2013届九年级数学上学期期末考试试题_苏科版

合集下载

2012-2013学年江苏省徐州市九年级(上)期末数学试卷

2012-2013学年江苏省徐州市九年级(上)期末数学试卷

2012-2013学年江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+23.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或124.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.26.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣17.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作km2.11.(3分)方程x2﹣2x=0的根是.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD 的长.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是;(2)抛物线与x轴的交点的坐标是;(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=s;n=cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?2012-2013学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(3分)计算(﹣1)(+1)的结果是()A.1 B.﹣1 C.+1 D.3+2【解答】解:原式=()2﹣1=2﹣1=1.故选A.3.(3分)若等腰三角形的两边长分别为2和5,则它的周长为()A.9 B.7 C.12 D.9或12【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故选C.4.(3分)下列坐标表示的点中,不在反比例函数y=的图象上的是()A.(﹣2,﹣3)B.(﹣1,﹣6)C.(﹣0.5,12)D.(1.5,4)【解答】解:A、把(﹣2,﹣3)代入y=得:左边=﹣3,右边=﹣3,左边=右边,即(﹣2,﹣3)在反比例函数图象上,故本选项错误;B、把(﹣1,﹣6)代入y=得:左边=﹣6,右边=﹣6,左边=右边,即(﹣1,﹣6)在反比例函数图象上,故本选项错误;C、把(﹣0.5,12)代入y=得:左边=12,右边=﹣12,左边≠右边,即(﹣0.5,12)不在反比例函数图象上,故本选项正确;D、把(1.5,4)代入y=得:左边=4,右边=4,左边=右边,即(1.5,4)在反比例函数图象上,故本选项错误;故选C.5.(3分)若正方形的对角线长为,则它的面积为()A.1 B.C.2 D.2【解答】解:∵四边形ABCD是正方形,∴AO=BO=AC=,∵∠AOB=90°,由勾股定理得,AB=1,S正方形ABCD=1×1=1.故选A.6.(3分)已知x2﹣1=﹣x,则x﹣的值等于()A.0.382 B.0.618 C.1 D.﹣1【解答】解:由x≠0,已知等式变形得:x﹣=﹣1.故选D7.(3分)若实数a、b在数轴上对应点的位置如图所示,则可化简为()A.a+b B.a﹣b C.b﹣a D.﹣a﹣b【解答】解:∵实数a、b在数轴上对应点的位置可知b>a,∴b﹣a>0.原式==b﹣a.故选:C.8.(3分)如图,在⊙O中,∠AOB=120°,=2,则∠ADC等于()A.15°B.20°C.30°D.40°【解答】解:连接OC,∵∠AOB=120°,∴=120°,∵=2,∴==×120°=40°,∴∠AOC=40°,∴∠ADC=∠AOC=×40°=20°.故选B.二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在第3页相应的答题处,在卷Ⅰ上答题无效)9.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.10.(3分)我国“钓鱼岛”周围海域面积约为170 000km2,该数用科学记数法可记作 1.7×105km2.【解答】解:170 000=1.7×105,故答案为:1.7×105.11.(3分)方程x2﹣2x=0的根是x1=0,x2=2.【解答】解:因式分解得x(x﹣2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.12.(3分)如图为我市某周内的气温走势图,这七天中,温差最大的一天是周六.【解答】解:这七天的温差分别是:昨天:﹣2﹣(﹣10)=8;今天:2﹣(﹣6)=8;周二:0﹣(﹣5)=5;周三:2﹣(﹣3)=5;周四:3﹣(﹣1)=4;周五:6﹣0=6;周六:4﹣(﹣5)=9;则温差最大的一天是周六.故答案为周六.13.(3分)如图,半径为1的圆片与数轴相切于原点,将该圆片沿数轴向负方向滚动一周,点A从原点到达点A′的位置,则数轴上点A′对应的实数为﹣2π.【解答】解:∵圆的半径为1,∴周长为2π,∴点A′对应的实数为﹣2π.故答案为:﹣2π.14.(3分)若将一根长为8m的绳子围成一个面积为3m2的矩形,则该矩形的长为3m.【解答】解:设该矩形的长为xm,则宽为(4﹣x)m,由题意,得x(8÷2﹣x)=3,解得:x1=3,x2=1.答:矩形的长为3m.15.(3分)若一次函数y=x+b的图象与两坐标围成的三角形面积为2,则b=±2.【解答】解:∵令x=0,则y=b;令y=0,则x=﹣b,∴一次函数y=x+b的图象与x、y轴的交点分别为(﹣b,0),(0,b),∴b2=2,解得b=±2.故答案为:±2.16.(3分)如图,扇形OAB的圆心角为90°,正方形OCDE的顶点C、E、D分别在OA、OB、上.AF⊥OA且与ED的延长线交于点F.若正方形的边长为1,则图中阴影部分的面积为﹣1.