2019年(期末复习)九年级上《第25章随机事件的概率》单元评估试题有答案优质版
2019年人教版九年级数学上《第25章概率初步》单元测试含答案解析

《第25章概率初步》一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定不会发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性很小的事件在一次实验中也会发生,故A错误;B、可能性很小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性很小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.计算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D都是不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】理解概念是解决这类基础题的主要方法.注意确定事件包括必然事件和不可能事件.4.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(2013•汕头模拟)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定【考点】概率公式.【分析】先计算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.6.在一个不透明的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,所以概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.7.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,所以概率是.故选D.【点评】用到的知识点为:概率=所求情况数与总情况数之比.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数很大时,频率稳定在概率附近;C.当实验次数很大时,概率稳定在频率附近;D.实验得到的频率与概率不可能相等【考点】利用频率估计概率.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.【解答】解:A、频率只能估计概率;B、正确;C、概率是定值;D、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估计概率,大量反复试验下频率稳定值即概率.二、填空题11.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件就是可能发生,也可能不发生的事件.12.掷一枚均匀的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,直接利用概率公式求解即可求得答案.【解答】解:∵掷一枚均匀的骰子有6种等可能的结果,其中2点向上的有1种情况,7点向上的有0种情况,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)=.【考点】概率公式.【分析】分别用所求的情况与总情况的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情况,这两个球上的数字之和为偶数的8种情况,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情况,计算出和是奇数的情况个数,利用概率公式进行计算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情况,故点数和是奇数的概率为.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000满意人数m 999 998 1002 1002 1000满意频率0.998 0.998 0.998 0.999 1.000(1)计算表中各个频率;(2)读者对该杂志满意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估计概率.【分析】(1)概率就是满意的人数与被调查的人数的比值;(2)根据题目中满意的频率估计出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志满意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率可以各不相同,但只要 n相当大,频率与概率是会非常接近的.因此,概率是可以通过频率来“测量”的,频率是概率的一个近似.概率是频率稳定性的依据,是随机事件规律的一个体现.实际中,当概率不易求出时,人们常通过作大量试验,用事件出现的频率去近似概率.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能出现的结果共有9种,而出现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(2005•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)这个游戏对双方不公平.∵P(拼成电灯)=;P(拼成小人)=;P(拼成房子)=;P(拼成小山)=,∴杨华平均每次得分为(分);季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变,就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2008•贵阳)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估计:当n很大时,摸到白球的频率将会接近0.6 ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= 0.6 ;(3)试估算盒子里黑、白两种颜色的球各有多少只?【考点】利用频率估计概率.【专题】图表型.【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n很大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
九年级上期末复习《第25章概率初步》单元评估测试题(专家解析).docx

九年级上期末复习《第25章概率初步》单元评估测试题(专家解析)期末专题复习:人教版九年级数学上册_第25章_ 概率初步 _单元评估测试题一、单选题(共10题;共30分)1.下列说法正确的是( )A. “明天的降水概率为80%”,意味着明天有 80%的时间降雨B. 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C. “某彩票中奖概率是1%”,表示买 100 张这种彩票一定会中奖D. 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”2.有3个整式x,x+1,2,先随机取一个整式作为分子,再在余下的整式中随机取一个作为分母,恰能组成成分式的概率是()A. 13B. 12C. 23D. 563.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是()A. 28B. 24C. 16D. 64.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()A.B.C.D.5.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是()A. 15B. 25C. 35D.4 56.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所掷骰子的点数和大于6,则甲胜;反之,乙胜.则甲、乙两人中()A. 甲获胜的可能最大B.乙获胜的可能最大C. 甲、乙获胜的可能一样大D. 由于是随机事件,因此无法估计7.下列事件是必然事件的是( )A. 打开电视机,任选一个频道,屏幕上正在播放天气预报B. 到电影院任意买一张电影票,座位号是奇数C. 在地球上,抛出去的篮球会下落D. 掷一枚均匀的骰子,骰子停止转动后偶数点朝上8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是()A. 1B. 45C. 34D. 129.小杰想用6个球设计一个摸球游戏,下面是他的4个方案.不成功的是()A. 摸到黄球的概率为12,红球为12B. 摸到黄、红、白球的概率都为13C. 摸到黄球的概率为12,红球的概率为13,白球为16D. 摸到黄球的概率为23,摸到红球、白球的概率都是1310.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是(),A.B.C.D. 1二、填空题(共10题;共33分)11. 在一块试验田抽取1000个麦穗考察它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm之间的麦穗约占________%.12.袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)13.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是________.14.浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是________.15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数104080100020005000发芽种子粒数85 31865279316044005发芽频率0.850.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为________(精确到0.10).16.在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有________ 个.17.(2012•绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是________.18.在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:试验次数n 11525801000摸到红球的次数m 68111136345564701m n 0.68.74.68.690.7050.701根据表格,假如你去摸球一次,摸得红球的概率大约是________ (结果精确到0.1).19.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.20.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).三、解答题(共9题;共57分)21.