)又∵∠BAC=70°,(______)∴∠AGD=______.20.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系xOy,按要求解答下列问题:(1)写出△ABC三个顶点的坐标;(2)画出△ABC向右平移6个单位后的图形△A1B1C1;(3)求△ABC的面积。

相关文档
最新文档