【解答】解:连接OD,∵正方形OCDE的面积为1,∴正方形OCDE的边长为1,∴OD=,∴AC=﹣1,∵DE=DC,BE=AC,=,∴S=长方形ACDF的面积=AC•CD=﹣1.阴故答案为:﹣1.三、解答题(本大题共有9小题,共72分)17.(8分)(1)计算:(﹣1)2+()0﹣()﹣1;(2)解方程:x2﹣2x﹣3=0.【解答】解:(1)原式=1+1﹣2=0;(2)由原方程,得(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得,x1=3,x2=﹣1.18.(6分)甲、乙两人进行射击比赛,在相同条件下各射击10次,成绩如图:(1)填表(2)请从不同角度评价甲、乙两人的打靶成绩.【解答】解:(1)由图形可知,甲的最好成绩是9环,所以甲命中9环以上次数为0次;把乙运动员10次比赛成绩按从小到大的顺序排列为:2、4、6、7、7、8、8、9、9、10;位于中间的两个数是7、8,所以乙的中位数为:(7+8)÷2=7.5.填表如下:(2)①从平均数来看,两人成绩不相上下;②从中位数来看,乙的成绩较好;③从方差来看,甲的成绩比较稳定;④从成绩变化趋势看,乙的成绩越来越好.19.(8分)如图,在△ABC中,D、E分别是AC、AB的中点,BD为角平分线.求证:(1)∠EBD=∠EDB;(2)BE=BC.【解答】证明:(1)∵BD是角平分线,∴∠EBD=∠DBC,∵E、D是中点,∴ED是中位线,∴ED∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB;(2)由∠EBD=∠EDB得BE=DE,∵ED是中位线,∴ED=BC,∴BE=BC.20.(8分)如图,在⊙O中,直径AB⊥弦CD,垂足为P,OB=5,PB=2,求CD的长.【解答】解:连接OC,∵⊙O中,直径AB⊥弦CD,∴CD=2CP.在Rt△OPC中,∵PC2+PO2=OC2,且OP=OB﹣PB=5﹣2=3.∴PC===4,∴CD=2CP=8.21.(8分)如图,在Rt△ABC中,∠ABC=90°,BC=5cm,AC﹣AB=1cm.(1)求AB、AC的长;(2)求△ABC内切圆的半径.【解答】解:(1)设AB=xcm,则AC=(x+1)cm,∵在Rt△ABC中,由勾股定理得:AC2﹣AB2=BC2,∴((x+1)2﹣x2=52,解得:x=12,即AB=12cm,AC=13cm;(2)连接AO、BO、CO、OD、OE、OF,设内切圆的半径为y,根据题意,得S=×5×12=×5r+×12r+×13r,△ABC解得:r=2,即所求内切圆的半径为2cm.22.(8分)某网店以每件40元的价格购进一批商品,若以单价60元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.问:单价定为多少元时,每月销售该商品的利润最大?【解答】解:根据题意得出:y=[300﹣10(x﹣60)](x﹣40)=﹣10(x﹣90)(x﹣40)=﹣10(x﹣65)2+6250.当x=65即单价为65元时,每月销售该商品的利润最大.23.(8分)如图,抛物线为二次函数y=x2﹣4x的图象.(1)抛物线的顶点A的坐标是(2,4);(2)抛物线与x轴的交点的坐标是(0,0),(4,0);(3)将抛物线绕原点O旋转180°,求所得图象对应二次函数的关系式.【解答】解:(1)y=x2﹣4x的顶点坐标是(2,﹣4);(2)当x2﹣4x=0时,解得x=4,x=0,即抛物线与x轴的交点坐标是(4,0),(0,0);(3)将抛物线绕原点O旋转180°,所得图象对应二次函数的关系式y=﹣x2+4x,故答案为:(2,﹣4),(4,0),(0,0).24.(8分)如图,在梯形ABCD中,AD∥BC,∠A=∠B=90°,BC=4AD.AB为⊙O 的直径,OA=2,CD与⊙O相切于点E,求CD的长.【解答】解:∵AB为⊙O的直径,∠A=∠B=90°,∴AD、BC均为⊙O的切线,又CD与⊙O相切于点E,∴DE=DA,CE=CB,∴CD=AD+BC,设AD=x,则BC=4AD=4x,CD=5x,如图所示,作梯形的高DF,在Rt△CDF中,DF=AB=2OA=4,CF=CB﹣BF=CB﹣AD=3x,CD=5x,由勾股定理得:DF2+FC2=CD2,得42+(3x)2=(5x)2,解得:x1=1,x2=﹣1(舍去),∴CD=5x=5.25.(10分)如图①.点C、B、E、F在直线l上,线段AB与DE重合.将等腰直角三角形ABC以1cm/s的速度沿直线l向正方形DEFG平移,当C、F重合时停止运动.已知△ABC与正方形DEFG重叠部分的面积y(cm2)与运动时间x(s)的函数图象如图②所示.请根据图中信息解决下列问题:(1)填空:m=8s;n=8cm2;(2)分别写出0≤x≤4和4<x≤m时,y与x的函数关系式;(3)x为何值时,重叠部分的面积为 3.5cm2?【解答】解:(1)由题意可知,当点C与点E重合时,y有最大值,由图2知此时x=4s,∵等腰直角三角形ABC运动速度为1cm/s,∴CB=AB=1×4=4,=×4×4=8,即n=8cm2;∴S△ABC∵点C与点F重合时,面积达到最小值0,又EF=CB=4,∴t=8s,即m=8s.故答案为8,8;(2)当0≤x≤4时,如图,设DE与AC交于点H.∵BE=x,∴EH=CE=BC﹣BE=4﹣x,∴y=S=(EH+AB)•BE=(4﹣x+4)x=﹣x2+4x,梯形ABEH即y=﹣x2+4x;当4<x≤8时,如图,设GF与AC交于点I.∵BE=x,BC=4,∴CE=BE﹣BC=x﹣4,∴FI=CF=EF﹣EC=4﹣(x﹣4)=8﹣x,=CF2=(8﹣x)2=x2﹣8x+32,∴y=S△CFI即y=x2﹣8x+32;综上所述,y=;(3)当0≤x≤4时,令﹣x2+4x=3.5,整理,得x2﹣8x+7=0,解得x1=1,x2=7(不合题意,舍去);当4<x≤8时,令x2﹣8x+32=3.5,整理,得x2﹣16x+57=0,解得x1=8﹣,x2=8+(不合题意,舍去).综上所述,当x为1s或(8﹣)s时,重叠部分面积为3.5cm2.。