某鞋店有A、B、C、D四款运动鞋,元旦期间搞“买一送一”促销活动,用树状图或表格求随机选取两款不同的运动鞋,恰好选中A、C两款的概率.22.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?23.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.24.体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?25.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?26.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 1230508010003000摸到白球611730485918的次数m 5 248 2 1 9 03摸到白球的频率mn 0.65.620.5930.6040.6010.5990.601(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= .(3)试估算盒子里黑、白两种颜色的球各有多少只?27.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:(1)摇奖一次,获得笔记本的概率是多少?(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.28.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm )如下表所示: 甲 63 66 63 61 64 61乙 63 65 60 63 64 63(Ⅰ)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.29.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】B二、填空题11.【答案】3612.【答案】必然;不可能13.【答案】1514.【答案】1515.【答案】0.8016.【答案】917.【答案】1318.【答案】0.719.【答案】42520.【答案】公平三、解答题21.【答案】解:画树状图得:∵共有12种等可能的结果,恰好选中A 、C 两款的有2种情况,∴恰好选中A 、C 两款的概率为: 212 = 16 .22.【答案】解:∵已经限定在身高160厘米以上的女生中抽选旗手,甲班身高在160厘米以上的女同学3人,乙班身高在160厘米以上的女同学8人,∴在甲班被抽到的概率为 13 ,在乙甲班被抽到的概率为 18 , ∵ 13 > 18,∴在甲班被抽到的机会大 23.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为: 59 ;∴小明胜的概率为59,小明胜的概率为49,∵ 59≠ 49,∴这个游戏对双方不公平24.【答案】(1)解:由条形统计图可得,女生进球数的平均数为:(1×1+2×4+1×3+4×2)÷8=2.5(个);∵第4,5个数据都是2,则其平均数为:2;∴女生进球数的中位数为:2(2)解:样本中优秀率为:38,故全校有女生1200人,“优秀”等级的女生为:1200× 38=450(人),答:“优秀”等级的女生约为450人25.【答案】解:画树状图得:故一共有6种情况,配成紫色的有1种情况,相同颜色的有1种情况,∴配成紫色的概率是,则得出其他概率的可能是:,∵ ×2<,∴这个游戏对双方不公平,若配成紫色,此时小颖得2分,配成相同颜色小明得2分,∵配成相同颜色的概率是,∴此时游戏公平26.【答案】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,∴当实验次数为5000次时,摸到白球的频率将会接近0.6.(2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16.答:不透明的盒子里黑球有16个,白球有24个.27.【答案】解:(1)如图所示:黄色的有2个,则摇奖一次,获得笔记本的概率是:216=1 8;(2)如图所示:获奖的机会有7个,故一次摇奖,能获得奖品的概率为:716.28.【答案】解:(Ⅰ)∵ = =63,∴s 甲2= ×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵ = =63,∴s乙2= ×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]= ,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(Ⅱ)列表如下:63 66 63 61 64 6163 63、63 66、63 63、63 61、63 64、63 61、63 65 63、65 66、65 63、65 61、65 64、65 61、656063、60 66、60 63、60 61、60 64、60 61、60 6363、63 66、63 63、63 61、63 64、63 61、63 6463、64 66、64 63、64 61、64 64、64 61、64 63 63、63 66、63 63、63 61、63 64、63 61、63 由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为 = .29.【答案】解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为712,两数之积为负的情况有5种,则两数之积为为负的概率为512.512≠712,因此该游戏不公平。
人教版九年级数学上册_第25章_概率初步_单元检测试题【有答案】

人教版九年级数学上册_第25章_概率初步_单元检测试题【有答案】一、选择题(共10 小题,每小题 3 分,共30 分)1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.频率与试验次数无关C.概率是随机的,与频率无关D.频率就是概率2.某校有,两个电脑教室,甲,乙,丙三名学生各自随机选择其中的一个电脑教室上课.求甲,乙,丙三名学生在同一个电脑教室上课的概率()A. B. C. D.3.随机投掷一枚均匀的硬币,前次都是正面朝上,第次投掷时,()A.正面朝上的概率大B.反面朝上的概率大C.正面朝上和反面朝上的概率一样大D.一定是反面朝上4.一个不透明的布袋中有个大小形状质地完全相同的小球,从中随机摸出球恰是黄球的概率为,则袋中黄球的个数是()A. B. C. D.5.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A. B. C. D.6.下列事件中,属于确定事件的是()①太阳升于东方,落于西方;②检查流水线上的一件产品,是合格品;③边长为,的长方形,其面积为;④在地球上,抛出的篮球会下落.A.①②③B.②③④C.①②④D.①③④7.将一枚硬币向空中抛两次,落地后,两次都是正面朝上概率是()A. B. C. D.8.历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在左右摆动,那么投掷一枚硬币次,下列说法正确的是()A.“正面向上”必会出现次B.“反面向上”必会出现次C.“正面向上”可能不出现D.“正面向上”与“反面向上”出现的次数必定一样,但不一定是次9.一个不透明的布袋中,装有红、黄、白小球共个,这些小球材质、大小完全相同.小丽做摸球实验,摸到白球的频率稳定在左右,则口袋中红、黄小球大约共有()A.个B.个C.个D.个10.一个不透明的盒子里装有个白球,若干个黄球,它们除颜色外部相同,若从中随机摸出一个球,它是黄球的概率为,则估计袋中黄球的个数为()A. B. C. D.二、填空题(共10 小题,每小题 3 分,共30 分)11.一个口袋中有个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了次,其中有次摸到红球.则白球有________个.12.在抛掷两枚均匀骰子的试验中,如果没有骰子,请你提出两种替代方式:________.13.有五张形状大小相同的卡片,上面各写有,,,,五个数,从中任意摸一张,摸到奇数的概率是________.14.抛掷一枚各面分别标有,,,,,的普通骰子,写出这个实验中的一个可能事件:________.15.在随机现象中,做了大量实验后,可以用一个事件发生的________ 作为这个事件的概率的估计值.16.在一个不透明的布袋中装有标着数字,,,的个小球,这个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于的概率为________17.在一个不透明的袋子里,有个白球和个红球,它们只有颜色上的区别,从袋子里随机摸出一个球,则摸到白球的概率为________.18.不透明袋子中装有个球,其中有个红球、个绿球和个蓝球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是红球的概率是________.19.在一个不透明的袋子中,装有个红球和个白球,它们除颜色外其余均相同.现随机从袋中摸出一个球,颜色是白色的概率是________.20.欢欢有红色、白色、黄色三件上衣,又有米色、白色两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,则随机拿出一件上衣和一条裤子正是她最喜欢搭配的颜色的概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有个红球和若干个白球(每个球除颜色外其他相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为人次,公园游戏场发放的福娃玩具为个.求参加一次这种游戏活动得到福娃玩具的概率;请你估计袋中白球接近多少个?22.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上,,,四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为时,返现金元;当两次所得数字之和为时,返现金元;当两次所得数字之和为时返现金元.试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;某顾客参加一次抽奖,能获得返还现金的概率是多少?23.口袋装有编号是、、、、的只形状大小一样的球,其中、、号球是红色,、号是白色.规定游戏者一次从口袋中摸出一个球,然后放回第二次再摸一个球,然后再放回.另规定甲再次摸到红球获胜,规定乙摸到一红一白或二白获胜,你认为游戏对双方公平吗?请说明理由.24.如图,有甲、乙两个构造完全相同的转盘均被分成、两个区域,甲转盘中区域的圆心角是,乙转盘区域的圆心角是,自由转动转盘,如果指针指向区域分界线则重新转动.转动甲转盘一次,则指针指向区域的概率________;自由转动两个转盘各一次,请用树状图或列表的方法,求出两个转盘同时指向区域的概率?25.、口袋各有个小球,它们都分别标有数字、、、,每个小球除数字外都相同,甲、乙两人玩游戏,从、两个口袋中随机地各取一个小球.