3.3用图象表示变量之间的关系

合集下载

用图像表示变量间的关系

用图像表示变量间的关系

⑥ 90
60 ②


20 24 时间/分
判断速度随时间的变化情况:
怎样看图:
从左往右若图象上升,表明速度增大;
若图象下降,表明速度减小;
若图象与横轴平行;则表明速度保持不变,
尝试
探究 洪峰公司根据工作需要,准备租一辆面包车,
经考察,个体车与出租车公司的月租金计算方法如图所示,请 你根据图中提供的信息,与同伴讨论一个租车方案,
__关__系_式__法__
给定一个变量的值可求出另一个变量的值
__图__象__法_
能够直观地看出变量间的变化__趋__势_
在图象中
上升线------表示因变量随自变量的增大而增大; 水平线-----表示因变量随自变量的增大而不变; 下降线------表示因变量随自变量的增大而减小, 以上三点是打开“解决图象类问题”的一把万能钥匙 ,
y元
200 150 100 50
0
乙 1 当每月通话时间为多少时,两
A

公司的收费相同 2 当每月通话时间在什么范围
时, t/分钟 应选择乙公司 100 200 300 3 当每月通话时间在什么范围
时,
应选择
甲公司
变量之间关系的三种表示方法
变量之间关系的表示 __列__表__法_
特征 能看出两个变量之间的_变__化__关系
随堂练习:
1.柿子熟了,从树上落下来.下面的那一幅图可以 大致刻画出柿子下落过程中 即落地前 的速度的 变化情况




0
时间
1
0
时间
2


正确
0 3
时间
速 度
0 4 时间

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.