江苏省昆山市九年级数学第一学期期末考试试卷 苏科版

江苏省昆山市九年级数学第一学期期末考试试卷 苏科版

昆山市2012~2013学年第一学期期末考试九年级数学试卷 (试卷满分130分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.化简(-1)2013得( ▲ )A .-1B .1C .-2013D .20132.在北大、清华、复旦和浙大的校标LOGO 中,轴对称图形的是( ▲ )3.已知∠A 为锐角,若sin ∠A =12,则cos A 的值是( ▲ )A B C D 4.将二次函数y =x 2的图象向上平移3个单位,得到新抛物线的函数关系式是( ▲ )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)25.如图,在⊙O 中,AB 为弦,OC ⊥AB 于点E ,若⊙O 的半径为5,CE =2,则AB 的长是( ▲ )A .2B .4C .6D .86.某圆与半径为1的圆相切,两圆的圆心距为4,则此圆的半径为( ▲ )A .3B .7C .3或5D .5或77.平面直角坐标系内点P(1,1)关于点Q (-1,0)的对称点坐标是( ▲ )A . (-2,-1)B .(-3,-1)C .(-1,-2)D . (-1,-3)8.根据下表中二次函数y =ax 2+bx +c (a ≠0)的对应值:判断方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是( ▲ )A .3.23<x<3.24B .3.24<x<3.25C .3.25<x<3.26D .不能确定9.如图,将大小两块量角器的零度线对齐,且小量角器的中心O 2恰好在大量角器的圆周上.设它们圆周的交点为P ,且点P 在小量角器上对应的刻度为75°,那么点P 在大量角器上对应的刻度为( ▲ )A .75°B .60°C .45°D .30°10.平面直角坐标系中,在以点(3,4)为圆心,r 为半径的圆上,有且仅有两个点到x 轴的距离等于1,则半径r 的取值范围是( ▲ )A .r>3B .0<r<5C .3≤r<4D .3<r<5二、填空题(本大题共8小题,每小题3分,共24分)11.函数y x 的取值范围是 ▲ .12.从1~9这9个自然数中任取一个,恰是2的倍数的概率是 ▲ .13.观察二次函数y =x 2-2x -1的图象,若x>0,则y 的取值范围是 ▲ .14.如图,在等腰梯形ABCD 中,已知AD =5cm ,BC =11cm ,∠C =60°,则腰长为 ▲ cm .15.如图,将直角边长为3cm 的等腰Rt △ABC 绕点A 逆时针旋转15°得到△ADE ,ED 交AB于点F ,则△AEF 的面积为 ▲ cm 2.16.如图,已知圆锥的母线AC =6cm ,侧面展开图是半圆,则底面半径OC = ▲ .17.如图,利用两面夹角为135°且足够长的墙,围成梯形围栏ABCD ,∠C =90°,新建墙BCD 总长为15m ,则当CD = ▲ m 时,梯形围栏的面积最大.18.如图,二次函数y =ax 2+c 图象的顶点为B ,若以OB 为对角线的正方形ABCO 的另两个顶点A 、C 也在该抛物线上,则a ·c 的值是 ▲ .三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算题(本题共2小题,每小题4分,共8分)2 ()12sin 45-+︒20.解下列方程(本题共2小题,每小题4分,共8分)(1)2x 2-8=0 (2)(3-x)2+x 2=521.(本题共6分)已知关于x 的一元二次方程x 2-6x +c =0有两个实数根.(1)求c 的取值范围;(2)当c 取符合条件的最大整数时,若二次函数y =x 2-6x +c 与y =x 2+mx -6的图象交于x 轴上同一点,求m 的值.22.(本题共6分)已知△BDE 和△ABC 都是等边三角形,DE交AB 于点F .若BD =1,∠CBD =45°,求△BEF 的面积.23.(本题共6分)如图,直线AB 、CD 分别经过点(0,1)和(0,2)且平行于x 轴,图1中射线OA 为正比例函数y =kx(k>0)在第一象限的部分图象,射线OB 与OA 关于y 轴对称;图2为二次函数y =ax 2(a>0)的图象.(1)如图l ,求证:12AB CD =; (2)如图2,探索:AB CD 的值.24.(本题共8分)小惠在证明“两条平行弦所夹的弧相等”时,画了图1并连结半径OC ,OD (即:AB 为⊙O 的直径,CD 为弦且CD//AB ,求证:AC BD=) (1)请按图1帮小惠证明当一条弦为直径时结论成立;(2)显然,小惠只证了一条弦为直径的情形,失去了一般性.请你在下面两个备用图中画出其它情形,并尝试运用转化的思想,直接利用小惠的结论解决这个问题.25.(本题共8分)如图,已知二次函数y =x 2-3x -4的图象交x 轴于A 、B 两点.(1)若点P 在线段AB 上运动,作PQ ⊥x 轴,交抛物线于点Q ,求PQ 的最大值:(2)已知点D(5,6)在抛物线上,若点M 在线段AD 上运动,作MN ⊥x 轴,交抛物线于点N ,求MN 的最大值.(3)在(2)的运动过程中,求△ADN 面积的最大值.26.(本题共8分)如图,在矩形ABCD 的对角线AC 上有一动点O ,以OA 为半径作⊙O 交AD 、AC 于点E 、F ,连结CE .(1)若CE 恰为⊙O 的切线,求证:∠ACB =∠DCE ;(2)在(1)的条件下,若AB BC =2,求⊙O 的半径.27.(本题共8分)如图,直线y+1分别与两坐标轴交于A,B两点,点C从A点出发沿射线BA方向移动,速度为每秒1个单位长度.以C为顶点作等边△CDE,其中点D和点E都在x轴上.半径为3的⊙M与x轴、直线AB相切于点G、F.(1)直线AB与x轴所夹的角∠ABO=▲°;(2)求当点C移动多少秒时,等边△CDE的边CE与⊙M相切?28.(本题共10分)已知二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x 轴交于不同的两点A、B,若点A的坐标是(1,0),点B在点A的右侧.(1)c=▲;(2)求a的取值范围;(3)若过点C且平行于x轴的直线交该抛物线于另一点D,AD、BC交于点P,记△PCD的面积为S1,△PAB的面积为S2,求S1-S2的值.。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word 版 含答案)一、选择题1.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:32.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度3.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 4.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±95.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 6.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1807.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π8.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 9.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .110.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .11.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是4 13.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣114.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12B .13C .1010D 31015.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 17.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________21.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.22.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .23.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 24.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.25.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.26.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.27.抛物线()2322y x =+-的顶点坐标是______.28.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.29.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.30.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.三、解答题31.