使用列表法或树形图列出所有可能的结果,结果有多少种?将口袋中摸出的球记为横坐标,口袋中摸出的球记为纵坐标,若两坐标之和不大于,则甲赢,反之,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.26.在“六•一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成份),并规定:顾客每购物满元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得元、元、元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算?请说明理由.答案1.A2.C3.C4.A5.A6.D7.C8.C9.C10.B11.12.①相同的张扑克牌代替试验.②标有相同的个小球代替试验13.14.抛掷一枚正方体骰子或掷得的点数是奇数15.频率16.17.18.19.20.21.解:(1),∴参加一次这种活动得到的福娃玩具的频率为;∵试验次数很大,大数次试验时,频率接近于理论概率,∴估计从袋中任意摸出一个球,恰好是红球的概率为.设袋中白球有个,根据题意得解得,经检是方程的解∴估计袋中白球接近个.22.解:画树状图得:则共有种等可能的结果;∵某顾客参加一次抽奖,能获得返还现金的有种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:.23.解:∵(甲再次摸到红球),(乙摸到一红一白或二白),∵(甲再次摸到红球)(乙摸到一红一白或二白),∴游戏对双方不公平.24.解:∵区域扇形的圆心角为, ∴转动甲转盘一次,则指针指向区域的概率为;表格或树状图:(同为). 25.解:树形图:一共有种结果,每一种结果的出现是等可能性的:;不公平,理由如下:记:“两坐标之和不大于”为事件,一共有种,则,即甲赢的概率为,…两坐标之和大于为事件,一共有种,则,即乙赢的概率为,所以该游戏不公平.26.解:因为转转盘所获得的购物券为:(元),∵元元∴选择转转盘对顾客更合算.人教版九年级上册第二十五章《概率初步》单元检测(有答案)(1)一、选择题1.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩2.某品牌电插座抽样检查的合格的概率为99%,则下列说法中正确的是( )A.购买100个该品牌的电插座,一定有99个合格B.购买1 000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格3.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( )A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球4.下列事件发生的概率为0的是( )A.射击运动员只射击1次,就命中靶心B.任取一个实数,都有|x|≥0C.画一个三角形,使其三边的长分别为8 cm,6 cm,2 cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6.5.一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球6.如图的四个转盘中,C,D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是( )7.市举办了首届中学生汉字听写大会.从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( ) A.23 B.31 C.41 D.18.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( ) A.13 B.16 C.518 D.569.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A.甲B.乙C.丙D.不能确定10.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A.61 B.31 C.21 D.32 11.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( ) A.16 B.13 C.12 D.23 12.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A.45 B. C.25 D.15二、填空题13.100件外观相同的产品中有5件不合格,从中任意抽出1件进行检测,则抽到不合格产品的概率为________.14.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)15.给出下列函数:①y=2x -1;②y=-x ;③y=-x 2.从中任取一个函数,取出的函数符合条件“当x >1时,函数值y 随x 增大而减小”的概率是________.16.在3□2□(-2)的两个空格□中,任意填上“+”或“-”,则运算结果为3的概率是________.17.如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是_______.18.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.三、解答题19.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,求布袋中黄球的个数n.20.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.(1)牌上的数字为奇数;(2)牌上的数字为大于3且小于6.21.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是14,求y与x之间的函数关系式.22.小华和小丽设计了A、B两种游戏:游戏A的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.24.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为 度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.参考答案1.答案为:C2.答案为:D3.答案为:A4.答案为:C5.答案为:A6.答案为:A7.答案为:C8.答案为:A.9.答案为:C.10.答案为:B11.答案为:A.12.答案为:B13.答案为:201 14.答案为:①③; 15.答案为:32; 16.答案为:21.17.答案为:157. 18.答案为:13. 19.解:由题意得,425n n =+,解得n=8. 20.解:任抽一张牌,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可能性相同.(1)P(点数为奇数)=3/6=1/2;(2)牌上的数字为大于3且小于6的有4,5两种, ∴P (点数大于3且小于6)=1/3.21.解:(1)取出一个黑球的概率44347P ==+. (2)取出一个白球的概率37x P x y +=++,∴3174x x y +=++, ∴1247x x y +=++,∴y 与x 的函数关系式为35y x =+.22.解:选游戏B ,小丽获胜的可能性较大.理由如下: 按游戏A ,416(936P ==小丽胜),而按游戏B ,721(1236P ==小丽胜). 23.解:(1)10,50; (2)解:树状图如下:从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P (不低于30元)=82123=. 24.解:0 10 20 30 10 20 30 10 0 20 30 10 30 40 0 10 30 2020 30 50 2030 0 10 50 30 40 第一次 第二次 和人教版九年级数学上册_第25章_概率初步_单元检测试卷【有答案】(1)一、选择题(共10 小题,每小题 3 分,共30 分)1.掷一枚有正反面的均匀硬币,正确的说法是()A.正面一定朝上B.反面一定朝上C.正面比反面朝上的概率大D.正面和反面朝上的概率都是2.已知盒子里有个黄色球和个红色球,每个球除颜色外均相同,现从中任取一个球,则取出红色球的概率是()A. B. C. D.3.在一个暗箱里装有个红球、个黄球和个绿球,它们除颜色外都相同.搅拌均匀后,从中任意摸出一个球是红球的概率是()A. B. C. D.4.某校安排三辆车,组织八年级学生参加“合肥工业游”活动,其中方圆与吴敏同学都可以从这三辆车中任选一辆搭乘,则方圆与吴敏同车的概率为()A. B. C. D.5.掷一次骰子(每面分别刻有点),向上一面的点数是质数的概率等于()A. B. C. D.6.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A. B. C. D.7.一个不透明的袋子中装有张卡片,卡片上分别标有数字,,,,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A. B. C. D.8.小明和小白做游戏,先是各自背着对方在手心写一个正整数,然后都拿给对方看,他们约定:若两人所写的数字之和是偶数,则小明获胜;若和是奇数,则小白获胜;那么对于这个游戏,下列说法正确的是()A.游戏对小明有利B.游戏对小白有利C.这是一个公平游戏D.不能判断对谁有利9.掷一枚均匀的硬币次,有次正面朝上,次正面朝下,则第次正面朝上的概率是()A. B. C. D.无法确定10.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据,,,,的中位数是C.从名学生中选名学生进行抽样调查,样本容量为D.掷一枚质地均匀的硬币,正面朝上是必然事件二、填空题(共10 小题,每小题 3 分,共30 分)11.在一个不透明的口袋中装有个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在附近,则口袋中白球可能有________个.12.一个口袋中有个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了次,其中有次摸到红球.则白球有________个.13.将分别标有数字,,,的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于________.14.小明和小颖按如下规则做游戏:桌面上放有粒豆子,每次取粒或粒,由小明先取,最后取完豆子的人获胜.要使小明获胜的概率为,那么小明第一次应该取走________粒.15.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一致的概率是________.16.气象台预报:“本市明天降水概率是”,但据经验.气象台预报的准确率仅为,则在此经验下.本市明天降水的概率为________.17.掷一个均匀的小正方体,小正方体各面写有数字、、、、、,朝上一面出现质数的概率是________.18.