chapter04变形体静力学基础

合集下载

04第四章变形体静力学基础CAI41

04第四章变形体静力学基础CAI41

4)杆旳总伸长为: DlAD=DlAB+DlBC+DlCD=0.68mm
23
讨论:杆 受力如图。BC段截面积为A ,AB
段截面积为2A,材料弹性模量为E。欲使截面
D位移为零,F2应为多大?
解:画轴力图。
l
A F1 -F2
B
有: DD=DlAD=DlAB+DlBD
l
F2
D
l
=FNABl /E(2A)+FNBDl /EA 即:
内力分布在截面上。向截面形心简化,内力
一般可表达为6个,由平衡方程拟定。
11
返回主目录
若外力在同一平面内,截面内
力只有3个分量,即:
C
轴力 FN 作用于截面法向。 剪力 FS 作用于截面切向。 弯矩 M 使物体发生弯曲。
M C FS FN
若外力在轴线上,内力只有轴力。
内力旳符号要求
FN
取截面左端研究,截面在研究对象右端,则要求:
1. 截面1 内力?
y
M1
F F
r FS
A FNa
x
2. 柱截面 内力?
Fy
3. 作内力图。
+向
5kN 10kN 8kN 3kN
Mz
Mx FN x
z
FN 图 5kN -
5kN
+
3kN
17
返回主目录
4.4 杆件旳基本变形
y
Fy
F
杆件:某一方向尺寸远不小于其 他
方向尺寸旳构件。
1 My
C
Fx
z
A
x
Fz
轴向拉压杆旳应力、应变定义为:
应力:s = FN

(完整版)第四章变形体静力学基础b

(完整版)第四章变形体静力学基础b

C FCx l=3m
分析变形体静力学问题的基本方法。
D
F=22kN
例4.9 图中BD杆直径d=25mm,CD杆为30×80mm矩 形截面,弹性模量E=200GPa,求D点的位移。
解:1)力的平衡: 画受力图。有平衡方程:
MC(F)=FBsin45-F=0 FB=31.1kN Fx=FCx-FBcos45=0 FCx=22kN Fy=FCy+FBsin45-F=0 FCy=0 亦可由三力平衡判断
a=0时,a=, a=0, 横截面上正应力最大; a=45时,a=/2, a=/2,
45斜截面上剪应力最大,且max=/2。
如:铸铁试样受压时, a=45斜
截面上的应力a和a为:
a=-/2;
a=-/2
铸铁抗压能力远大于抗剪或
抗拉能力,故实验时先发生与
轴线大约成45,剪切破坏。
F
a a x a
B B
F
11
3) 一点的应力状态:
F
A
由定义有:T = lim DF 故可知,
DA0 DA
一点的应力与过该点之截面的取向有关。
一点的应力状态用围绕该点截取的 微小单元体上的应力来描述。单元体尺
寸微小,各面上的应力可认为是均匀的。
A
dy dx
单向拉压杆横截面上只有正应力。 故 A点的应力状态可用由横截面、水 平面截取的微小单元体上的应力描述。
14
对于单向拉、压杆,任 一点 A的应力状态为:
F
A
/2
/2
A

A =/2
a=0
a=45
只要确定了一种单元体取向时各微面上的应力, 即可求得该点在其他任意取向之截面上的应力。

静力学基础

静力学基础
力学模型 刚体:在力的作用下保持形状、尺寸不变的 力学模型。 变形体:在力的作用下形状、尺寸均可改变
的力学模型。
研究结构或构件是否满足下列条件 足够的强度:结构或构件具有承受荷载或抵
抗破坏的能力。
足够的刚度:结构或构件具有抵抗变形的能 力。 足够的稳定性:结构或构件在工作时能保持 其原有状态下的平衡,不会突然改变其原有的工
4*5=20kN
3.学生利用平行四边形法则解决力学问 题。 求四个力的合力。
练习 4.教师利用静力学公理解决实际问题。 为什么推车与拉车效果一样? 答:力的可传递原理。 5.学生完成案例提出的问题。
合力方向。
归纳
知识点1:力的定义、效应、三要素、单位。
知识点2:力系的定义、分类、等效、平衡
力系、合力与分力。
4、荷载按其作用在结构上的分布情况分为 分布荷载和集中荷载。
集中荷载:分布范围很小,可近似认为作用在
一点的荷载;
线分布荷载:沿直线或曲线分布的荷载(单 位:KN/m); 面分布荷载:沿平面或曲面分布的荷载(单 位:KN/m2);
体分布荷载:沿物体内各点分布的荷载(单
位:KN/m3)。
工程中,荷载的分布情况往往比较复杂,
时,此三力的作用线必汇交于一点。 作用与反作用定律
两个相互作用物体之间的作用力与反作 用力大小相等,方向相反,沿同一直线且分 别作用在这两个物体上。
练习 1.利用二力平衡公理解决力学问题。
确定构件BC上两个力的方向。
练习 2.学生练习荷载计算。
荷载q=4kN/m2,面积为5m2,求作用
在面上的荷载?
F
力的国际单位是牛顿(N)或千牛顿(kN)。
力系
作用于同一个物体上的一组力。 力系的分类: 各力的作用线都在同一平面内的力系称