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值. 32.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P是抛物线上的一动点,以P为圆心、PM为半径的圆与x轴相交于E、F两点,若PEF∆的面积为26,请直接写出点P的坐标.33.已知抛物线y=x2﹣2x﹣3与x轴交于点A、B,与y轴交于点C,点D为OC中点,点P在抛物线上.(1)直接写出A、B、C、D坐标;(2)点P在第四象限,过点P作PE⊥x轴,垂足为E,PE交BC、BD于G、H,是否存在这样的点P,使PG=GH=HE?若存在,求出点P坐标;若不存在,请说明理由.(3)若直线y=13x+t与抛物线y=x2﹣2x﹣3在x轴下方有两个交点,直接写出t的取值范围.34.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米的测角仪测得古树顶端点H的仰角HDE∠为45︒,此时教学楼顶端点G恰好在视线DH 上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEF∠为60︒,点A、B、C点在同一水平线上.(1)计算古树BH的高度;(2)计算教学楼CG的高度.(结果精确到0.12 1.4≈3 1.7≈).35.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示. (1)V D = ,C 坐标为 ; (2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).四、压轴题36.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.37.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.38.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).39.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.40.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.2.C解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C . 【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.3.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..4.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B .【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解. 5.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x = ∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1, 故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.6.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.7.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.10.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.14.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=1010,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=1111=解得115DE = 115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】 本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.【解析】【详解】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,解析:【解析】【详解】∵22251213+=,由勾股定理逆定理可知此三角形为直角三角形, ∴它的内切圆半径5121322r +-==, 18.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 19.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.20.【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E【解析】【分析】将△ABE 绕点A 旋转60°至△AGF 的位置,根据旋转的性质可证△AEF 和△ABG 为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC ,表示Rt △GMC 的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE 绕点A 旋转60°至△AGF 的位置,连接EF,GC,BG ,过点G 作BC 的垂线交CB 的延长线于点M.设正方形的边长为2m ,∵四边形ABCD 为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE 绕点A 旋转60°至△AGF ,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=13∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,3m ,Rt △GMC 中,勾股可得222GC GM CM =+, 即:222(32)(13)m m m ++=+, 解得:2m =, ∴边长为22m =2.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.21.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.22.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 23.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.24.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.25..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.26.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x 1+x 2=3,x 1x 2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x 1+x 2=3,x 1x 2=2,所以x 1+x 2-x 1x 2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 29.【解析】【分析】如图,过点D 作DF⊥BC 于F ,由“SAS”可证△ACQ≌△BCP,可得AQ =BP ,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相【解析】【分析】如图,过点D 作DF ⊥BC 于F ,由“SAS ”可证△ACQ ≌△BCP ,可得AQ =BP ,∠CAQ =∠CBP ,由直角三角形的性质和勾股定理可求BD 的长,由锐角三角函数可求BP 的长,由相似三角形的性质可求AE 的长,即可求解.【详解】如图,过点D 作DF ⊥BC 于F ,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°, ∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形, ∴S △CPQ 32, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴627BP =, ∴BP 127, ∴AQ =BP 127, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC ,∴AE AD BC BD =, ∴6AE =,∴AE ,∴QE =AQ−AE =7.故答案为;7. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.30.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.三、解答题31.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得,2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500, 当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000, ∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值, 当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,。