一个不透明的布袋中装有分别标着数字,,,,的五个球,球除标号不同外没有任何区别,现从袋中随机摸出一个球,则这个球上的数字小于的概率为________.19.袋中有个黑球,个白球,个黄球,任意摸次,摸出的一个球是黑球的概率为________.20.有、两个口袋,口袋中装有两个分别标有数字,的小球;口袋中装有三个分别标有数字,,的小球.小明先从口袋中随机取出一个小球,用表示所取球上的数字,再从口袋中随机取出两个小球,用表示所取两个球上的数字之和,则的值是整数的概率是________.三、解答题(共6 小题,每小题10 分,共60 分)21.如图,有甲、乙两个构造完全相同的转盘均被分成、两个区域,甲转盘中区域的圆心角是,乙转盘区域的圆心角是,自由转动转盘,如果指针指向区域分界线则重新转动.转动甲转盘一次,则指针指向区域的概率________;自由转动两个转盘各一次,请用树状图或列表的方法,求出两个转盘同时指向区域的概率?22.如图,有两个可以自由转动的均匀转盘、,转盘被均匀地分成等分,每份分别标有,,这三个数字;转盘被均匀地分成等分,每份分别标有,,,这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘和;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.请你用列表或树形图求出小明胜和小飞胜的概率;游戏公平吗?若不公平,请你设计一个公平的规则.23.把大小和形状完全相同的张卡片分成两组,每组张,分别标上、、,将这两组卡片分别放入两个盒(记为盒、盒)中搅匀,再从两个盒子中各随机抽取一张.从盒中抽取一张卡片,数字为奇数的概率是多少?若取出的两张卡片数字之和为奇数,则小明胜;若取出的两张卡片数字之和为偶数,则小亮胜;试分析这个游戏是否公平?请说明理由.24.一个不透明的袋子里装着个黄球,个黑球和个红球,他们除了颜色外完全相同.小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在附近,问裁判放入了多少个红球?25.小明和小红在讨论两个事件,小明说“中央电视台天气预报说明天小雨,明天一定会下雨”,而小红却说不一定,同时她还认为“‘供电局通知,明天电路检修,某小区停电’该小区明天一定会停电”他们俩意见不统一,各执己见,他们说得对吗?你能说说你的看法吗?26.由于只有张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字,,,的个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.答案1.D2.C3.C4.B5.B6.D7.A8.C9.B10.B11.12.13.14.15.16.17.18.19.20.21.解:∵区域扇形的圆心角为,∴转动甲转盘一次,则指针指向区域的概率为;表格或树状图:(同为).22.解:列表法:, , , , , , , , , ,,,故小明胜的概率为,小飞胜的概率为.∵,∴不公平,小明胜的机会大;规则如下:①同时自由转动转盘和;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图中的数字改为奇数(比如)然后按题目中的规则进行比赛:①同时自由转动转盘和;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可.)23.解;∵在、、中为奇数的有、,∴从盒中抽取一张卡片,数字为奇数的概率为.取出的两张卡片数字之和为奇数的情况有、、、四种;取出的两张卡片数字之和为偶数的情况有、、、、五种.∵,∴小亮获胜的概率高,此游戏不公平.24.解:不公平,∵袋子中共有个小球,从中摸出一个小球,是黑球的概率为,从中摸出一个小球,是黄球的概率为,∴这个游戏不公平;设裁判向袋子中放入了个红球,根据题意可得:,解得:,经检验:是分式方程的解,。
华师大版九年级上册数学第25章 随机事件的概率含答案(全优)

华师大版九年级上册数学第25章随机事件的概率含答案一、单选题(共15题,共计45分)1、“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A. B. C. D.2、一个不透明的布袋里装有只有颜色不同的7个球,其中3个白球,4个红球,从中任意摸出1个球是红球的概率为()A. B. C. D.3、如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A. B. C. D.4、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B. C. D.5、在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A. B. C. D.6、从标号分别为1,2,3,4,5的5张卡片中,随机抽取一张,下列事件中,必然事件是()A.标号小于6B.标号大于6C.标号是奇数D.标号是37、有四张背面完全相同的扑g牌,牌面数字分别是2,3,4,5,将四张牌背面朝上放置并搅匀后,从中任意摸出一张,不放回,再任意摸出一张,摸到的两张牌的牌面数字都是奇数的概率是()A. B. C. D.8、课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是()A. B. C. D.9、下列说法中错误的是( )A.必然事件发生的概率为1B.不可能事件发生的概率为0C.随机事件发生的概率大于等于0、小于等于1D.概率很小的事件不可能发生10、下列说法正确的是()A.“367人中有2人同月同日生”为必然事件B.检测某批次灯泡的使用寿命,适宜用全面调查C.可能性是1%的事件在一次试验中一定不会发生 D.数据3,5,4,1,-2的中位数是411、某商店进行“迎五一,大促销”摸奖活动,凡是有购物小票的顾客均可摸球一次,摸到的是白球即可获奖.规则如下:一个不透明的袋子中装有10个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,记下颜色,再把它放回袋子中摇匀,重复此过程.共有300人摸球,其中获奖的共有180人,由此估计袋子中白球个数大约为()A.10B.12C.15D.1612、下列说法正确的是()A.25人中至少有3人的出生月份相同B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C.天气预报说明天降雨的概率为10%,则明天一定是晴天D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是13、小明有一块带秒针的手表,随意看一下手表,秒针在3时至4时(包括3时不包括4时)之间的可能性大小为()A.1B.C.D.14、一箱灯泡合格率为87.5%,如果一箱灯泡有24个,则小明从中任取一个是次品的概率为()A. B. C.0 D.87.5%15、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、十八世纪法国有名的数学家达兰倍尔犯了这样一个错误:拿两枚硬币随意抛掷,会出现三种情况,要么两枚都是正面向上,要么一枚正面向上,一枚背面向上,要么两枚都是背面向上,因此,两枚都是正面向上的概率是.事实上,两枚硬币都是正面向上的概率应该是________.17、国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共 1000个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.3,由此可以估计纸箱内红球的个数约是________个.18、一个口袋有15个白球和若干个黑球,在不允许将球倒出来数的前提下,小明为估计口袋中黑球的个数,采用了如下的方法:从袋中一次摸出10个球,求出白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别是0.4,0.3,0.2,0.3,0.3,根据上述数据,小明估计口袋中大约有________个黑球.19、在一个不透明的盒子里有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后,发现摸到红球的频率稳定在0.4,由此估计盒子中红球的个数为________.20、某校为了了解本校九年级男生在“新冠肺炎”疫情期间每天在家进行锻炼的时长情况,随机抽取了100名九年级男生进行问卷调查,将收集到的数据整理如下:时间x(分钟)x<10 10≤x<2020≤x<3030≤x<4040≤x<5050<x<60 x>60人数 1 8 10 35 21 15 10根据以上统计结果,随机抽取该校一名九年级男生,估计他每天进行锻炼的时间不少于40分钟的概率是________.21、有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是________22、从甲、乙2名医生和丙、丁2名护士中任意抽取2人参加医疗队,那么抽取的2人恰好是一名医生和一名护士的概率为________.23、一个正方体的骰子六个面分别标有数字1、2、3、4、5、6,则扔一次骰子朝上的数字满足不等式x≤4的概率是________。
度第一学期华东师大版九年级数学上册_第25章_随机事件的概率_单元评估检测试题(含答案)

度第一学期华东师大版九年级数学上册_第25章_随机事件的概率_单元评估检测试题(含答案)A.明明的幸运数字是3,他抛出骰子时出3的机会比其它数字的机会大B.妈妈买彩票没中过奖,她再买彩票中奖的机会一定比别人要大些C.要知道抛一枚硬币正面朝上的机会,没有硬币可用啤酒瓶盖代替D.在抛硬币实验中,婧婧认为一个一个地抛太慢,她用10枚硬币同时抛算作10次抛掷8.如图所示,同时自由转动两个转盘,指针落在每一个数上的机会均等,转盘停止后,两个指针同时落在奇数上的概率是()A.4 25B.525C.625D.9259.一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是()A.3 4B.14C.23D.1310.某商场举行投资促销活动,对于“抽到一等奖的概率为110”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽10次也可能没有抽到一等奖C.抽10次奖必有一次抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖二、填空题(共10 小题,每小题 3 分,共30 分)11.有一箱子装有3张分别标示1、5、8的号码牌,已知小明以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,则组成的二位数能被3整除的概率是________.12.10名学生的身高如下(单位:cm):159、169、163、170、166、165、156、172、165、160,从中任选一名学生,其身高超过165cm的概率是________.13.在“抛硬币”游戏中,抛5次出现1次正面;抛50次出现31次正面;抛6000次出现2980次正面;抛9999次出现5006次正面.