(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材

(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材

素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-3-13抱犊崮,海拔584米,与龟龙湖交融一体,山水相连,壮观巍峨,为天下第一崮.恰值清明假期,小强一家前去踏春,兴之所至,小强用学过的变量的知识绘了一幅图(如图3-3-13)来表示他们当天的行程.其中横轴表示当时的时刻t(时),纵轴表示他们与家的距离s(千米).图3-3-14设疑:同学们,你能想象出他们一天的情境吗?说明:引导学生在欣赏抱犊崮秀丽的美景中,自然引入有趣的变量知识,既培养了学生从图象中获取信息的能力,又锻炼了学生的语言表达能力.建议:学生欣赏抱犊崮的美景,简单了解抱犊崮的有关知识.然后观察小强绘制的图象,从中获取两个变量之间关系的信息,叙述一天情境时,学生还是存在困惑,教师不要急着提示,进而指出这就是本节课要继续学习的内容——用图象表示的变量间关系.复习导入图3-3-15问题1:我们已经学习了哪几种表示变量之间关系的方法?问题2:某种西瓜子每千克2元,小明购买西瓜子的总价y元与购买的数量x千克之间有什么关系?(1)用表格的形式表示总价y与数量x的关系:(2)试写出y与x的关系式__y=2x__;(3)在下面的图象中能够正确表示总价y与数量x关系的图象是(C)图3-3-16说明:让学生通过表格、关系式、图象三种方式来表示西瓜子的总价与购买的数量之间的关系,旨在复习三种表示变量间关系的方法,并初步感受三种方法各自的优越性,为本节课的学习做好铺垫.建议:三种表示变量之间关系的方法可让学生快速回答,然后学生独立完成问题2中的三个题目,教师出示答案,及时纠正.教材母题挖掘74页随堂练习第2题一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?图3-3-17【模型建立】分析变量图形时要明确自变量和因变量,更要清楚每一个点对应的变量和它表示的实际意义以及整个图象变化的趋势,其中比较特殊的是当图象与横轴平行时,说明在对应的自变量的范围内因变量不发生变化.【变式变形】1.如图3-3-18,在直径为AB 的半圆O 上有一动点P 从点A 出发,按顺时针方向绕半圆匀速运动到点B ,然后再以相同的速度沿着直径回到点A 停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是(A )图3-3-18图3-3-19.如图3-3-19,爸爸从家(点O)出发,沿着扇形AOB 上OA →AB ︵→BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列各图中,能大致刻画s 与t 之间函数关系的图象是(C )图3-3-20图3-3-21.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等)又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(时),轮船距万州的距离为y(千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是(C )图3-3-214.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用的时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(A)图3-3-22图3-3-235.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图3-3-23所示,则下列说法正确的是(B)A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多6.小红的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小红爷爷离家的距离y(米)与时间x(分)之间的关系的大致图象是(C)图3-3-24图3-3-257.某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x(吨)之间的关系如图3-3-25所示,根据图象回答:(1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元?(2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费105=2(元);当x =8时,y =20.5,故超过5吨部分每吨交水费20.5-108-5=3.5(元).(2)因为x =3.5<5,所以y =3.5×2=7(元);若交17元水费,则用水5+17-103.5=7(吨).考情考向分析利用图象分析、体现变量变化的趋势结合图象中每个点对应的自变量和因变量,可以得到变量变化的趋势,一般是随着自变量的变大(图象从左向右),图象对应的因变量的值的变化情况(上升为变大,下降为变小).如课本第79页复习题第11题.例1 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是(B )图3-3-26例2 图3-3-27中所反映的过程是:张强从家跑步去体图3-3-27育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是(C )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/时 利用图象给出的信息计算用图象表示变量之间的关系时,每一个点都有一定的实际意义,过图象上一点向横轴作垂线,垂足对应的数就是自变量,向纵轴作垂线,垂足对应的数就是对应的因变量.图3-3-28例王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图3-3-28所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解:(1)根据图象可知王大爷自带的零钱是5元.(2)降价前,每千克土豆的价格是(20-5)÷30=0.5(元).(3)降价前,他一共卖了30千克土豆,手中的钱有20元;降价后,他卖完剩余的土豆,手中的钱有26元,降价后他收入了26-20=6(元),按每千克0.4元卖出,他卖出了6÷0.4=15(千克)土豆,他一共带的土豆有30+15=45(千克).素材四教材习题答案P74随堂练习1.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?解:(3).2.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶. 过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?解:(2).P74习题3.41.根据图3-7填写下面的表格:解:2.亮亮今天发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么发烫了.下面哪一幅图能较好地刻画出亮亮今天体温的变化情况?解:(3).3.下面的图表示小明放学回家途中骑车速度与时间的关系,你能想象出他回家路上的情境吗?解:小亮刚出校门时加速行驶一段后改成匀速行驶,在离家不远处减速行驶,到家后停下.4.小明站在离家不远的公共汽车站等车.图中哪一个图能最好地刻画等车这段时间离家距离与时间的关系?解:(3).图书增值练习专题一曲线型图象1.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.2.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题二折线型图象1.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.【知识要点】图象法:用图象来表示两个变量之间的关系的方法叫做图象法.在用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,图象上每个点都表示自变量和因变量之间的相互关系.【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】1.借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.1.借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.答案:1.(1)4 10(2)10 14 -2 4(3)12(4)4 h~14 h 0 h~4 h和14 h~24 h(5)1℃2.解:(1)对应关系连接如下:(2)当容器中的水恰好达到一半高度时,关系图上T的位置如上图.3.解:(1)A点表示匀速运动,B点表示停止;(2)0到3分钟加速,3到12分钟匀速,速度为90 km/h,12到15分钟减速,减到约每小时20千米,后再匀速到18分钟开始减速,19分钟运动停止.(3)司机休息5分钟后的运动情况如图所示.素材六数学素养提升情景中图象信息题将实际生活中蕴涵的变量关系,用图形的方式呈现出来,图文并茂,富有生活气息,不仅提高我们从图形中获取信息的能力,而且是数形结合思想应用的重要体现,请看举例..例1商店里把塑料凳整齐地叠放在一起,据图1的信息,解答下列问题(1)当有10张塑料凳整齐地叠放在一起时的高度是多少?(2)求叠放塑料凳的个数x(个)与叠放的高度y(cm)之间的变量关系?图1分析:本题是一道图形信息试题,从图形观察可知:三个塑料凳的叠放在一起的高度是29cm,此时的29cm 包括凳子腿的高度和三个凳子面的厚度;五个塑料凳叠放在一起的高度为35cm,此时的35cm包括凳子腿的高度和5个塑料凳面的厚度.由此可知两个凳子面的厚度为35-29=6cm.所以一个凳子面的厚度为3cm,三个凳子叠放在一起高度减去三个凳子面的厚度,即可29-3×3=20为凳子腿的高度.这样可以求解(1),(2)两问.解:(1)观察图形,可得一个凳子面的厚度为3cm,凳子腿的高度为20cm.所以叠放10个凳子的高度为10×3+20=50cm;(2)y与x之间的关系为y=3x+20.评注:解决本题需要仔细观察图形中的数据信息以及塑料凳叠放的特征,根据这些特征确定一个凳子面的厚度以及凳子腿的高度 .例2请根据图2中给出的信息,解答下列问题:图2(1)放入一个小球量筒中水面升高 cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的关系式;(3)量筒中至少放入几个小球时有水溢出?分析:本题是图形信息问题,解决问题需要从图形中正确得到解题信息,从前两个量筒可以观察到,当放入三个球时,水面增加6cm,这样可得到放入一个球水上升的高度,由此可得到放x个球时,水面高度y与x之间的关系式.解: (1)(36-30)÷3=2; 即放入一个小球量筒中水面升高2cm.(2) 放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式y=30+2x(3) 当y=49时,30+2x=49,x=9.5, 所以至少放入10个小球时有水溢出.评注:解决图形信息问题,其关键是认真观察图形中的信息,从图形中发现存在的数量关系.。