江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版

江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版

- 1 -江苏省盱眙县2013届九年级数学上学期期末考试试题 苏教版(满分150分 时间120分钟)亲爱的同学们:经过初三一学期的学习,你们一定收获不少吧!你们也一定很想知道自己的学习情况,那么就仔仔细细地审题,认认真真地做答,把自己的真实水平都发挥出来,相信你一定能行!一、选择题:(每小题只有一个正确答案,请把正确答案选项的字母填在题后的括号内;每小题3分,共30分)1、若两圆的半径分别是3和4,圆心距为8,则两圆的位置关系为A .相交B .内含C .外切D .外离 2、已知⊙O 的半径为7cm ,OA =5cm ,那么点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .不能确定 3、抛物线y=(x-2)2+3的顶点坐标是A .(-2,3)B .(2,3)C .(3,2)D .(3,-2); 4、顺次连接平行四边形四边的中点所得的四边形是A.矩形B.菱形C.正方形D.平行四边形 5、甲、乙、丙三名射击运动员在某场测试中各射击10次,3人的测试成绩如下表则甲、乙、丙3名运动员测试成绩最稳定的是 ( )A .甲B .乙C .丙D .3人成绩稳定情况相同6、已知⊙O 1的半径R 为7cm ,⊙O 2的半径r 为4cm ,两圆的圆心距O 1O 2为3cm ,则这两圆的位置关系是 ( )A .相交B .内含C .内切D .外切7、如图,在梯形ABCD 中,AD∥BC,AD =AB ,BC =BD, ∠A=140°,则∠C 等于( )A .75°B .60°C .70°D .80°8、抛物线21522y x x =--+的顶点坐标为 A .(1,3) B .(1,-3) C .(-1,3) D .(-1,-3)9、学校为了了解500名初三学生的体重情况,从中抽取100名学生进行测量,下列说法中A B C D 第7题图- 2 - 正确的是A .总体是500B .样本容量是100C .样本是100名学生D .个体是每个学生10、若△ABC 的一边a 为4,另两边b 、c 分别满足b 2-5b +6=0,c 2-5c +6=0,则△ABC 的周长为 ( ) A .9 B .10 C .9或10 D .8或9或10 二、填空题:(每小题3分,共24分)11、方程24x x =的解是 ▲ 。

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(苏科版含答案)

2013—2014学年九年级上学期期末考试数学试题(满分:150分 测试时间:120分钟)一.选择题(每题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每题3分,计24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .等边三角形 C2.如右图,数轴上点N 表示的数可能是( ) A .2 B .3 C .5 D . 10 3.给出下列四个结论,其中正确的结论为( )A .等腰三角形底边上的中点到两腰的距离相等B .正多边形都是中心对称图形C .三角形的外心到三条边的距离相等D .对角线互相垂直且相等的四边形是正方形 4.已知⊙O 1、⊙O 2的半径分别为3cm 、5cm ,且它们的圆心距为8cm ,则⊙O 1与⊙O 2的位置关系是( ) A .外切 B .相交 C .内切 D .内含 5.对任意实数x ,多项式1062-+-x x 的值是一个( )A.正数B.负数C.非负数D.无法确定6.将抛物线12+=x y 先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .y =(x +2)2+2B .y =(x +2)2-2C .y =(x -2)2+2D .y =(x -2)2-2 7.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为( ) A .13 B .11 C .11或13 D .128.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于 A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面 的四个结论:①OA=3;②a+b+c <0;③ac >0; ④b 2﹣4ac >0.其中正确的结论是( )A .①④B .①③C .②④D .①② 二、填空题(本大题共10个小题,每小题3分,共30分.) 9.在函数关系式11-=x y 中,x 的取值范围是 .10.已知梯形的中位线长是4cm ,下底长是5cm ,则它的上底长是 cm .11.抛物线2y x 12=-+()的顶点坐标是 .12.平面直角坐标系内的三个点A (1,0)、B (0,-3)、C (2,-3) 确定一个圆(填“能”或“不能”)。