试问:(1)四次抛硬币,出现正面的频率各是________、________、________________.(2)用一句话概括出游戏中的规律________.14.在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后发现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能是________个.15.如图是由边长为2a和a的两个正方形组成,小颖闭上眼睛随意用针扎这个图形,小孔出现在阴影部分的概率是________.16.一副扑克牌抽出大小王后,只剩下红桃、黑桃、方块、梅花四种花色52张,则任取一张是红桃的概率是________.17.一个口袋中装有4个白球,2个红球,若干黄,球,摇匀后随机从中摸一个球是黄球的概率是25则从中摸一个球是红色的概率是________.18.小慧准备给妈妈打个电话,但她只记得号码的前5位,后三位由5,1,2这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.19.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁.任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为________.20.掷两枚普通硬币,出现一正面一反面的概率是1的含义是________.2三、解答题(共 6 小题,每小题10 分,共60 分)21.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.22.一个口袋中有1个黑球和若干个白球,这些球除颜色外其他都相同.已知从中任意摸取一个.球,摸得黑球的概率为13(1)求口袋中白球的个数;(2)如果先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.用列表法或画树状图法加以说明.23.在某校举行的“中国学生营养日”活动中,设计了抽奖环节:在一只不透明的箱子中有3个球,其中2个红球,1个白球,它们除颜色外均相同.(1)随机摸出一个球,恰好是红球就能中奖,则中奖的概率是多少?(2)同时摸出两个球,都是红球就能中特别奖,则中特别奖的概率是多少?(要求画树状图或列表求解)24.袋中有2个红球、1个白球,它们除颜色外完全相同.(1)求从袋中任意取出1球是红球的概率;(2)先从袋中任意取出1球,然后放回,再从袋中任意取出1球,请用画树状图或列表格法求两次都取到红球的概率.25.小明和小亮两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们实验的结果如下:朝上的点数123456出现的次数79682010(1)请计算“3点朝上”的频率和“5点朝上”的频率.(2)一位同学说:“根据实验,一次实验中出现5点朝上的概率最大”.这位同学的说法正确吗?为什么?(3)小明和小亮各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.26.为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.答案1.B2.D3.A4.C5.B6.D7.D8.D9.A10.B11.2312.2513.20%62%49.67%50.07%正面与反面出现的频率相近14.1615.2516.1417.1518.1619.1320.在很多次实验中,有可能平均每两次结果中,就有一次一正一反21.解:画树状图如下:共有9种等可能的结果数,即按这种方法能组成的两位数有33,34,35,43,44,45,53,54,55;其中十位上的数字与个位上的数字之和为9的两位数有45和54两个,∴P(十位与个位数字之和为9)=29.22.解:(1)∵一个口袋中有1个黑球和若干个白球,从中任意摸取一个球,摸得黑球的概率为13.∴假设白球有x个,∴1 1+x =13,∴x=2.∴口袋中白球的个数为2个;(2)∵先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.∴两次都摸到白球的概率为:13.23.解:(1)∵2个红球,1个白球,∴中奖的概率为23;(2)根据题意画出树状图如下:一共有6种情况,都是红球的有2种情况,所以,P(都是红球)=26=13,即中特别奖的概率是13.24.解:(1)任意取出1球的取法有3种,其中是红球的取法有2种.则任意取出1球是红球的概率为23.(2)依题意,任意取出1球,然后放回,再从中任意取出1球的树状图如下:则两次都取到红球的概率为49.25.解:(1)∵共做了60次实验,“3点朝上”和“5点朝上”的次数分别为6,20,∴“3点朝上”的频率为:660=110,“5点朝上”的频率为2060=13.(2)不正确,∵一次实验中的频率不能等于概率,∴不正确;(3)列表得:123456 12345672345678 3456789 45678910 567891011 6789101112∵一共有36种情况,两枚骰子朝上的点数之和为3的倍数的有12种情况;∴两枚骰子朝上的点数之和为3的倍数的概率是:12 36=13.26.解:(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=112.。
九年级上册期末复习《第25章概率初步》单元评估测试题(有答案)-(新课标人教版数学)

期末专题复习:人教版九年级数学上册_第25章_ 概率初步 _单元评估测试题一、单选题(共10题;共30分)1.下列说法正确的是( )A. “明天的降水概率为 80%”,意味着明天有 80%的时间降雨B. 掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C. “某彩票中奖概率是 1%”,表示买 100 张这种彩票一定会中奖D. 小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”2.有3个整式,+1,2,先随机取一个整式作为分子,再在余下的整式中随机取一个作为分母,恰能组成成分式的概率是( )A. 13 B. 12 C. 23 D. 563.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A. 28B. 24C. 16D. 64.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择其中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为() A.B.C.D.5.有5张形状、大小、质地等均完全相同的卡片,正面分别印有等边三角形、平行四边形、正方形、菱形、圆,背面也完全相同.现将这5张卡片洗匀后正面向下放在桌上,从中随机抽出一张,抽出的卡片正面图案既是中心对称图形,又是轴对称图形的概率是( ) A. 15 B. 25 C. 35 D. 456.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所掷骰子的点数和大于6,则甲胜;反之,乙胜.则甲、乙两人中( )A. 甲获胜的可能最大B. 乙获胜的可能最大C. 甲、乙获胜的可能一样大D. 由于是随机事件,因此无法估计 7.下列事件是必然事件的是( ) A. 打开电视机,任选一个频道,屏幕上正在播放天气预报 B. 到电影院任意买一张电影票,座位号是奇数 C. 在地球上,抛出去的篮球会下落D. 掷一枚均匀的骰子,骰子停止转动后偶数点朝上8.从2,2,3,4四个数中随机取两个数,第一个作为个位上的数字,第二个作为十位上的数字,组成一个两位数,则这个两位数是2的倍数的概率是( )A. 1B. 45 C. 34 D. 12 9.小杰想用6个球设计一个摸球游戏,下面是他的4个方案.不成功的是( )A. 摸到黄球的概率为12,红球为12 B. 摸到黄、红、白球的概率都为13C. 摸到黄球的概率为12,红球的概率为13,白球为16 D. 摸到黄球的概率为23,摸到红球、白球的概率都是1310.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( ), A.B.C.D. 1二、填空题(共10题;共33分)11. 在一块试验田抽取1000个麦穗考察它的长度(单位:cm)对数据适当分组后看到落在5.75~6.05之间的频率为0.36,于是可以估计出这块田里长度为5.75~6.05cm 之间的麦穗约占________%.12.袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)13.一个暗箱里放有a 个除颜色外完全相同的球,这a 个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a 的值大约是________.14.浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是 ________. 15.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:________(精确到0.10).16.在一个不透明的布袋中装有红色、白色玻璃球共60个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在0.15左右,则口袋中红色球可能有________ 个.17.(2012•绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是________.18.在一只不透明的袋中装有红球、白球若干个,这些球除颜色外形状大小均相同.八(2)班同学进行了“探究从袋中摸出红球的概率”的数学活动,下表是同学们收集整理的试验结果:(结果精确到0.1).19.除颜色外完全相同的五个球上分别标有1,2,3,4,5五个数字,装入一个不透明的口袋内搅匀.从口袋内任摸一球记下数字后放回.搅匀后再从中任摸一球,则摸到的两个球上数字和为5的概率是________.20.小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出.他们约定若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方________.(填“公平”或“不公平”).三、解答题(共9题;共57分)21.某鞋店有A、B、C、D四款运动鞋,元旦期间搞“买一送一”促销活动,用树状图或表格求随机选取两款不同的运动鞋,恰好选中A、C两款的概率.22.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?23.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.24.体育课上,老师为了解女学生定点投篮的情况,随机抽取8名女生进行每人4次定点投篮的测试,进球数的统计如图所示.(1)求女生进球数的平均数、中位数;(2)投球4次,进球3个以上(含3个)为优秀,全校有女生1200人,估计为“优秀”等级的女生约为多少人?25.