第四章变形体静力学基础

第四章变形体静力学基础

模具设计工程师认证培训教材工程力学第四章变形体静力学基础本章介绍变形体力学的基础知识,包括变形体力学的基本假设、分析杆件内力的截面法、应力和应变的初步概念以及单向胡克定律,最后还将讨论材料的力学性能。

4.1 变形体的基本概念●变形组成机械的零件和构成结构的元件,统称构件。

制作构件所用的材料多种多样,其共同点是在受力后构件的形状和尺寸会产生改变,这种变化称为变形。

在外力作用下会发生变形的固体称为变形体。

在理论力学讨论的刚体模型,实际上是变形很小时的理想模型。

在外力撤去后,变形体的变形完全消失,变形体能恢复到未变形状态,则该变形称为弹性变形,变形体是处于弹性状态,或变形体是弹性体;而卸载后在变形体内遗留的或不能恢复的变形称为塑性变形。

相对于构件尺寸,变形按大小可分为小变形和大变形。

对小变形构件可不考虑变形对构件尺寸的影响,仍按构件的原始尺寸进行分析计算,从而使分析计算得到很大的简化。

本书只研究变形体在弹性状态下的小变形问题。

根据工程实践的要求,在对构件进行设计时要考虑以下三方面的要求:1.构件应具有足够的抵抗破坏的能力,即强度,以保证在规定的使用条件下不发生破坏或产生塑性变形。

2.构件应具备足够的抵抗变形的能力,即刚度,以保证在规定的使用条件下不产生过度的变形。

3.构件应具备足够的保持原有平衡形式的能力,即稳定性,以保证在规定的使用条件下不产生失稳现象。

●基本假设就其具体组成和微观结构来看,变形体是一个非常复杂的研究对象。

若只从宏观的角度研究物体内部的受力和变形规律,对材料的性质的属性作出了若干简化假设。

实践表明,这些假设能满足工程实际的需要。

1.连续性假设根据物质结构理论,固体是由不连续的粒子构成的。

粒子之间的空隙与构件的尺寸相比极其微小,可以忽略不计,因此,认为构件的整个体积内毫无空隙地充满了物质,即连续性假设。

这样,物体内诸如位移、温度、密度等物理量可用坐标的连续函数来表示,并可采用无限小的分析方法。

静力学基础知识

静力学基础知识

固定结构的分析是指对固定 不动的物体进行受力分析, 确定其在重力、支撑力等作 用力下的平衡状态。这种分 析方法在建筑、机械等领域 广泛应用,用于评估结构的 稳定性、安全性和可靠性。
固定结构分析需要使用静力学的基本原理, 如力的合成与分解、力的矩、力的平衡等, 以及相关的数学工具,如线性代数和微积分。
通过力的平移,将一个力系简化为一个合力,这 个合力与原力系等效。
简化
合成
力系的平衡条件
平衡方程
平衡条件
对于一个物体,如果它处于静止状态或匀速直线 运动状态,那么这个物体所受的力系是平衡的。
对于一个物体,如果它受到n个力的作用,那么这 n个力的合力为零,即∑Fi=0。

第力
六 章
例学 应 用

固定结构的分析
静力学的发展历程
总结词
静力学的发展经历了古代静力学、经典静力学和现代静力学三个阶段。
详细描述
古代静力学阶段主要基于经验和直观,如阿基米德浮力原理和杠杆原理等。经典静力学阶段开始于文艺复兴时期,主 要基于数学和物理原理,发展了力的合成与分解、力矩平衡等基本理论。现代静力学则更加注重实验和计算机技术的 应用,发展了有限元分析、优化设计等现代分析方法。
平衡条件的对称性

第力
五 章
系学 中 的

力系的定义与分类
根据力的作用线是 否通过一点,可以 分为共点力系和非 共点力系;根据力 的作用线是否在同 一个平面内,可以 分为平面力系和空 间力系。
力系是作用在物体上的一组力的集合。 定义 分类
力系的简化与合成
将两个或多个力合 成一个或少数几个 力,这些力与原力 等效。