北师大七年级数学下册教学课件3.3用图象表示的变量间关系——温度的变化

北师大七年级数学下册教学课件3.3用图象表示的变量间关系——温度的变化
(6)你还知道哪些关于骆驼的趣事?与同伴进行交流.
42 温度/℃
40
A
38
36
34
32
30 0 4 8 12 16 20 24 28 32 36 40 44 48
(图中25时表示次日凌晨1时)时间/ 时
四、自学互研
活动1 自主探究1
阅读教材P69-70,完成下面的问题: 什么是图象法表示变量间的关系? 答:利用图象表示两个变量之间的关系,叫做图象法,从图象上获取变量间 的关系非常直观.
活动2 合作探究1 范例1.如图是北京市某一天的气温T(℃)随时间t(h)变化的图象,那么这天 ( C)
A.最高气温是10℃,最低气温是0℃ B.最高气温是6℃,最低气温是-2℃ C.从5时到12时气温在逐渐升高 D.从12时到24时气温在逐渐升高
仿例1.如图所示是一日内一个水池的水深随时间变化的图象.
练习
2.右图表示 某市2016年6月份某一天的气温随时 间变化的情况,请观察此图回答下列问题: (1)这天的最高气温 是 38度 ;
(2)这天在 3至15时 范围内温度在上升;
温度/ C
38 34 30 26 22 18 14 10 6 2
036
(3)请你预测一下,次日凌晨1点的气温大约是多少度?
(图中25时表示次日凌晨1时)时间/时
(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需 要多少时间?
35至40℃
12小时
(2)从16时到24时,骆驼的体温下降了多少? 3℃
(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在 下降? 上升:4至16时和28至40时
三、情境导入
活动1 旧知回顾 1.对于两个变量之间的关系,我们已经分别学习了_表__格__法__和_关__系__式__法__两 种表示方法. 2.观察下图,你能从中获取怎样的信息?

北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化

北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化
用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器
活动1 自主探究1 的形状是图中( )
根据图象的变化趋势或周期性特征,不仅可回顾事情的过去,还可预测事情的未来. (1)这是一次____m跑;
理阅解读分 教阅段材图P读7象3-的教7意4,材义完,成掌P下握73列分-问段7题图4,:完象各成个部下分列的含问义.题: 如理果解O分A范段、图B例象A分的1别意.(表义汕示,掌尾甲握、分中乙段两考图名象)学各汽生个运车部动分以的的路含6程0义s.和km时间/ht的的关速系,度根据在图公象判路断快上者匀的速速度比行慢驶者的,1速度h每后秒进快(入高)速 ((C2))甲18、分路乙钟两,继人中续___以_先1到(0D达0)2终0k分点m钟;/h的速度匀速行驶,则汽车行驶的路程s(km)与行驶的时间
第三章 变量之间的关系
课题 用图象表示的变量间关系——速度的变化
一、学习目标 1.理解分段图象的意义,掌握分段图象各个部分的含义. 2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.
二、学习重难点 重点 学习速度型分段图象的意义,能说出各部分图象的含义.
难点 根据图象信息解决相关问题.
学时一致,那么他从学校到家需要的时间是( D )
(A)14分钟
(B)17分钟
(C)18分钟
(D)20分钟
练习 5.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停 下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭车速,在下 图中给出的示意图中(s为距离,t为时间)符合以上情况的是(D )
仿例5.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步, 能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是图中 的( C )