小颖和小明用如图所示的两个转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小颖得2分,否则小明得1分.这个游戏对双方公平吗?若你认为不公平,如何修改规则才能使游戏对双方公平?26.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当很大时,摸到白球的频率将会接近.(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= .(3)试估算盒子里黑、白两种颜色的球各有多少只?27.学校新年联欢会上某班矩形有奖竞猜活动,猜对问题的同学即可获得一次摇奖机会,摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三等奖,奖品分别为台灯、笔记本、签字笔.请问:(1)摇奖一次,获得笔记本的概率是多少?(2)小明答对了问题,可以获得一次摇奖机会,请问小明能获得奖品的概率有多大?请你帮他算算.28.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(Ⅱ)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.29.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】C4.【答案】A5.【答案】C6.【答案】A7.【答案】C8.【答案】C9.【答案】D10.【答案】B二、填空题11.【答案】3612.【答案】必然;不可能13.【答案】1514.【答案】1515.【答案】0.8016.【答案】917.【答案】1318.【答案】0.719.【答案】42520.【答案】公平三、解答题21.【答案】解:画树状图得:∵共有12种等可能的结果,恰好选中A、C两款的有2种情况,∴恰好选中A、C两款的概率为:212= 16.22.【答案】解:∵已经限定在身高160厘米以上的女生中抽选旗手,甲班身高在160厘米以上的女同学3人,乙班身高在160厘米以上的女同学8人,∴在甲班被抽到的概率为13,在乙甲班被抽到的概率为18,∵13>18,∴在甲班被抽到的机会大23.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果, ∴两次摸到卡片字母相同的概率为:59; ∴小明胜的概率为59,小明胜的概率为49,∵ 59 ≠ 49,∴这个游戏对双方不公平24.【答案】(1)解:由条形统计图可得,女生进球数的平均数为:(1×1+2×4+1×3+4×2)÷8=2.5(个); ∵第4,5个数据都是2,则其平均数为:2; ∴女生进球数的中位数为:2 (2)解:样本中优秀率为:38,故全校有女生1200人,“优秀”等级的女生为:1200× 38 =450(人), 答:“优秀”等级的女生约为450人 25.【答案】解:画树状图得:故一共有6种情况,配成紫色的有1种情况,相同颜色的有1种情况, ∴配成紫色的概率是,则得出其他概率的可能是:,∵×2<,∴这个游戏对双方不公平,若配成紫色,此时小颖得2分,配成相同颜色小明得2分, ∵配成相同颜色的概率是,∴此时游戏公平26.【答案】解:(1)摸到白球的频率=(0.63+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6, ∴当实验次数为5000次时,摸到白球的频率将会接近0.6. (2)摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)=0.6. (3)∵白球的频率=0.6,∴白球个数=40×0.6=24,黑球=40-24=16. 答:不透明的盒子里黑球有16个,白球有24个.27.【答案】解:(1)如图所示:黄色的有2个,则摇奖一次,获得笔记本的概率是:216=18; (2)如图所示:获奖的机会有7个,故一次摇奖,能获得奖品的概率为:716. 28.【答案】解:(Ⅰ)∵==63, ∴s 甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3; ∵==63,∴s 乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s 乙2<s 甲2,∴乙种小麦的株高长势比较整齐; (Ⅱ)列表如下:∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.29.【答案】解:根据题意列树状图如下:由树状图可知,游戏结果有12中情况,其中两数之积为非负有7种,则两数之积为非负的概率为712,两数之积为负的情况有5种,则两数之积为为负的概率为512.512≠712,因此该游戏不公平。
(期末复习)九年级上《第25章概率初步》单元试卷有答案(PDF版)-(新课标人教版数学) (2)

人教版九年级初中数学上册:第25章概率初步单元检测试卷一.选择题(共10小题)1.下列事件属于必然事件的是()A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边2.四个外观完全相同的粽子有三种口味:两个豆沙、一个红枣、一个蛋黄,从中随机选一个是豆沙味的概率为()A.B.C.D.13.如果k是随机投掷一个骰子所得的数字(1,2,3,4,5,6),则关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不等实数根的概率P=()A.B.C.D.4.下列事件是确定事件的是()A.射击运动员只射击1次,就命中靶心B.任意一个三角形,它的内角和等于180°C.抛一枚质地均匀的正方体骰子,朝上一面的点数为6D.打开电视,正在播放新闻5.下列说法正确的是()A.若甲组数据的方差S甲2=0.39,乙组数据的方差S乙2=0.25,则甲组数据比乙组数据大B.从1,2,3,4,5中随机抽取一个数,是偶数的可能性比较大C.数据2,3,3,4,5的众数是3D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖6.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是()A.B.C.D.7.下列说法中正确的是()A.某同学因为在2018年第一次适应性考试的总成绩未能突破200分,所以他中考能升入高中念大学是不可能事件B.某种彩票的中奖概率为千分之一,说明每买1000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为二分之一D.想了解遵义市精准扶贫户是否脱贫,宜采用抽样调查8.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是()A.B.C.D.9.一个不透明的盒子里装有除颜色外其他都相同的红球6个和白球若干个,每次随机摸出一个球,记下颜色后放回,摇匀后再摸,通过多次试验发现摸到红球的频率稳定在0.3左右,则盒子中白球可能有()A.12个B.14个C.18个D.20个10.甲袋子中装有1个黑球和2个红球,乙袋子中装有2个黑球和1个红球,丙袋子中装有2个黑球和2个红球,这些球除颜色外其余完全相同,从这三个袋子中各摸出2个球,记摸到1个红球和1个黑球的概率分布为P1,P2,P3,则下列判断正确的是()A.P1=P2=P3B.P1=P2,P1≠P3,P2≠P3C.P1≠P2,P1=P3,P2=P3D.P1≠P2,P1≠P3,P2≠P3二.填空题(共7小题)11.从,0,π,6这4个数中随机抽取一个数,抽到有理数的概率是.12.如果小强将镖随意投中如图所示的正方形木板,那么镖落在阴影部分的概率为13.如图所示,图1和图2中所有的正方形都全等,将图1中的正方形放在图2中的①②③④的某一位置,所组成的图形恰好是正方体展开图的概率是.14.如图,抛物线y=﹣x2+x+c的顶点是正方形ABCO的边AB的中点,点A,C在坐标轴上,抛物线分别与AO,BC交于D,E两点,将抛物线向下平移1个单位长度得到如图所示的阴影部分.现随机向该正方形区域投掷一枚小针,则针尖落在阴影部分的概率P=.15.箱子中有2个白球、4个黑球及m个红球,它们仅有颜色不同,若从中随机摸出一球,结果是红球的可能性比黑球的可能性大,则m的值可能是(写出一个即可).16.甲、乙、丙、丁四人在做踢毽子游戏:第一次由甲将毽子踢给乙、丙、丁中的某一人,从第二次起都由持毽子者将毽子再随机踢给其他三人中的某一人,假设每个人在每一次踢毽子时都不会失误,则第二次踢毽子后毽子回到甲的概率为.17.现将背面完全相同,正面分别标有数﹣2,﹣1,0,1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数记为a,b,则使点P(a,b)在平面直角坐标系xOy中,落在直线y=x+1上的概率为.三.解答题(共6小题)18.一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.(1)求摸出一个球是白球的概率.(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).19.如图,转盘被分成了三个全等的扇形,转动转盘两次(若指针落在分界线则重新转动).(1)用树状图表示指针指向区域的所有可能的结果;(2)求两次都落在A区域的概率.20.张明和李昆两名同学用如图所示的甲、乙两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向某一扇形(若指针恰好停在分格线上,则重转一次),用指针所指两个扇形内的数字求积,如果积大于10,那么甲获胜;如果积等于10,那么乙获胜,请你解决下列问题:(1)利用树状图或列表的方法(只选其中一种)表示游戏所有可能出现的结果;(2)此游戏是否公平,请说明理由.21.为弘扬中华传统文化,某校举办了学生“国学经典大赛”,比赛项目为:A.唐诗B.宋词:C,论语:D三字经,比赛形式分“单人组”和“双人组.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则小红和小明都没有抽到“论语”的概率是多少?请用画树状图或列表的方法进行说明.22.小明的书包里只放了A4大小的试卷共4张,其中语文1张、数学2张、英语1张(1)若随机地从书包中抽出2张,求抽出的试卷中有英语试卷的概率.(2)若随机地从书包中抽出3张,抽出的试卷中有英语试卷的概率为23.随着中国经济的快速增长,居民生活水平的提高,2018年春节黄金周旅游也成为了部分人的时尚.某城市研究院设计了如图1的问卷调查表,并借助问卷星平台随机对该市市民进行了问卷调查,共收回8500份有效问卷,随后对问卷进行分析统计,绘制出图2,图3(图3不完整)的两幅统计图.(1)请根据统计图解答下列问题:①补全条形统计图;②该市的人口为30万,估计该市2018年春节“自驾游“的市民约为万人.(2)小明和小宇有意向在春节黄金周外出旅游,于是他们将四种类型的旅游景点制作成如下卡片(除编号和内容外,其余完全相同)并约定若两人抽到的景点类型相同,则结伴去该类型景点旅游,若不同,则取消外出旅游.他们抽取卡片的过程为:将这四张卡片背面朝上,洗匀放好,一人从中抽取一张,放回后重新洗匀放好,另一人再从中随机抽取一张,请用列表或画树状图的方法求他们结伴去旅游的概率.