第力
一 章

第四章 变形静力学基础

第四章 变形静力学基础
1) 均匀连续性假设
物体整个体积内都毫无空隙地充满着物质,是均匀、连 续的,且任何部分都具有相同的性质。
变形前、后都没有“空隙”、“重叠”,必须满足几何 协调(相容)条件。可取任一部分研究。
2) 各向同性假设
材料沿各不同方向均具有相同的力学性质。 这样的材料称为各向同性材料。 使力与变形间物理关系的讨论得以大大简化。
注意:所讨论的是变形体,故在截取研究对象之前, 力和力偶都不可像讨论刚体时那样随意移动。
例[4.2] 求图中1、2、3截面内力。
FAy
a
解:1)求约束反力:由整体有 FBx=F/2;FAy=F;FAx=-F/2
a A FAx 2
3
D
C
a
1F
由铰链C:FAC= 2F2; FCD=-F
2)求各截面内力:
而车轴的外伸部分既受弯 又受剪——横力弯曲
工程中常用构件在荷载作用下,大多为几种基本变形 形式的组合——组合变形。
烟囱
齿轮传动轴 厂房吊车立柱
(压缩+横力弯曲) (扭转+水平面内横 (压缩+纯弯曲) 力弯曲+竖直面内
横力弯曲)
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效;即指构件 的抵抗破坏的能力 刚度—不因发生过大的弹性变形而失效;指构件的 抵抗变形的能力
1 F1=40KN 2 F2=55KN F3=25KN
FR
A
B
C
3
4
D
F4=20KN
E
1
2
3
4
FR
F1 2 FN2
A
B2
为方便取截面3-3右边为 分离体,假设轴力为拉力。
FN2=50 kN(拉力)

最新完美版建筑力学第四章弹性变形体静力分析基础

最新完美版建筑力学第四章弹性变形体静力分析基础
4)平衡。考虑留下部分的平衡, 列出平衡础\内力与应力
例4-1 试求图示构件m―m截面上的内力。
目录
第四章 弹性变形体静力分析基础\内力与应力
解 采用截面法。内力是水平方向的力FS、铅垂方向的 力FN和力偶M (如图)。 列出平衡方程 Fx= 0 得 Fy= 0 得 MO = 0 得 F1FS= 0 FS= F1 FN F2 = 0 FN = F2 F1a F2b M = 0 M = F1a F2b
目录
第四章 弹性变形体静力分析基础\内力与应力
图示一受力构件,现在来研究其m―m截面上M点处 的应力。在受力构件的m―m截面上围绕M点取一微面积 A,设微面积A上分布内力的合力为F,则在A范围内 的单位面积上内力的平均集度为
F pm A
pm称为A上的平均应力。 为了确切反映M点处内力的集度, 可令微面积趋近于零,此时平均应 力pm的极限值称为m―m截面上M点 处的应力,用p表示,即
目录
第四章 弹性变形体静力分析基础\内力与应力
F dF p lim p m lim dA A 0 A A 0
应力p是一个矢量,一般既不与 截面垂直,也不与截面相切。通 常把应力p分解为垂直于截面的 法向分量 和与截面相切的切向 分量 (如图)法向分量 称为 正应力,切向分量 称为切应力。由图知 = pcos , = psin
目录
第四章 弹性变形体静力分析基础\变形固体的基本假设
2.变形固体的基本假设 (1)连续性假设 即认为组成固体的物质毫无间隙地 充满物体的几何容积。 (2)均匀性假设 即认为固体各部分的力学性能是完 全相同的。 (3)各向同性假设 即认为固体沿各个方向的力学性 能都是相同的。 本课程只限于分析构件的小变形。所谓小变形是指构 件的变形量远小于其原始尺寸。因此,在确定构件的平衡 和运动时,可不计其变形量,仍按原始尺寸进行计算,从 而简化计算过程。

变形体静力学基础

变形体静力学基础

假想沿1-1截面将杆截开,取1-1截面左端部分为研 究对象,受力分析如图4-5(c)所示。静力平衡方程
X 0, FAx FN 0 Y 0, FAy FS 0
M D (F ) 0, M FAy 2 0
解得:
FN FAx 8.66kN , FS FAy 5kN,
• 第4章 弹性变形体静力分析基础
• • • • 4.1变形体的基本假设 4.2杆件变形的基本形式 4.3杆件内力的计算方法 4. 4应力和应变的概念 胡克定律
4.1变形体的基本假设
变形固体:任何固体在外力作用下会产生形状和大小的变化。 弹性变形:当外力不超过某一限度时,外力撤去后,变形 随外力撤去而消失,这种变形称为弹性变形。 塑性变形:当外力超过一定限度时,外力撤去后将遗留一 部分不能消失的变形,称这部分变形为塑性变形,或称为 残留变形或永久变形。 构件按几何形状分为杆、板、壳和块体。
1 MPa 1 N / mm2 106 Pa
工程上经常采用兆帕(MPa)作单位
4.4.2 应变概念
变形:构件在外力作用下,其几何形状和尺寸的改变。 假想将构件分割成无数个微小正六面体
u
x 长度内总变形量
为度量一点处变形强弱程度,引入应变 的概念,若各点处的变形程度相同,则

u x
直杆
曲杆
板 研究对象:直杆

块体
研究任务:使构件在外力作用下能够正常工作。 构件应具有足够的强度,以保证构件不会产生断裂或明显 的塑性变形。强度是指构件抵抗破坏(断裂或产生明显塑 性变形)的能力。 构件具有足够的刚度,以保证构件工作时的弹性变形在规 定的限度内。刚度是指构件抵抗变形的能力。 构件应具有足够的稳定性,以使构件在工作时不产生失稳 现象。失稳是指直杆从直线的平衡形式突然变为曲线的平 衡形式。稳定性是指构件保持原有平衡形态的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档