2013-2014学年度苏科版九年级上学期数学期末练习试卷和答案

2013-2014学年度苏科版九年级上学期数学期末练习试卷和答案

苏科版九年级数学期末试卷温馨提示:亲爱的同学,本次测试试题总分为150分,考试时间为120分钟,请仔细审题,细心答题,相信你一定会有出色的表现!祝你考出好成绩。

一、选择题(本大题共10小题,每小题3分,共30分) 1.下列计算中,错误的是....( ) A.632=⨯=C.252322=+D.32)32(2-=-2. 抛物线y=x 2+3x 的顶点在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.如图,点C 在⊙O 上,若∠ACB =40°,则∠AOB 等于 ( )A 、40°B 、60°C 、80°D 、100°4. 若x x -=-2)2(2则x 的取值范围是 ( )A .2x >-B .2x ≥-C .2≤x 且0x ≠D .2≤x5.如图,PA 、PB 是⊙O 的两条切线,A 、B 是切点,若∠APB=60°,PO=2,则⊙O 的半径等于 ( ) A 、2 B 、2 C 、1 D 、36. 如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的 A .三角形B .平行四边形C .矩形D .正方形 ( )7. 已知关于x 的方程232+-x kx =0有两个实数根,则k 的取值范围为 ( ) A .89≤k B .89<k C . 089≠≤k k 且 D .0k 89≠<且k8. 两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为 ( )A .外离B .外切C .相交D .内切9. 下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程2ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是 ( )A .6 6.17x <<B .6.17 6.18x <<C .6.186.19x << D .6.19 6.20x << 10. 如图,A B C D ,,,为⊙O 的四等分点,动点P从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )(第3题图)(第6题图)(第5题图)AB C D OP(第18题图)二.填空题(本大题共8小题,每小题3分,共24分)11.当x 时,4-x 在实数范围内有意义 12.方程2x = 2x 的解是________.13.有一组数据数据11,8,—10,9,12极差是_________.14.在四边形ABCD 中, 已知AD ∥BC, 要使四边形ABCD 为平行四边形, 需要增加条件 (只需填一个你认为正确的条件即可) 15.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 。

江苏省江阴暨阳2013届九年级上学期期末考试数学试题江苏苏科版

江苏省江阴暨阳2013届九年级上学期期末考试数学试题江苏苏科版

2012-2013学年第一学期期末考试 初三 数学试卷(满分130分,考试时间120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的) 1|x ﹣y ﹣3|互为相反数,则x+y 的值为………………………………………………( ) A . 3 B . 9 C . 12 D . 272.某同学对甲、乙、丙、丁四个市场二月份每天的猪肉价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为2222S 8.5S 2.5S 10.1S 7.4====乙丁甲丙,,,.二月份猪肉价格最稳定的市场是…………………………………………………………………………………………………( ) A .甲 B .乙 C .丙 D .丁3.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是…………( )A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠ 4.如图,在平面直角坐标中,等腰梯形ABCD 的下底在x 轴上,且B 点坐标为(4,0),D 点坐标为 (0,3),则AC 长为……………………………………………………………………………………( ) A .4 B .5 C .6 D .不能确定5.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为……………………( ) A . 15πcm 2 B .3cm 2 C .60πcm D .30πcm 26.在正方形网格中,ABC △的位置如图所示,则A ∠tan 的值为……………………………………( )A .31BCD7.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①02=+b a ;②abc <0;③042>-ac b ;④8a+c >0.其中正确的有………………( ) A .3个 B .2个 C .1个 D .0个8.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是……………( ) A .m =l B .m >l C .m ≥l D .m ≤l9.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要多长. ………………………………………………… ( ) A .10n B .29+16n 2 C .29n 2+16 D .210n 2+1610.如图,等腰直角三角形△ABD 内接于⊙O ,AB 为直径,点C 为劣弧AD 上一点,且AC=4,CD=26,则BC 的长为…………………………………………………………………………………………( ) A .14 B .15 C .16 D .17 二、填空题(本大题共8小题-每小题2分,共16分)11.已知a 、b 为两个连续的整数,且b a <<13,则b a += . 12.已知一组数据:1,3,5,5,6,则这组数据的方差是 。

苏科版九年级数学上 期末测试题(Word版 含答案)

苏科版九年级数学上 期末测试题(Word版 含答案)
(1)若每周的利润 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?
(2)当 时,求每周获得利润 的取值范围.
32.如图,在△ABC中,AB=AC=13,BC=10,求tanB的值.
33.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为 、 、 、 类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:
18.如图,已知菱形 中, , 为钝角, 于点 , 为 的中点,连接 , .若 ,则过 、 、 三点的外接圆半径为______.
19.若记 表示任意实数的整数部分,例如: , ,…,则 (其中“+”“-”依次相间)的值为______.
20.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵


小莹

80
90
若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( )
A.86B.87C.88D.89
13.如图, 的半径为2,弦 ,点P为优弧AB上一动点, ,交直线PB于点C,则 的最大面积是
A. B.1C.2D.
14.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( )
A.4B.3C.2D.1
3.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则 =( )
A. B. C. D.
4.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
. .
x2
DE AB
.
三、解答题(本大题共有 9 小题,共 78 分) 19.计算(每小题 4 分,共 8 分) (1)( 27- 12+ 45)³ 1 ; 3 (2)( 2- 3) + 18÷ 3.
2
2
20.解方程(每小题 4 分,共 8 分) 2 (1) x -4x+2=0;
(2)2(x-3)=3x(x-3).
2
D.对角线相等的四边形
8.如图,抛物线 y=ax +bx+c 交 x 轴于(-1,0) 、 (3,0)两点,则下 列判断中,错误 的是 „„„„„„„„„„„„„„„„„„ ( ) .. A.图象的对称轴是直线 x=1 B.当 x>1 时,y 随 x 的增大而减小 2 C.一元二次方程 ax +bx+c=0 的两个根是-1 和 3 D.当-1<x<3 时,y<0 9. 如图, 正方形 ABCD 的边长为 4cm, 动点 P、 Q 同时从点 A 出发, 以 1cm/s 的速度分别沿 A→B→C 和 A→D→C 的路径向点 C 运动, 设运动时间为 x 2 (单位: s) , 四边形 PBDQ 的面积为 y (单位: cm ) , 则y与x (0≤x≤8) 之间的函数关系可用图象表示为„„ ( )
23. (1)∵AB∥CD, CE∥AD,∴四边形 AECD 是平行四边形.„„„„„„„„„2 分 ∵CE∥AD,∴∠ACE=∠CA D. „„„„„„„„„„„„„„„„„„„3 分 ∵AC 平分∠BAD,∴∠CAE=∠CAD.∴∠ACE=∠C AE,∴AE=CE. ∴四边形 AECD 是菱形. „„„„„„„„„„„„„„„„„„„„„„4 分 (2) (判断)△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„5 分 证法一:∵AE=CE,AE=BE,∴BE=CE,∴∠B=∠BCE, „„„„„„„„6 分 ∵∠B+∠BCA+∠BAC=180º, ∴2∠BCE+2∠ACE=180º,∴∠BCE+∠ACE=90º,即∠ACB=90º. „„„„„7 分 ∴△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„„„„„„„8 分 证法二:连 DE,则 DE⊥AC,且 DE 平分 AC.„„„„„„„„„„„„„„„„6 分 设 DE 交 AC 于 F.又∵E 是 AB 的中点,∴EF∥BC, „„„„„„„„„„„„„7 分 ∴BC⊥AC,∴△ABC 是直角三角形. „„„„„„„„„„„„„„„„„„„8 分 24. (1)BP 与⊙O 相切. „„„„„„„„„„„„„„„„„„„„„„„„„„1 分 理由如下: ∵AB 是⊙O 的直径 ∴∠ACB=90 即 AC⊥BC.„„„„„„„„„„„„„„„„„„„„„„„„„2 分 ∵PF∥AC, ∴∠CAB=∠PEB. „„„„„„„„„„„„„„„„„„„„„3 分 ∵∠AD C=∠ABC, ∠BPF=∠ADC,∴∠ABC=∠BPF.„„„„„„„„„„„4 分
∴x1=2+ 2,x2=2- 2.„„4 分
21.(1)树状图或表格略 „„„„„„„„„„„„„„„„„„„„„„„„„2 分 P(两数差为 0)= 1 4 „„„„„„„„„„„„„„„„„„„„„„„„„„„ 3 分
3 1 (2)P(小明赢)= ,P(小华赢)= ,∵P(小明赢)>P(小华赢),∴不公平. ……………………5 分 4 4 修改游戏规则只要合理就得分 ……„„„„„„„„„„…………………………6 分
启星中学 2014 年九年级数学上学期期末考试试题 苏科版
注意事项:1.本试卷满分 130 分 考试时间:120 分钟 2.试卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果. 一、选择题:(本大题共 10 题,每小题 3 分,满分 30 分. ) 1.下列计算中,正确的是 „„„„„„„„„„„„„„„„„„„„„„ (
18.3- 3
19. (1)原式= 9- 4+ 15 „„3 分 (2)原式=2-2 6+3+ 6 „„„2 分 =3-2+ 15 =5- 6. „„„„„„4 分 =1+ 15 „„„„4 分 20.方法不作要求,只要计算正确,都给分。 (1)(x-2)2=2 „„„„„„2 分 (2)(x-3)(2-3x)=0 „„„„„2 分 x-2=± 2 x=2± 2 „„„„„3 分 x-3=0 或 2-3x=0„„„„3 分 2 ∴x1=3,x2= .„„„„„„4 分 3
25. (本题 10 分)某商场购进一批单价为 16 元的日用品.若按每件 23 元的价格销售,每月能 卖出 270 件;若按每件 28 元的价格销售,每月能卖出 120 件;若规定售价不得低于 23 元, 假定每月销售件数 y(件)与价格 x(元/件)之间满足一次函数. (1)试求 y 与 x 之间的函数关系式. (2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛 利润 w 最大?每月的最大毛利润为多少? (3)若要使某月的毛利润为 1800 元,售价应定为多少元?
22.(本题 6 分)已知⊙O1 经过 A(-4,2) 、B(-3,3) 、C(-1,-1) 、O(0,0)四点, 一次函数 y=-x-2 的图象是直线 l,直线 l 与 y 轴交 于点 D. (1)在右边的平面直角坐标系中画出 直线 l,则直线 l .. 与⊙O1 的交点坐标为 ; (2)若⊙O1 上存在点 P,使得△APD 为等腰三角形,则 这样的点 P 有 个,试写出其中一个点 P 坐标为 .
6.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长 为 8cm 的等边三角形,则梯形的中位线长为 „„„„„„„„( ) A.4cm B.6cm C.8cm D.10cm 7 . 顺 次 连 接 四 边 形 ABCD 各 边 的 中 点 所 得 四 边 形 是 矩 形 , 则 四 边 形 ABCD 一 定 是„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A.菱形 B.对角线互相垂直的四边形 C.矩形
4
26.(本题 10 分) 如图,在矩形 OABC 中 ,OA=8,OC=4,OA、OC 分别在 x 轴与 y 轴上,D 为 OA 上一点,且 CD=AD. (1)求点 D 的坐标; (2)若经过 B、C、D 三点的抛物线与 x 轴的另一个交点 为 E,请直接写出点 E 的坐标; (3)在(2)中的抛物线上位于 x 轴上方的部分,是否存 在一点 P,使△PBC 的面积等于梯形 DCBE 的面积? 若存在,求出点 P 的坐标,若不存在,请说明理由.
3
23. (本题 8 分)如图,四边形 ABCD 中,AB∥CD,AC 平分∠BAD,过 C 作 CE∥AD 交 AB 于 E. (1)求证:四边形 AECD 是菱形; (2)若点 E 是 AB 的中点,试判断△ABC 的形状,并说明理由.
A