用图象表示的变量间关系

用图象表示的变量间关系

多变量柱状图
总结词
用于展示三个或更多变量的关系,通 过增加更多的维度来展示更复杂的数 据结构。
详细描述
在多变量柱状图中,通常使用不同的 形状、颜色或标签来表示不同的变量。 这种图表可以用于展示多个维度的数 据,例如比较不同产品在不同地区、 不同时间的销售情况。
04
饼状图
单变量饼状图
总结词
通过扇形面积展示单一变量的占比关系。
02
折线图
单变量折线图
总结词
展示一个变量随时间变化的情况
详细描述
单变量折线图用于表示一个变量随时间变化的情况,通过将时间轴和数值轴分开,可以清晰地观察到 变量的变化趋势和规律。
双变量折线图
总结词
展示两个变量之间的相关性
详细描述
双变量折线图通过将两个变量的数值分别表示在横轴和纵轴 上,可以清晰地展示两个变量之间的相关性。通过观察折线 交叉、倾斜程度等特征,可以分析两个变量之间的关联和影 响。
多变量热力图
总结词
展示多个变量在不同类别的数据点上的关系
详细描述
多变量热力图使用多个颜色层来表示多个变量在不同类 别的数据点上的关系。每个颜色层表示一个变量的值, 通过颜色的叠加和透明度的调整,可以直观地看出多个 变量的关联程度和变化趋势。多变量热力图能够同时展 示多个变量的关系,有助于更全面地了解数据的特点和 规律。
多变量折线图
总结词
展示多个变量随时间变化的情况
详细描述
多变量折线图用于表示多个变量随时间变化的情况,通过在同一张图上绘制多个折线, 可以同时观察多个变量的变化趋势和相互影响。这种图表对于分析多个因素之间的关联
和相互制约关系非常
总结词
用于展示某一变量的不同类别数据的 大小关系。

用图象表示的变量间的关系

用图象表示的变量间的关系

选择合适的图表类型
根据数据的性质和目的,选择适合的折线图类型,如单变 量折线图、双变量折线图等。
绘制折线图
使用绘图软件或编程语言(如Python、Excel等)绘制折 线图,将数据点连接成线,并添加必要的图表元素(如标 题、坐标轴标签、图例等)。
04
柱状图
柱状图的定义
柱状图是一种用柱形表示数据的图表 ,通常用于展示不同类别数据的大小 比较。
柱状图的绘制方法
确定数据和分类变量
首先需要确定要展示的数据和分类变量, 例如销售数据按产品类别进行分类。
分析图表
根据柱状图的展示结果,进行数据分析, 得出结论和建议。
数据整理
将数据整理成适合绘制柱状图的形式,通 常为表格形式,包括行和列。
绘制图表
使用图表绘制软件或工具,根据数据表格 绘制柱状图,设置合适的图表标题、坐标 轴标签等元素。
图像可以轻松地解释给其他 人听,并且可以方便地分享 到社交媒体或其他平台,提 高数据的传播和影响力。
尽管图像表示变量具有很多 优点,但也存在一些局限性 ,例如对于大量数据的处理 能力有限,对于非线性关系 的表示不够精确等。因此, 在使用图像表示变量时需要 注意其适用范围和局限性。
02
散点图
散点图的定义
03
同类别的数据。
饼图的用途
01
用于展示不同类别的数据比例,如市场份额、用户分布等。
02
可用于比较不同类别的相对大小,帮助用户快速了解数据的 分布情况。
03
可用于发现异常值或突出显示某个类别的重要地位。
饼图的绘制方法
选择数据
确定要展示的数据类别和数据值。
设计布局
确定饼图的标题、图例和数据标签等元素的位 置。

用图象表示的变量间关系(第二课时)