参考答案一.选择题(共10小题)1.【解答】解:A、经过有交通信号的路口,遇到红灯是随机事件,故选项错误;B、任意买一张电影票,座位号是双号,是随机事件,故选项错误;C、向空中抛一枚硬币,不向地面掉落,是不可能事件,故此选项错误;D、三角形中,任意两边之和大于第三边是必然事件,正确;故选:D.2.【解答】解:∵外观完全相同的粽子有4个,两个豆沙、一个红枣、一个蛋黄,∴从中随机选一个是豆沙味的概率为=;故选:C.3.【解答】解:关于x的一元二次方程(k﹣1)x2+4x+1=0中,b2﹣4ac=16﹣4(k﹣1)>0,且k≠1,解得:k<5,则符合题意的数字为:2,3,4,故方程有两个不等实数根的概率P=.故选:A.4.【解答】解:A、射击运动员只射击1次,就命中靶心,是随机事件,故选项错误;B、任意一个三角形,它的内角和等于180°,是必然事件,故选项正确;C、抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件,故选项错误;D、打开电视,正在播放新闻,是随机事件,故选项错误.故选:B.5.【解答】解:A、若甲组数据的方差S甲2=0.39,乙组数据的方差S乙2=0.25,则甲组数据比乙组数据大,错误;B、从1,2,3,4,5中随机抽取一个数,是奇数的可能性比较大,故此选项错误;C、数据2,3,3,4,5的众数是3,正确;D、若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖,错误.故选:C.6.【解答】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为=,故选:C.7.【解答】解:A、某同学因为在2018年第一次适应性考试的总成绩未能突破200分,所以他中考能升入高中念大学是随机事件,此选项错误;B、某种彩票的中奖概率为千分之一,说明每买1000张彩票,也不一定有一张中奖,此选项错误;C、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为二分之一,此选项正确;D、想了解遵义市精准扶贫户是否脱贫,宜采用全面调查,此选项错误;故选:C.8.【解答】解:如图,将B球射向桌面的任意一边,使一次反弹后击中A球,可以瞄准的点有2个,故B球一次反弹后击中A球的概率是:.故选:B.9.【解答】解:∵通过大量重复摸球实验后发现,摸到红球的频率稳定在0.3左右,∴根据题意任意摸出1个,摸到红球的概率是:0.3,设袋中白球的个数为a个,则0.3=.解得:a=14,∴盒子中白球可能有14个.故选:B.10.【解答】解:从甲口袋里摸出的球的所有等可能结果如下:=P1==;则P(摸到1个红球和1个黑球)从乙口袋里摸出的球的所有等可能结果如下:=P2==;则P(摸到1个红球和1个黑球)从丙口袋里摸出的球的所有等可能结果如下:=P3==;则P(摸到1个红球和1个黑球)所以P1=P2=P3,故选:A.二.填空题(共7小题)11.【解答】解:∵在,0,π,6中,只有0和6是有理数,∴抽到有理数的概率是=;故答案为:.12.【解答】解:观察这个图可知:阴影部分占四个小正方形,占总数36个的,故其概率是.故答案为:.13.【解答】解:由图共有4种等可能结果,其中将图1的正方形放在图2中的①的位置出现重叠的面,不能围成正方体,则所组成的图形能围成正方体的概率是,故答案为:.14.【解答】解:∵抛物线y=﹣x2+x+c的顶点是正方形ABCO边AB的中点,且抛物线对称轴为直线x=2,∴正方形ABCO的边长为4,∵抛物线向下平移1个单位长度得到如图所示的阴影部分,∴阴影部分面积为4,则针尖落在阴影部分的概率P==,故答案为:15.【解答】解:∵袋子中黑球有4个,且随机摸出一球,结果是红球的可能性比黑球的可能性大,∴红球的个数比黑球的个数多,即m>4,故答案为:5(答案不唯一,大于4的整数即可).16.【解答】解:画树状图:共有9种等可能的结果,其中符合要求的结果有3种,∴P(第2次传球后球回到甲手里)==,故答案为:.17.【解答】解:画树状图如下:由树状图可知,共有12种等可能结果,其中落在直线y=x+1上的有(﹣2,0)和(0,1)这2种,∴落在直线y=x+1上的概率为=,故答案为:.三.解答题(共6小题)18.【解答】解(1)摸出一个球的所有可能结果总数n=3,摸到是白球的可能结果数m=1,∴摸出一个球是白球的概率为.(2)画树状图如下:由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,所以两次摸出颜色相同的球的概率.(2)由树状图可知共有9种等可能结果,其中两次都落在A区域的结果数为1,所以两次都落在A区域的概率为.20.【解答】解:(1)列树状图得:所以可能产生的结果为4、5、8、10、12、15这6种;(2)∵积大于10的情况有2种,积等于10的情况有1种,∴甲获胜的概率为=、乙获胜的概率为,∵≠,∴此游戏不公平.21.【解答】解:(1)从四个比赛项目中抽取1个有4种等可能结果,其中恰好抽中“三字经”的只有1种结果,∴恰好抽中“三字经”的概率是;(2)画树状图为:∵共有12种等可能的结果,其中都没有抽到“论语”的有6种结果,∴都没有抽到“论语”的概率为=.共有12种等可能的结果数,其中抽出的试卷中有英语试卷的结果数为6,所以抽出的试卷中有英语试卷的概率为=;(2)∵从4张试卷中抽出3张有如下4种情况:(数、数、英)、(语、数、英)、(语、数、英)、(语、数、数),其中抽出的试卷中有英语试卷的有3种结果,所以抽出的试卷中有英语试卷的概率为.故答案为:.23.【解答】解:(1)①∵出去旅游的人数为8500×40%=3400人,∴自由行的人数为3400﹣(646+510+170+34)=2040人,补全图形如下:②估计该市2018年春节“自驾游“的市民约为30×=1.8(万人),故答案为:1.8;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有4种,所以他们结伴去旅游的概率为=.。
华东师大版九年级数学上册 第25章 随机事件的概率 单元测试题(有答案)

随机事件的概率单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A.1 2B.15C.13D.232. 下列事件中,属于必然事件的是( )A.掷一次骰子,向上一面的点数是3B.射击运动员射击一次,命中靶心C.三角形内角和为180∘D.“NBA巨星”詹姆斯上篮100%得分3. 下列成语描述的事件是必然事件的是( )A.守株待兔B.瓮中捉鳖C.画饼充饥D.水中捞月4. 下列说法正确的是( )A.不可能事件发生的概率为1B.随机事件发生的概率为13C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币,正面朝上的概率为125. 下列事件中:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100∘C;③打开电视,正在播“我是演说家”;④度量四边形的内角和是360∘.其中是确定事件的是( )A.①②B.③④C.①③D.②④6. 在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率7. 在一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,由此可判断袋子中黑球的个数为()A.2个B.3个C.4个D.5个8. 在一个不透明袋子中有除颜色外完全相同的5个黑球和3个白球,从袋子中随机摸出4个球,则下列说法中不正确的是( )A.4个球都是白球是不可能事件B.4个球2黑2白是随机事件C.4个球都是黑球是必然事件D.4个球至少有1个黑球是确定事件9. 一个不透明的袋中有六个完全相同的小球,把它们分别标上数字1,2,3,4,5,6.小红从中随机摸出一个小球,记下数字后放回,小丽再随机摸出摸出一个小球记下数字,则两人摸出的小球上数字之和为3的倍数的概率是( )A.1 4B.12C.13D.1710. 下列事件中,是必然事件的是()A.小伟身高达到5米B.天阴了一定会下雨C.农历八月十五的月亮弯弯的像一把镰刀D.太阳从东方升起二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是________.12. 学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.13. 一个可以自由转动的转盘被等分成6个扇形区域,分别写上数字1、2、3、4、5、6,转动转盘,转盘停止后(指针指向分界线,重新转过),指针指向偶数的概率是________.14. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是________.15. 随意抛出的乒乓球落在如图所示的地板砖上,它停落在阴影方砖上的概率是________.16. 在一个不透明的布袋中,红色、黑色、白色的玻璃球共有50个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在20%和40%,则布袋中白色球的个数很可能是________个.17. 同时掷两枚均匀的硬币,则两枚都出现正面朝上的概率是________.18. 一个口袋中装有3个完全相同的小球,它们分别标有数字1,2,3,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是________.19. “随意掷一枚质地均匀的正六面体骰子,出现的点数大于0”是________事件.(填“必然”、“不可能”或“随机”)20. 小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为________.三、解答题(本题共计6 小题,共计60分,)21. 如图是一个可以自由转动的转盘,标有黄色和蓝色区域的扇形圆心角分别是150∘和65∘,则随机转动转盘,指针在红色区域的概率是多少?22. 在军训结束的汇报演出中,某同学在一次射击中,射中10环、9环、8环的概率分别是0.25、0.29、0.20,那么这名同学:(1)射中10环或9环的概率是多少?(2)不够8环的概率是多少?(3)如果他射击100次,估测一下射中9环(包含9环)以上的次数.23. 某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.(1)若小明获得1次抽奖机会,小明中奖是________事件;(填随机、必然、不可能)(2)小明观察一段时间后发现,平均每6个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有18个球,请你估算袋中白球的数量;(3)在(2)的条件下,如果在抽奖袋中增加三个黄球,那么抽中一等奖的概率会怎样变化?请说明理由.24. 为保护环境,减少污染.政府号召市民对垃圾进行分类投放,能提高垃圾处理和再利用的效率.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是多少?(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.25. 