D
B
C
24. (本题 10 分)如图,AB 是⊙O 的直径,C、D 在⊙O 上,连结 BC,过 D 作 PF∥AC 交 AB 于 E, 交⊙O 于 F,交 BC 于点 G,且∠BPF=∠ADC. (1)判断直线 BP 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为 5,AC=2,BE=1,求 BP 的长.
1
3 x+ 3 与 x 轴、y 轴分别相交于 A、B 两点, 3 圆心 P 的坐标为(1,0) ,⊙P 与 y 轴相切于点 O.若将⊙P 沿 x 轴向 左移动, 当⊙P 与该直线相交时, 满足横坐标为整数的点 P 的个 数是„„„„„„„„„„„„„„„( ) A.3 B.4 C.5 D.6 10.如图,直线 y= 二、填空题(本大题共 8 小题,共 11 空,每空 2 分,共 22 分. ) 11.若二次根式 2-x在实数范围内有意义,则实数 x 的取值范围是 2 12.若关于 x 的方程 x -5x+k=0 的一个根是 0,则另一个根是 13.已知一个矩形的对角线的长为 4,它们的夹角是 60°,则 这个矩形的较短的边长为 ,面积为 . 14.一组数据 1,1,x,3,4 的平均数为 3,则 x 表示的数为 ________, 这组数据的极差为_______. 15.已知扇形的圆心角为 150°,它所对应的弧长 20π cm, 2 则此扇形的半径是_________cm,面积是_________cm . 16.一个宽为 2 cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与 光盘相切时,另一边与光盘边缘两个交点处的读数恰好是 “2”和“1(单位:cm) ,那么该光盘的直径 为_________cm. .. ⌒上, 17.如图,四边形 OABC 为菱形,点 B、C 在以点 O 为圆心的 EF ⌒的长为____________cm. 若 OA=1cm,∠1=∠2,则 EF 18. 如图, 平行于 x 轴的直线 AC 分别交抛物线 y1=x(x≥0) 与 y2= (x 3 ≥0)于 B、C 两点,过点 C 作 y 轴的平行线交 y1 于点 D,直线 DE ∥AC,交 y2 于点 E,则 =
4 2 8 27. (本题 12 分)如图,抛物线 y= x - x-12 与 x 轴交于 A、C 两点,与 y 轴交于 B 点. 9 3 (1)求△AOB 的外接圆的面积; (2)若动点 P 从点 A 出发,以每秒 2 个单位沿射线 AC 方向运动;同时,点 Q 从点 B 出发,以每秒 1 个单位沿射线 BA 方向运动,当点 P 到达点 C 处 O 时,两点同时停止运动。问当 t 为何值时,以 A、 P、Q 为顶点的三角形与△OAB 相似? (3)若 M 为线段 AB 上一个动点,过点 M 作 MN 平行于 y 轴交抛物线于点 N. ①是否存在这样的点 M,使得四边形 OMNB 恰为 平行四边形?若存在,求出点 M 的坐标;若不 存在,请说明理由. ②当点 M 运动到何处时, 四边形 CBNA 的面积最大?求出此时点 M 的坐标及四边形 CBAN 面积的最大值. y

A. 3+ 2= 5 B. 3³ 2=6 C. 8÷ 2=4 D. 12- 3= 3 2 2.三角形的两边长分别为 3 和 6,第三边的长是方程 x -6x+8=0 的一个根,则这个三角形 的周长是„„„„„„„„„„„„„„„„„„„„„„„„„„„„( ) A. 9 B. 11 C. 13 D.11 或 13 3.下列说法中,正 确的是„„„„„„„„„„„„„„„„„„„„„„„( ) 1 A.一个游戏中奖的概率是 ,则做 10 次这样的游戏一定会中奖 10 B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是 8 D.若甲组数据的方差是 0.1,乙组数据的方差是 0.2,则乙组数据比甲组数据波动小 4.某学校准备修建一个面积为 200 平方米的矩形花圃,它的长比宽多 10 米,设花圃的宽为 x 米,则可列方程为„„„„„„„„„„„„„„„„„„„„„„ ( ) A.x(x-10)=200 B.2x+2(x-10)=200 C.x(x+10)=200 D.2x+2(x+10)=200 5.一个圆锥的母线长是底面半径的 2 倍,则侧面展开图扇形的圆心角是„„ ( ) A.60° B.90° C.120° D.180°
相关文档
最新文档