用图象表示的变量间关系(第二课时)
第四章 变量之间的关系
3.3用图象表示的变量间关系(第二课时)
【复习回顾】1、表示变量之间的关系常常用 三种方法。 2、在关系式S=4t中,自变量是 ,因变量是 ,当t=1.5时,S= . 3、已知等腰三角形的底为3,腰长为x,则周长y可以表示为 . 4、如图是某地区一天的气温随时间变化的图像,根据图像回答,在这一天中,
s
s s
s
O A
t
OtO CFra bibliotektO
D
t
B
7、一辆在高速公路上以150千米/时的速度匀速行驶的汽车,下 列哪一张图象能大致刻画汽车的速度与时间的关系( )
A
B
C
D
速度
0
速度
时间 速度
0 0
A
B
时间
速度 时间
C
0
D
时间
2、下列各情境分别可以用哪幅图来近似地刻画? 、 1.一杯越来越凉的水(水温与时间的关系); 2.一面冉冉上升的旗子(高度与时间的关系); 3.足球守门员大脚开出去的球(高度与时间的关系);
4.匀速行驶的汽车(速度与时间的关系)
s s t A O B t s O C t s O D t
时间
(4) 6 12 18 24
时间
0
5、某同学从第一中学走回家,在路上他碰到两个同学,于是在文 化宫玩了一会儿,然后再回家,图中哪一幅图能较好地刻画出这位 同学离家所剩的路程与时间的变化情况:
A
B
C
D
6、 李明骑车上学,一开始以某一速度行进,途中车子发生故障, 只好停下来修车,车修好后,因怕耽误上学时间,于是加快车速, 在下图中给出的示意图中(s为距离,t为时间)符合以上情况的 是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3 用图象表示的变量间关系
教学反思学习目标:1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。

2、结合具体情境,理解图象上的点所表示的意义。

3、能从图象中获取变量之间关系的信息,并能用语言进行描述。

学习重点:结合具体情境,理解图象上的点所表示的意义。

并能从图象中获取变量之间关系的信息,
学习难点:能从图象中获取变量之间关系的信息,并能用语言进行描述。

一、预习
(一)、预习书:P103~P105
(二)、思考:用图像表示变量之间的关系时,水平方向的数轴(横轴)上的点表示什
么?,竖直方向的数轴上的点表示什么?
(三)、预习作业:
1、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:
(1)二月份平均气温是______C,十月份平均气温______C;
(2)这一年中,月平均气温最高的是______月,温度大约是______C;
(3)月平均最高气温与最低气温大约相差______C
(4)月平均最高气温为10C的月份是______月,它可能是______季节;
(5)上述变化中,自变量是______,因变量是______;
(6)估计明年一月份的平均气温会低于0C吗?
二、学习过程:
(一)要点引导
1、图像是表示________之间关系的一种方法,它的特点是更________、更________地反映
了因变量随自变量变化的情况.
2、用图像表示变量之间的关系时,通常用水平方向的数轴(横轴)上的点表示________,
用竖直方向的数轴(纵轴)上的点表示________
(二)例题
1、骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

让学生观察图片并
回答问题:
(1)一天中,骆驼体温的变化范围是什么?它的体温从最低上升的最高需要多少时间?
(2)从16时到24时,骆驼的体温下降了多少?
反思(3)在什么时间范围内骆驼的体温在上升?什么时间下降?
(4)你能看出第二天8时骆驼的体温与第一天8
变式1
潮汐,潮汐于人类的生活有着密切的联系,本题图(见P200 1
时到12时的水深情况,学生观察图并选题回答:(1
是多少?
(2)大约什么时刻港口的水最浅?深度约是多少?
(3)在什么时间范围内,港口水深在增加?
(4)在什么时间范围内,港口水深在减少?
(5)A,B两点分别表示什么?还有几时水的深度与A点
所表示的深度相同?
(6)说一说这个港口从0时到12时的水深是怎样变化的。

变式2、
(1)小明从家到学校有多远?他一共用了多长时间到校?
(2
(3)你能想象小明从离家到第4min时的情况吗?
(三)拓展
1
出售一些后,又降价出售,售出土豆的千克数x
系如图所示。

根据图像回答下列问题:
(1)王大爷自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3)降价后他按每千克0.4元将剩余土豆售完,
这时他手中的钱(含备用零钱)是26
土豆?
2、如图中的折线ABC(元)与通话时间t(分
钟)之间的关系的图像。

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?
(2)通话多少分钟以内,所支付的电话费不变?
(3)如果通话3分钟以上,电话费y(元)与时间t
那么通话4分钟的电话费是多少元?
(四)回顾小结
1
2
3
4
5
6
7
8。

相关文档
最新文档