某市正积极申报文明城市,周末市团委组织志愿者进行宣传活动.老师要从4名学生会干部(小聪、小明、小可、小爱)中抽签选出2人去参加.抽签规则:将分别写有4人名字的卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张,记下名字,再从剩余的3张卡片中再随机抽取一张,记下名字.(1)另一名学生会干部“小杰被抽中”是________事件,“小聪被抽中”是________事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小明被抽中”的概率为________.(2)用画树状图或列表的方法表示所有可能的结果,并求“小可和小爱一起被选中”的概率.26. 甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物分别记为a,b,c (里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A),请列出事件A的所有可能的结果,并求事件A的概率.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】因为一共有6个球,白球有4个,所以从布袋里任意摸出1个球,摸到白球的概率为:46=23.2.【答案】C【解答】解:A,掷一次骰子,向上一面的点数是3,是随机事件,故此选项错误;B,射击运动员射击一次,命中靶心,是随机事件,故此选项错误;C,三角形其内角和为180∘,是必然事件,故此选项正确;D,“NBA巨星”詹姆斯上篮100%得分是随机事件,故此选项错误.故选C.3.【答案】B【解答】解:守株不一定能等待到兔子,故是随机事件;瓮中一定可以捉到鳖,故是必然事件;画饼不可能充饥,故是不可能事件;水中不可能捞到月亮,故是不可能事件.故选B.4.【答案】D【解答】解:A,不可能事件发生的概率为0,所以A选项错误;B,随机事件发生的概率在0与1之间,所以B选项错误;C,概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D,投掷一枚质地均匀的硬币,正面朝上的概率为12,所以D选项正确.故选D.5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末专题复习:华师大版九年级数学上册第25章随机事件的概率单元评估检测试卷一、单选题(共10题;共30分)1.下列说法正确的是()A. 打开电视看CCTV—5频道,正在播放NBA篮球比赛是必然事件B. 某一种彩票中奖概率是,那么买1000张这种彩票就一定能中奖C. 度量一个三角形的内角和是360°,这是不可能事件D. 小李掷一硬币,连续5次正面朝上,则他第6次掷硬币时,正面朝上的概率是12.下列说法中,正确的是()A. 随机事件发生的概率为1 B. 概率很小的事件不可能发生C. 不可能事件发生的概率为0 D. 投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A. B.C. 3D.64.下列说法正确的是()A. “任意一个三角形的外角和等于 80°”这一事件是不可能事件B. 必然事件发生的概率为0C. 一组数据1,6,3,9,8的极差为7D. “面积相等的两个三角形全等”这一事件是必然事件5.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数小于3的概率为( )B.A.6C.3D.36.“天津市明天降水概率是10%”,对此消息下列说法正确的是()A. 天津市明天将有10%的地区降水B. 天津市明天将有10%的时间降水C. 天津市明天降水的可能性较小 D. 天津市明天肯定不降水7.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ).A.B.3C.D. 18.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是()A. B.C.3D.39.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是( )A. B.C.3D.3 10.为吸引顾客,石景山万达广场某餐饮店推出转盘抽奖打折活动,如图是可以自由转动的转盘,转盘被分成若干个扇形,转动转盘,转盘停止后,指针所指区域内的奖项可作为打折等级(若指针指向两个扇形的交线时,重新转动转盘),其中一等奖打九折,二等奖打九五折,三等奖赠送小礼品.小明和同学周六去就餐,他们转动一次转盘能够得到九折优惠的概率是B. A.3C. 36D.8二、填空题(共10题;共30分)11.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为________.12. 如果有两组牌,它们牌面数字分别为1、2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的牌概率是________.13.向上抛掷两枚硬币,落地后一枚正面朝上,别一枚反面朝上的概率是 .14.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为________15.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是________16.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为________.17.某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是________.18.小明手中有两张卡片分别标有3,﹣1,小华手中有三张卡片分别标有2,0,﹣1.如果两人各随机抽取一张卡片,那么和为正数的概率是________.19.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是________20.盒子里有3张分别写有整式+1,+2,3的卡片,现从中随机抽取两张,把卡片的整式分别作为分子和分母,则能组成分式的概率是________.三、解答题(共10题;共60分)21.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.22.在一个不透明的盒子中装有三张卡片,分别标有数字为1,2,7,这些卡片除数字不同外其余均相同.洗匀后,小强从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.23.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?24.中秋节临,小红家自己制作月饼.小红做了三个月饼,1个芝麻馅,2个豆沙馅;小红的爸爸做了两个月饼,1个芝麻馅,1个豆沙馅(除馅料不同,其它都相同).做好后他们请奶奶品尝月饼,奶奶从小红做的月饼中拿了一个,从小红爸爸做的月饼中拿了一个.请利用列表或画树状图的方法求奶奶拿到的月饼都是豆沙馅的概率.25.小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.26.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a,b,c,求以a,b,c为边长正好构成等边三角形的概率.27.在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同。
甲、乙、两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号。
将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数。
若该两位数能被4整除,则甲胜,否则乙胜.问:这个游戏公平吗?请说明理由。
28.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人自不同班级的概率;(3)求2名主持人恰好1男1女的概率.29.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.30.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)求点M在直线y=上的概率;(2)求点M的横坐标与纵坐标之和是偶数的概率.答案解析部分一、单选题1.【答案】C2.【答案】C3.【答案】C4.【答案】A5.【答案】B6.【答案】C7.【答案】C8.【答案】A9.【答案】D10.【答案】C二、填空题11.【答案】12.【答案】13.【答案】14.【答案】315.【答案】316.【答案】317.【答案】3818.【答案】319.【答案】820.【答案】三、解答题21.【答案】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果, ∴两次摸到卡片字母相同的概率为:; ∴小明胜的概率为,小明胜的概率为 , ∵≠,∴这个游戏对双方不公平22.【答案】解:画出如下树状图:所以 (两次抽取的卡片上数字之和为偶数)23.【答案】解:∵已经限定在身高160厘米以上的女生中抽选旗手,甲班身高在160厘米以上的女同学3人,乙班身高在160厘米以上的女同学8人,∴在甲班被抽到的概率为 3,在乙甲班被抽到的概率为 8,∵ 3> 8,∴在甲班被抽到的机会大24.【答案】解:用字母A 表示芝麻馅,字母表示豆沙馅, 画树状图:共有6种等可能的结果数,其中月饼都是豆沙馅的结果数为2, 所以月饼都是豆沙馅的概率=63.25.【答案】解:这个游戏规则对双方公平.理由如下: 画树状图为:共有9种等可能的结果数,其中摸出的两张卡片的正面数字之积小于10的结果数为4;摸出的两张卡片的正面数字之积超过10的结果数为4,所以小明获胜的概率=,小亮获胜的概率=. 所以这个游戏规则对双方公平26.【答案】解画树状图如下:∵共有27种等可能的结果,构成等边三角形的有3种情况, ∴以a ,b ,c 为边长正好构成等边三角形的概率是3.27.【答案】解:画树状分析图如图:∵能组成的两位数有22,23,24,32,33,34,42,43,44,能被4整除的有:24,32,,44。
∴P(甲胜)= 33,P (乙胜)= 3。
∵P(甲胜)≠P(乙胜), ∴这个游戏不公平。
28.【答案】解:(1)画树状图得:共有20种等可能的结果,(2)∵ 名主持人自不同班级的情况有12种, ∴ 名主持人自不同班级的概率为:0 3; (3)∵ 名主持人恰好1男1女的情况有12种, ∴ 名主持人恰好1男1女的概率为:0 3. 29.【答案】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,.∴恰好选派一男一女两位同学参赛的概率为:8=330.【答案】解:(1)列表得:∵点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3),;∴P(点M在直线y=上)=P(点M的横、纵坐标相等)=3=3(2)列表得:∴P(点M的横坐标与纵坐标之和是偶数)=。